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Density of states and localization length of the molecular bridge model 

The molecular bridge model with a single state per site, given by Eq. 1 of the main text, is used in 

our work to demonstrate the effect of an applied electric field on electron transport through organic 

molecules. In this section, we present two properties of the molecular bridge in the absence of 

electric field: (i) the density of states (DOS) and (ii) the localization length. We start with a 

perfectly periodic bridge with uniform on-site energies 𝜀" = 𝜀	and inter-site couplings 𝑡" = 𝑡 
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An illustration of the model and the calculated DOS (for 𝜀 = 2𝑡) are plotted in Figure SI1(a). To 

eliminate finite-size effects, we have calculated the DOS for a long bridge with 𝑁 = 1000 sites. 

All electronic states corresponding to the above Hamiltonian are extended, i.e., their localization 

length is infinite, and a metallic band is formed at energies 𝜀 − 2𝑡 < 𝐸 < 𝜀 + 2𝑡.  

Upon introducing a disorder potential to the model 
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all the electronic states become localized. This model as well as the corresponding DOS and 

localization length are shown in Figure SI1(b). Here (as in the main text) we considered uniformly 

distributed uniformly distributed disorder, 𝑈BCD(𝑛) ∈ [−𝑊,𝑊] with  𝑊 = 𝑡. As a result of the 

disorder, the band of electronic states extends over a window of energy 𝜀 − 2𝑡 −𝑊 ≲ 𝐸 ≲ 𝜀 +

2𝑡	 +𝑊, which is wider in comparison to the periodic case. Crucially, the electronic wave 

functions decay exponentially with distance, Ψ(𝑛)~𝑒2"	KL/ℓOPQ(R), where the energy dependence 

of the localization length ℓSTU(𝐸) is plotted in Figure SI1(b). Specifically, ℓSTU(𝐸) grows with 

energy in the lower half of the band and decreases in the upper half, i.e., the wave function becomes 

less localized as the system approaches the middle of the band. If the largest localization length at 

any energy is smaller than the length of the molecule, the electron transmission probability through 

the system is always exponentially small T(𝐿)~𝑒2XY/ℓOPQ(R).  

 

 

Figure SI1: Panel (a) shows a chain of N identical sites (top), and the corresponding density-of-
stats (DOS) for the band of extended states which is formed over the interval 0 < 𝐸 < 4𝑡  
(bottom). Here, and throughout the paper, we take 𝜀 = 2𝑡. Panel (b) shows a disordered chain in 
which the on-site energies are uniformly distributed in the interval [−𝑡, 𝑡].  The corresponding 
DOS, which is plotted below, extends over a larger range of energies. As explained in the text, the 
localization length (ℓloc), which is plotted above the DOS, grows as energy increases (decreases) 
in the lower (upper) half of the band. 
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Survey of experiments that observe weakly temperature-dependent long-range transport 

A number of electron transport measurements in metal-molecule-metal junctions, with bridges 

extending 5 nm, report weak temperature dependences [S1-S6].  For example, McCreery and co-

workers [S1,S2] studied the voltage and temperature dependence of charge transport through 

ultrathin layers  (4 nm to 22 nm) of conjugated organic molecules (e.g., fluorene anthraquinone, 

azobenzene, and bis-thienylbenzene). They found that the conductance changes by less than a 

factor of two over a temperature range of 200 K to 440 K.  At temperatures below 100 K the 

transport appears to be non-activated. Nichols et al. [S4] examined the molecular conductance of 

15-mer DNA duplexes [both (AT)15 and (GC)15 of about 5 nm in length] as a function of 

temperature from 290 K to 350 K with STM break junction methods and found temperature 

independent transport.  The conductance of the AT- is 2-3 times lower than that of the GC duplex. 

The weak temperature dependence reported in these experiments is inconsistent with the 

temperature dependence that is expected for a multistep hopping mechanism with an activation 

free energy of about 0.2 – 0.5 eV, typical of molecular junction measurements on conjugated 

polymers [S7,S8]. It is challenging to understand rapid transport over these distances in the 

conventional theoretical framework, as the activation free energies would not allow rapid charge 

transport. 

