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Supplementary Information 

Supplementary materials and methods 

Ethics statement 

We established the Community-based Cohort study on Population with high risk of Liver Cancer 

(the CCOP-LC cohort; Chinese Clinical Registry, ChiCTR-EOC-17012853) in 2017, based on the 

early HCC screening program conducted in the community population. The study protocol 

(NCC201709011) was approved by the Institutional Review Board of National Cancer Center/National 

Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences in 

Beijing, China. 

Overview of early HCC screening program in community populations  

Early HCC screening was conducted according to the “Technology Scheme of Early Diagnosis 

and Early Treatment for Cancer” issued by the China Expert Committee of Early Detection and Early 

Treatment of Cancer, The Ministry of Health Bureau of Disease Prevention and Control (1). A 

population-based cancer registry and department of vital statistics have been established in all of the 

screening centers (2). Briefly, HBsAg-positive “healthy” individuals 35-69 years old were invited to 

participate in early HCC screening. All participants underwent testing for determination of serum AFP 

concentrations and ultrasonography (US; Aloka ProSound SSD-4000; Shanghai, China), as well as 

other standard biochemical tests (Table 1). Individuals were designated as AFP/US- positive, suspected, 

or negative based on AFP serum levels and the detection of liver nodules. “AFP/US-positive” 

individuals had any of the following: 1) serum APF levels of > 400 ng/mL regardless of US-detected 

nodule; 2) US-detected nodule of ≧ 2 cm in size regardless of serum AFP concentration; 3) US-

detected nodule of ≧  1 cm in size with serum AFP≧200 ng/mL. The “AFP/US-suspected” 

individuals had either of the following: 1) serum AFP levels of ≧ 20 ng/mL regardless of US-

detected liver nodule; 2) US-detected nodule of ≧ 1 cm in size. The “AFP/US-negative” individuals 

were defined as having serum AFP levels of < 20 ng/mL without a US-detected liver nodule. The 

AFP/US-positive individuals were referred to advanced hospitals (a level 3 hospital in China) for 

confirmation diagnosis as determined with dynamic CT or dynamic MRI, and they received relevant 

therapy based on clinical practice guidelines (Fig. 1)(3). Individuals without confirmation diagnosis 

were invited to return to undergo dynamic CT/MRI in 2 months. AFP/US-suspected individuals were 

recommended to receive second round examination for serum AFP quantification and US in 2-3 

months.  
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Participants and study design 

The participants in the current study were derived from the CCOP-LC cohort based on individuals 

evaluated at four screening centers from Jiangsu and Anhui provinces in China (Fig. 1). During the 

AFP/US screening (considered baseline, conducted between Oct 7, 2017 and January 31, 2018), we 

collected peripheral blood (5 mL in EDTA coated tubes), which was centrifuged within 2 h of 

collection at 4000×g for 10 min to separate plasma and blood cells. All samples were stored at -80°C. 

In most cases, 0.5 mL plasma was used to determine protein markers and 2 mL plasma for cfDNA 

extraction. 

 The 176 AFP/US-positive/suspected cases were further analyzed in the HCCscreen assay. 

According to the diagnosis in the follow up examinations, the participants with reliable diagnoses were 

selected as the training cohort in this study. To validate our findings, we sampled 331 participants from 

the AFP/US-negative individuals with similar age to those who were AFP/US-positive/suspected in 

the HCCscreen assay. From May 20 to July 17, 2018 (6-8 months after the baseline blood draw), the 

331 individuals were followed by offering an examination of dynamic CT/MRI, AFP/US or telephone 

interview. The CT/MRI images were independently evaluated by two radiologists from the National 

