
Table S1. Neuropsychiatric risk loci with a reported effect on structural plasticity 

Gene or 
copy 
number 
variant 

Gene name or description Type of effect on spines and/or 
dendrites 

Disease 
associations 

Cell adhesion 

NRXN1 Neurexin 1 spine stability1 SZ 2 and ASD3 

NLGN3 Neuroligin 3 spine density4 ASD 5 

CNTNAP2 Contactin associated protein like 
2  (CASPR2) spine and dendrite stability6-8 ID and/ or ASD9 

L1CAM L1 cell adhesion molecule dendritic arborization10 ASD 5 and ID11 

DSCAM Down syndrome cell adhesion 
molecule dendrite and spine development12 ASD 5 

CNTN4 Contactin 4 neurite outgrowth13 SZ 14 

NCAM1 Neuronal cell adhesion molecule 1 neurite outgrowth15 ASD 5 

PCDH10 Protocadherin 10 spine density16 ASD16 and SZ 17 

Glutamate receptors 

GRIA1 AMPAR subunit GluA1 spine size 18 SZ 14 and ID 19 
ASD 5 

GRIA2 AMPAR subunit GluA2 spine density20 ASD 5 

PRRT2 AMPAR auxillary protein spine density21 Epilepsy22 

CACNG2 AMPAR auxillary protein (TARP γ2) dendritic arborization23 ID24 

CACNG3 AMPAR auxillary protein (TARP γ3) dendritic arborization23 DD 25 

GRIN2A NMDAR subunit GluN2A dendritic arborization 26 SZ14, epilepsy27 

GRIN2B NMDAR subunit GluN2B spine density28,29 ASD 5 
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GRIN1 NMDAR subunit GluN1 spine stability30 ASD 5 and 
epilepsy 31 

Scaffold proteins 

SHANK3 SH3 and multiple ankyrin repeat 
domains 3 

dendrite and spine development32-34 ASD 35 5 

ANK3 ankyrin 3 (Ankyrin-G) 
spine size and density, permits activity-
dependent spine enlargement36 BD 37 

DLG4 discs large MAGUK scaffold protein 
4 (PSD-95) 

spine density and size, activity-
dependent structural plasticity38, 39 ASD and/or ID40 

DLGAP1 DLG associated protein 1 
(GKAP/SAPAP1) spine size41 ASD and/or ID40 

CASK Calcium/calmodulin dependent 
serine protein kinase spine density and size42 ASD and/or ID40 

and DD 25 

DISC1 Disrupted in schizophrenia 1 spine density and size43 Mental illness44 

Calcium signaling 

CACNA1C Calcium channel Cav1.2 spine density45 BD 38 and SZ 14 

CACNB4 Calcium channel β subunit 4 spine density46 SZ 47, 48 

CAMK2B Calcium/calmodulin dependent 
protein kinase II β 

activity-dependent spine formation49 and 
dendritic arborization 50 ID51 

CAMK2A Calcium/calmodulin dependent 
protein kinase II α activity-dependent spine formation49 ASD 5 and ID51 

ATP2B2 ATPase plasma membrane Ca2+ 
transporting 2 (PMCA2) dendritic arborization52 ASD 5 

GTPase signaling 

SYNGAP1 Synaptic GTPase activating protein 
1 

spine formation, development and 
activity-dependent structural plasticity 53-

55 
ID11, DD 25 and 
ASD3 

TRIO trio Rho guanine nucleotide 
exchange factor 

dendrite development and activity-
dependent structural plasticity56 ASD and/or ID40 

KALRN kalirin RhoGEF kinase 
spine morphogenesis and activity-
dependent structural plasticity57 DD 25 
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RAC1 Rac family small GTPase 1 
spine density and activity-dependent 
structural plasticity58 DD59 

PAK3 p21 (RAC1) activated kinase 3 (β-
PAK) 

spine development60 ID11 

LIMK1 LIM domain kinase 1 spine development and activity-
dependent structural plasticity61 ASD 5 

NF1 Neurofibromin 1 spine development and activity-
dependent structural plasticity62 ID11 

IQGAP1 IQ motif containing GTPase 
activating protein 1 spine density63 DD 25 

ARHGEF6 Rho guanine nucleotide exchange 
factor 6 

dendrite development and spine 
density64 ID11 

OPHN1 Oligophrenin 1 dendrite and spine development65 ID11 and DD 25 

GIT1 GPCR kinase 2 interacting protein 1 dendrite length and spine density66 SZ17 

BAIAP2 BAI1 associated protein 2 (IRS p53) spine density and decreased activity-
dependent structural plasticity 67 SZ17 

Copy number variant models 

7q11.23 
deletion Williams-Beuren syndrome Increased dendrite length and spine 

number68 ASD3 

15q11-13 
duplication Dup15q syndrome Increased spine turnover and deceased 

spine density 69, 70 ASD3 and SZ2 

16p11.2 
duplication None Increased dendrite arborization71 ASD3, and SZ2 

22q11.2 
deletion 

DiGeorge / Velocardiofacial 
syndrome 

Decreased spine density and stability 
and increased spine turnover, 72, 73 SZ2 

 

As different neuropsychiatric disorders often share the same risk factors, other disease associations exist that 

are not referenced herein. ASD, autism spectrum disorder; BD, bipolar disorder; CNV, copy number variation; 

DD, developmental disorder; GWAS, genome-wide association study; ID, intellectual disability; SZ, 

schizophrenia. 
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