A number of studies that analyzed bridges of different lengths have shown a transition from 

direct superexchange (single-step tunneling with rates that drop exponentially with distance) to a 

power law distance dependence [S4,S6,S9,S10] around a few nanometers (< 4nm).  A multi-step 

incoherent hopping transport mechanism rationalizes the power-law length dependence (i.e., the 

carrier diffuses on the bridge). In this regime, thermal activation arises because of the activation 

free energy required to inject carriers onto the bridge and the activation free energy for site-to-site 

hopping [S7,S8], or in electrochemical junctions by reorganization energy of the redox couple 

[S11,S12].  McCreery et al. [S1,S2] and Porath et al. [S13] reported voltage dependences for the 

current in molecular junctions, which are attributed to lowering of the barrier and screening of the 

applied field by the molecules. This explanation assumes that the electronic states above the barrier 

are all extended. In most organic molecules, however, the states directly above the barrier are 

localized while extended states can only be found at much higher energies. Our theory, which 

accounts for the change in nature of the electronic states from localized to quasi-extended, also 

includes the change in the barrier height. 
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Outline of the numerical calculation 

 

The results given in the main text for the electron transmission probability and current through the 

molecules were obtained using two different numerical methods: (i) For the analysis of the single-

band Hamiltonian (Eq. 1) we followed the numerical method of Ref. S14, which is based on the 

Poincaré map representation of the Schrödinger equation and is commonly known as the transfer 

matrix method. (ii) The transmission probability through DNA molecules modeled by the multi-

band Hamiltonian in Eq. 5 was obtained by numerical computation of the Green’s function. Below, 

we outline both methods.  

Calculation of the transmission probability for the single-band model: 

The aim of the numerical derivation is to find transmission probability for each realization of the 

disorder potential 𝑈dis(𝑛), and then average it over a large number of realizations. In practice, we 

average the logarithm of the transmission probability, which is more stable and leads to faster 

convergence [S15].  

The first step in the derivation is to write a continuum version of the Schrödinger equation 

corresponding to Eq. 1, with 𝑡" = 𝑡 and 𝜀" = 𝜀 + 𝑈dis(𝑛), 

																			𝐸𝜓(𝑥) = −𝑡𝑑^X
𝜕X𝜓(𝑥)
𝜕𝑥X +([𝜀 − 2𝑡 + 𝑈dis(𝑛) + 𝒱"]

1

"3,

𝜓(𝑥)𝛿(𝑥 − 𝑛𝑑^),															(SI3) 

where		𝜓(𝑥) is the electronic wave function.  This continuum version of the Schrödinger equation 

coincides with the discrete one for electrons transmitted with energies near the bottom (top) of the 

electronic band, i.e.,  𝜀	 − 2𝑡	 < 𝐸 ≪ 𝜀 or  𝜀 ≪ 𝐸 < 𝜀 + 2𝑡	. The second numerical method, which 

is introduced below, is better suited for giving accurate results at arbitrary energy of the transmitted 

electron. However, the second method is significantly slower, and thus, limits the size of the 

system and the number of disorder realizations over which we can average.  

Between two neighboring sites, (𝑛 − 1)𝑑^ < 𝑥 < 𝑛𝑑^, the solution for the above equation can be 

written as [S16]  
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																																							𝜓(𝑥) = 𝐴"𝑒
2ghi(R2j+Xk2𝒱l)/kKLm + 𝐵"𝑒

ghi(R2j+Xk2𝒱l)/kKLm ,                   (SI4) 

  with the boundary conditions:   

																																												lim
r→^

[𝜓(𝑥 + 𝜖) − 𝜓(𝑥 − 𝜖)] = 0;																				                                                (SI5a) 

																																												lim
r→^

𝑡𝑑^ v
𝑑𝜓(𝑥 + 𝜖)

𝑑𝑥 −
𝑑𝜓(𝑥 − 𝜖)

𝑑𝑥
w = 𝑈dis(𝑛)𝜓(𝑥).																											(SI5b) 

This representation of the solution is meaningful only if	𝐸 − 𝜀 + 2𝑡 − 𝒱" > 0 for all 𝑛, i.e., for 

energies within the electronic band. For simplicity, we set 𝜀 = 2𝑡 below, as we did in the main 

text.  