Cancer Center, Chinese Academy of Medical Sciences in Beijing. During this period, we offered an 

additional AFP/US test to the individuals who were AFP/US-negative at baseline and had not taken 

the HCCscreen test. Some of them did not choose the additional AFP/US examination, and their liver 

cancer outcome (ICD-10 code C22) by June 30, 2018 was obtained from the population-based cancer 

registry in the screening centers (Fig. 1). Of the 3617 AFP/US-negative individuals, 1612 (44.6%) 

participants were able to be followed during May 20 to July 17, 2018, which was 6-8 months after 

baseline screening. Among them, 87 participants received dynamic CT/MRI examinations, 1120 

received AFP/US, and 68 were interviewed by telephone. The liver cancer outcome in 337 participants 

was obtained from local population-based cancer registry (SI Appendix, Fig. S1). The HCC status in 

the other 2005 participants was not available by June 30, 2018 (SI Appendix, Fig. S1). 

The 70 healthy controls were derived from those who did the annual physical examination and did 

not report any HBV infection. All were confirmed as HBsAg-negative when blood was donated.  

Determination of serum DCP concentrations  

Serum DCP levels were determined using a commercialized kit in the Abbott ARCHITECT 

i2000SR Chemical luminescence immunity analyzer (CLIA) according to the manufacturer’s 

instructions (Abbott Laboratories; Chicago, IL, USA). 
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Profiling of cfDNA alterations 

We designed an assay to sequence cfDNA to profile: 1) the coding regions of TP53, CTNNB1, 

AXIN1 and the promoter region of TERT (Table S1); 2) HBV integrations. Briefly, cfDNA fragments 

were first ligated to an adaptor with random DNA barcodes (SI Appendix, Fig. S2). The ligated 

constructs were amplified through 10 reaction cycles to generate a whole genome library, containing 

hundreds of redundant constructs with unique DNA barcodes identifying each original cfDNA 

fragment. The amplified library was sufficient for 5-10 independent sequencing analyses. The target 

regions were amplified together with the DNA barcode in 9 cycles of PCR using a target-specific 

primer (TS primer 1) and a primer matching the adapter sequence (4, 5) (SI Appendix, Fig. S2). A 

second round of 15 cycles of PCR with one pair of nested primers matching the adapter and the target 

region (TS primer 2) was used to further enrich the target region and add the Illumina sequencing 

adapter (SI Appendix, Fig. S2). An efficient enrichment was observed in the PCR based assay with > 

80% of reads mapping to a small target region of < 10 Kb. Using this assay, we can cover the target 

region > 100,000 times with 3 Gb of sequencing data, enabling 20× redundant sequencing for 5,000 

copies of original cfDNA. With the DNA barcode ligated to the original cfDNA molecule, we can track 

redundant reads from an original cfDNA molecule to minimize calling errors inherent in PCR 

amplification and parallel sequencing as mutations(6, 7). We examined 11 mutations detected by this 

assay with digital PCR and validated all these mutations with a range of 0.03-0.16% mutation fractions. 

Data process and mutation detection  

Sequencing reads were primarily processed with our own program to extract tags and remove 

sequence adapters. Residual adapters and low-quality regions were subsequently removed using 

Trimmomatic (v0.36). The cleaned reads were mapped to the hg19 and HBV genomes using 'bwa 

(v0.7.10) mem' (8) with the default parameters. Candidate somatic mutations, consisting of SNP and 

INDEL, were identified using samtools mpileup (9) across the targeted regions of interest. To ensure 

accuracy, reads with the same tags, and start and end coordinates were grouped into Unique Identifier 

families (UID families). UID families containing at least two reads and in which at least 80% of reads 

were the same type were defined as Effective Unique Identifier families (EUID families). Each 

mutation frequency was calculated by dividing the number of alternative EUID families by the sum of 

alternative and reference ones. The mutations were further manually reviewed in IGV. The candidate 

variations were annotated with Ensembl Variant Effect Predictor (VEP) (10). HBV integrations were 

identified using Crest (11) , and at least 4 soft-clip reads supports were needed. 

Predictive model construction 
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1. Feature mapping and data preprocessing  

1) Mutation annotations and scoring： 

Considering that several factors may be functionally related to the penetration of mutations, and in 

turn be related to the phenotypes, we weighted each mutation with two relevant factors and scored 

each with a calibrated linear combination of factors.   