Combining Eqs. SI4 and SI5 results in a recursive relation for the wave function at position (𝑛 +

1)𝑑^ 

					𝜓(𝑛 + 1) = vcos}𝐸 − 𝒱"+, +
}𝐸 − 𝒱" sin}𝐸 − 𝒱"+,
}𝐸 − 𝒱"+, sin }𝐸 − 𝒱"

cos}𝐸 − 𝒱" 																															(SI6) 	

+ 𝑈dis(𝑛)
sin}𝐸 − 𝒱"+,
}𝐸 − 𝒱"+,

w𝜓(𝑛) −
sin}𝐸 − 𝒱"+,
}𝐸 − 𝒱"+,

𝜓(𝑛 − 1).																																 

The boundary conditions for the scattering problem need to be set, in order to find the 

corresponding transmission probability. We adopt the convention that the molecule is located 

between sites 3	and	𝑁 + 2, while the electrodes connected to it are found at sites 𝑛 < 3	 and 𝑛 >

𝑁 + 2.		In other words, 𝜀, 𝑈dis(𝑛), 	𝒱" ≠ 0 only for 3 ≤ 𝑛 ≤ 𝑁 + 2, and the wave function at the 

electrodes can be written as  

																																𝜓(𝑛) = � 𝑒2g"}R/k																																								, 𝑛 ≤ 2
𝜗2,𝑒2g"}(R2��)/k + 𝜌𝜗2,𝑒g"}(R2��)/k.		𝑛 ≥ 𝑁 + 2

																					 (SI7)		 

Here, 𝜌 and 𝜗 are the reflection and transmission amplitudes for an electron scattered by the 

molecule. By inserting the boundary conditions 𝜓(1) = 𝑒2g}R/k	and 𝜓(2) = 𝑒2Xg}R/k	into          
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Eq. SI6, we numerically calculate 𝜓(𝑁 + 2) and 𝜓(𝑁 + 3), and extract 𝜗 as well as the 

corresponding transmission probability 

																										𝑇 = � 𝐸
𝐸 − 𝑉

|𝜗|X = 	�
𝐸

𝐸 − 𝑒𝑉
�

1 − 𝑒Xg}(R2��)/k

𝜓(𝑛 + 3) − 𝑒g}(R2��)/k𝜓(𝑛 + 2)
	�
X

																 (SI8) 

Calculation of the transmission probability for the multi-band model: 

In the second numerical method, we keep the discrete form of the Schrödinger equation 

corresponding to the Hamiltonian in Eq. 5 for -∞ < 𝑛 < ∞ 

													𝐸𝜓g(𝑛) = −(�𝑡g,�(𝑛, 𝑛 + 1)𝜓�(𝑛 + 1) + 𝑡g,�(𝑛, 𝑛 − 1)𝜓�(𝑛 − 1)�														(SI9)			
�

�3^

+ [𝜀g(𝑛) − 2𝑡g(𝑛) + 𝑈BCD(𝑛) + 𝒱(𝑛)]𝜓g(𝑛),	 

where 𝑡g,�(𝑛,𝑚) = 𝑡g,�(𝑚, 𝑛) = 𝑡�,g(𝑛,𝑚) = 𝑡�,g(𝑚, 𝑛) and 𝑡g is the average coupling between 

electrons in state 𝑖 on neighboring sites. For a molecule of length 𝑁 ≡ Y
KL

 coupled from both sides 

to electrodes 𝜀g(𝑛), 𝑈BCD(𝑛) ≠ 0 only for 1 ≤ 𝑛 ≤ 𝑁, and 𝒱(𝑛) = 0 for 𝑛 ≤ 0 and 𝒱(𝑛) = 𝑉 for 

𝑛 ≥ 𝑁. Moreover, we model the electrodes as one-dimensional wires with the same number of 

bands as electronic states per site. The couplings between neighboring sites in the electrodes are 

taken to be uniform and do not mix different bands 𝑡g,�(𝑛, 𝑛 + 1) = 𝑡g,�(𝑛, 𝑛 − 1) = 𝑡^𝛿g,� for 𝑛 <

−1 and 𝑛 > 𝑁 + 1. Each band in the left (right) electrode is coupled to a single state on the 𝑛 = 0 

(𝑛 = 𝑁) site, i.e.,   

𝑡g,�(0,1) = 𝑡g,�(𝑁,𝑁 + 1) = 𝑡𝛿g,�.																																																		(SI10) 

For simplicity, we have taken the coupling to the electrodes to be equal to the average coupling in 

the molecule. Changing the coupling in Eq. SI10 quantitively modifies the transmission probability 

through the molecule, but keeps its scaling with the voltage the same.  

To reduce the infinite set of Schrödinger equations described by Eq. SI9 to a finite one, we focus 

only on the relevant electronic states 𝑖 = 0…𝑀 − 1 (in our calculations	𝑀 = 5). In addition, we 
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describe the electronic states inside the electrode using the scattering states for electrons 

transmitted through the molecule from the left to the right electrodes  

𝜓g(𝑛 < 0) = i,
�
𝑒g"}R/kL + ∑ 𝜌g,�𝑒2g"}R/kL�2,

�3^ ; 																								(SI11a)  

𝜓g(𝑛 > 𝑁) = ( 𝜗g,�𝑒g"}(R2�)/kL
�2,

�3^

.																																																		(SI11b) 

 Here 𝜌g,� and 𝜗g,� are the reflection and transmission amplitudes for an electron with energy 𝐸 

which starts in the 𝑖th band of the lead and ends in the 𝑗th band. Similar scattering wave-functions 

can be written for electrons transmitted in the opposite direction. Following Ref. S17, we use 

continuity of the wave-function at 𝑛 = 0 and 𝑛 = 𝑁 to write the set of coupled Schrödinger 

equations for  0 ≤ 𝑛 ≤ 𝑁 

𝑆g(𝑛)𝜓g(𝑛) = −(�𝑡g,�(𝑛, 𝑛 + 1)𝜓�(𝑛 + 1) + 𝑡g,�(𝑛, 𝑛 − 1)𝜓�(𝑛 − 1)� 																									
�

�3^

+ [𝜀g(𝑛) − 2𝑡g(𝑛) + 𝑈BCD(𝑛) + 𝒱(𝑛) − 𝐸 − Σg(𝑛)]𝜓g(𝑛),																														(SI12) 

where Σg(𝑛) = 𝑒g}R/kL , 𝑆g(𝑛) = − Xg
√�
sin}𝐸/𝑡^ 𝛿",^, and the total transmission probability is 𝑇 =

∑ |𝜓g(𝑁)|Xg . Thus, to find the transmission probability we numerically solve the set of equations 

(Eq. SI12) for 𝜓g(𝑁).  

Effect of screening on the voltage-induced long-range electron transfer mechanism 

In the main text we explored only the effect of a uniform electric field, i.e., assumed the voltage 

drop is constant along the molecule and there are no screening effects. Clearly, screening can 

significantly alter the ability of the electric field to mix states with different localization length. In 

particular, it becomes less effective as the electric field decreases. Nevertheless, the conclusions 

do not qualitatively change as long as the local electric field is non-zero over a length larger than 

ℓSTU(𝐸). In Figure SI2(a) we present a numerical calculation of the electron transmission 

probability as a function of length for 𝑒𝑉 = 1𝑡 with three different potential profiles: 
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(i) Linear drop (uniform electric field) 𝒱" = −𝑒𝑉(1 − 𝑛/𝐿).  

(ii) Power-law screened potential 𝒱" = −𝑒𝑉[(𝑛	𝑑^/𝜆)X + 1]2¢/X with 𝑘 = 2 and 𝜆 = 4.  

(iii) Exponential screening 𝒱" = −𝑒𝑉𝑒2"	KL/¤ with 𝜆 = 2.  

We find that the slope obtained from a plot of the transmission coefficient versus the length (for 

a fixed voltage) grows as screening effects becomes more significant. To estimate the dependence 

of the transmission on length and voltage, we calculate Ψ(𝑛 = 𝑁) using the same strategies that 

led to Eq. 2 in the main text.  For a potential along the molecule of the form 𝒱" = −𝑒𝑉	𝑓(𝑛𝑑^/𝜆), 

where 𝑓(𝑧) is a monotonic function and 𝜆 sets the length scale at which screening effect becomes 

important, Eq. 2 becomes 

Ψ(𝑁)~exp ª− (
d^

ℓSTU)𝐸(𝑚)0

1

¬3,

~exp ª−
𝑈
𝑡𝑑^

(
1

𝐸 + 𝑒𝑉	𝑓(𝑛𝑑^/𝜆)

1

¬3,

 	.														(SI13) 

In the limit |𝑒𝑉| ≫ 𝐸, the transmission probability decays as a function of L with a characteristic 

length that is larger than ℓSTU(𝐸). The length ℓ̄, however, no longer scales linearly with the voltage.  