⚫ PAPI score annotation 

PAPI is a machine learning ensemble algorithm to evaluate the functional penetration of 

human DNA mutations (12). It is comprised of two popular annotation algorithms, VEP and 

POLYPGEN, and provides an accurate score of deleteriousness of mutations.  

⚫ Annotation of frequency of mutations 

Mutation frequency (the fraction of reads support for a candidate mutation) is highly 

proportional to the overall quantity of circular tumor DNAs in the blood as well as the tumor 

size. Therefore, we annotated all the input mutations with their reads support frequencies. 

⚫ Structural variants as features 

Another two features of structure variance have been used to construct the model, including 

TERT fusion and counts for the HBV fusion events. 

2) Collapsing of mutations 

Several genetic features were extracted by collapsing the mutations into either gene-level or 

focal regions. For each region of interest (ROI), the ROI score was calculated by 

ROI = log2∑𝑎𝑑𝑗𝑠𝑐𝑜𝑟𝑒

𝑛

𝑖=1

 

where n is the number of mutations overlapping the ROI, and the adj_score is the weighted 

sum of above mentioned mutational factors, the PAPI and frequency of reads support score. 

The weighted vector was adjusted so that the model performance was maximized.   

3) Protein and experimental markers 

Two protein markers, DCP and AFP, were used in our model, as they have been shown in 

previous studies to be very strong indicators for HCC diagnosis (13). The values were ranked 

into several classes of numeric values. The ctDNA concentration was included in our model 

feature list as well. 
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4) Clinical information as features 

The age and gender of a given patient were built into our predictor as well, as it has been 

demonstrated that the probability of HCC diagnosis is to some extent related to the age and 

gender of the individual.  

2. Feature selection 

RandomForest was applied to screen useful variables from the candidates; we applied a backward 

variables subtraction by minimizing the unbiased out-of-bag error estimation, with one feature 

eliminated at each run. Markers including proteins, genetic variants as well as clinical information, 

were then optimized as the final features to build a binary classifier. In the training of HCC vs 

healthy individuals, only ctDNA SNP/indel mutations and protein markers were used. HBV-TERT 

fusion or other HBV integrations were not included as the healthy group was free of HBV infection. 

3. Model and parameters optimization 

A logistic regression model was constructed from the training cohort of 135 samples which 

includes 65 HCC and 70 non-HCC. The model performance was evaluated both on the training 

and validation data sets, by the Area Under Curve (AUC) statistics. Sensitivity and specificity of 

the model was also determined using an optimized cut-off value of 0.4. This cut-off value 

optimization was applied using Youden’s index. Cross-validated coefficients for each feature using 

logistic regression have been given as well, for the purpose of clustering analysis for genetic, 

protein and CNV levels, respectively. The model was initiated in R package ‘glmnet’ (R version 

3.5.1), and the penalty parameter alpha was optimized with 10-fold cross validation within the 

training data set and the optimized value was 0. 

Statistical analysis  

We used a logistic regression model with ctDNA mutations, protein biomarker levels as well as 

clinical features as variables. We defined HCC cases and non-HCC cases with dynamic CT/MRI and/or 

histology in the AFP/US-positive and AFP/US-suspected individuals (Fig. 1). With 100 iterations of 

LOOCV (Leave-One-Out Cross Validation) on a training data set of 65 HCC and 70 non-HCC cases, 

we calculated the sensitivity and specificity of the HCCscreen assay. 
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Fig. S1. Detailed study design.
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Fig. S2. The design of the genetic profiling of cfDNA in the HCCscreen assay. 
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Fig. S3. The performance of different training cohorts. 
A. ROC of the diagnostic model of the HCCscreen assay in the training cohort using healthy 
individuals without HBV infection as controls. B. Training with HCC and non-HCC individuals 
(left) and training with HCC and healthy individuals (right). 
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