For example, it is proportional to |𝑉|,/¢  when 𝑓(𝑧) = 𝑧2¢  [see Figure SI2(b)]. 

 

 
Figure SI2: The disorder averaged logarithm of the transmission probability at 𝐸 = 0.05	is plotted 
as a function of length (panel a) and voltage (panel b) for a non-linear form of the electric potential. 
The transmission in panel (a) is calculated for 𝒱" = −𝑒𝑉[(𝑛	/4)X + 1]2, (purple) and 𝒱" = −𝑒𝑉 ∙
exp(−𝑛/2)	(blue) in comparison to a linear drop𝒱" = −𝑒𝑉(1 − 𝑛/𝐿) (black), with 𝑒𝑉 = 𝑡. To 
compare the slopes of all three curves we shifted them so that they all coincide at 𝐿 = 9𝑑^. 
Although the largest effect occurs for constant	ℇ, it is still significant as long as the electric field 
is non-zero throughout the molecule. The voltage dependence of the transmission for the potential 
𝒱" = −𝑒𝑉[(𝑛	/4)X + 1]2,is shown in panel (b). The characteristic decay length of the 
transmission is proportional to 𝑉,/X. 
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Connection to the experimental finding of Refs. S1-S3  

Of the several papers reporting weak temperature dependence of charge transfer through organic 

molecules, only a few have systematically studied the voltage dependence [S1-S3]. In Refs. S1-

S2, it was found that the logarithm of the electric current through different organic semiconductors 

of different length scales as |𝑉|,/X. Rough estimates of the low-temperature current-voltage curves 

for charge transfer through peptides (figure 3 of Ref. S3), reveals that  ln(𝐼)~|𝑉|2³ with 𝑝 ≈ 1. 

The calculation of the current as a function of voltage shown in the main text (Figure 4) can explain 

the result of Ref. S3 but not of Refs. S1-S2.  

In the previous section of the SI we studied how screening affects the electric-field induced (quasi-

) delocalization mechanism. Specifically, we showed that power-law screening give rise to 

transmission of the form ln 𝑇 ~	|𝑉|,/¢. Calculation of the current using the Landauer formula (see 

Eq. 4 of the main text and the discussion in its vicinity), shows that a screened potential of the 

form 𝒱" = −𝑒𝑉[(𝑛	/4)X + 1]2¢/Xwith 𝑘 = 2 may explain the result of Refs. S1-S2. The result of 

the calculation for different values of the chemical potential in the right lead, 𝜇· − (𝜀 − 2𝑡), is 

presented in Figure SI3. We note that in all our derivations 𝜀 − 2𝑡 was set to be zero by a trivial 

shift in the total energy. The inset shows that the scaling ln(𝐼)~|𝑉|,/X becomes better as the 

chemical potential of the leads is closer to the energy of the bridge. 

 

 
Figure SI3: The current as a function of voltage for different chemical potentials in the right 
contacts [panel (a)] for a molecule of length 𝐿 = 30𝑑^. Panel (b) demonstrates the scaling of the 
logarithm of the current with 𝑉,/X. This scaling becomes better as the chemical potential of the 
right lead approaches the bridge energy. 
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Current-voltage characteristics for the DNA model 

In the main text we demonstrated that the effect of an applied electric field on a realistic model for 

a DNA bridge molecule is qualitatively the same as for the simple bridge given by Eq. 1 of the 

main text. For this purpose, we introduced a bridge with several orbital states per-site (Eq. 5 of the 

main text), which represent the various HOMO levels of the nucleic acids. There, we also 

calculated the length dependence of the transmission for different values of the electric field. For 

completeness, we show in Figure SI4 the current as function of voltage for molecules of different 

lengths and for different values of 𝜇· . The calculation was performed for the same parameters as 

in the main text. Please note the similarity between Figure SI4(a) and Figure 4 of the main text. 

 

 
Figure SI4: The current as a function of voltage for molecules of various lengths [panel (a)], and 
for different chemical potentials in the right contacts [panel (b)]. The chemical potential in panel 
(a) was taken to be 𝜇· = 0.7, and the length of the molecule in panel (b) is 𝐿 = 30𝑑^ The inset 
shows that the current grows exponentially with the voltage as ln(𝐼)~𝑉2, at high voltage. 
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