
CC strain Age Initial weight Treatment Data Weight loss (%)
111A 8.1 18.2 Influenza infection RNA-seq 4.4
111A 8.1 19.5 Influenza infection RNA-seq 1.5

1488A 9.6 23.4 Influenza infection RNA-seq 4.7
1912A 9.6 24 Influenza infection RNA-seq 1.7
1912A 9.6 22.7 Influenza infection RNA-seq 2.6
2126A 8.9 12.8 Influenza infection RNA-seq 3.1
2126A 8.9 14.9 Influenza infection RNA-seq -0.3

21B 8.1 15.5 Influenza infection RNA-seq 1.9
21B 8.1 15.1 Influenza infection RNA-seq 0.0

2513A 9.6 15.2 Influenza infection RNA-seq 3.9
2513A 9.6 18 Influenza infection RNA-seq 1.7
2750A 9.1 24.2 Influenza infection RNA-seq 0.8
2750A 9.1 20.1 Influenza infection RNA-seq 2.5
3348A 9.1 18.6 Influenza infection RNA-seq 11.3
3348A 9.1 18.5 Influenza infection RNA-seq 6.5
3912A 8.1 19 Influenza infection RNA-seq 4.2
3912A 8.1 20.5 Influenza infection RNA-seq 4.4
4438A 8.4 24.5 Influenza infection RNA-seq 4.1
4438A 8.4 20.6 Influenza infection RNA-seq 4.4
5000A 9.3 23.9 Influenza infection RNA-seq 6.3
5000A 9.3 22.3 Influenza infection RNA-seq 9.0
5001A 8.4 23.2 Influenza infection RNA-seq 0.9
5003A 9.7 18 Influenza infection RNA-seq 1.1
5003A 9.7 17.2 Influenza infection RNA-seq -0.9
5004A 8.7 19.6 Influenza infection RNA-seq 2.0
5004A 8.7 18 Influenza infection RNA-seq -0.6
5010A 8.3 19.7 Influenza infection RNA-seq 8.6
5010A 8.3 19.8 Influenza infection RNA-seq 4.5
5021A 8.9 19.6 Influenza infection RNA-seq 5.1
5021A 8.9 18.5 Influenza infection RNA-seq 6.5
5022A 8.7 19.7 Influenza infection RNA-seq 2.0
5022A 8.7 20.2 Influenza infection RNA-seq 4.0
5023A 9.4 19.6 Influenza infection RNA-seq 5.6
5023A 9.4 17 Influenza infection RNA-seq 1.8

57B 8.7 23.6 Influenza infection RNA-seq 4.7
57B 8.7 23.8 Influenza infection RNA-seq 1.7
72A 9.0 20.1 Influenza infection RNA-seq 6.0
72A 9.0 21.4 Influenza infection RNA-seq 5.6

111A 8.1 17.1 PBS RNA-seq 0.6
1912A 9.7 22.1 PBS RNA-seq -0.7
2126A 8.9 14.3 PBS RNA-seq 2.1
2126A 8.9 15 PBS RNA-seq 0.7

21B 8.9 18.8 PBS RNA-seq 1.6
21B 8.9 18.2 PBS RNA-seq -0.5
21B 8.1 22.1 PBS RNA-seq -0.9

2513A 9.6 16.7 PBS RNA-seq 0.6
2513A 9.6 16.2 PBS RNA-seq -0.9
2750A 9.0 19.9 PBS RNA-seq 3.0
2750A 9.0 24.7 PBS RNA-seq 6.1
3912A 8.1 19.5 PBS RNA-seq 1.5
3912A 8.1 19.6 PBS RNA-seq 3.6
4438A 8.3 18.4 PBS RNA-seq -0.1
4438A 8.3 17.5 PBS RNA-seq -0.1
5000A 9.3 19.9 PBS RNA-seq 8.5
5000A 9.3 22.5 PBS RNA-seq 5.8
5001A 8.4 19.2 PBS RNA-seq 1.0
5001A 8.4 19.5 PBS RNA-seq 1.0
5003A 9.7 18.7 PBS RNA-seq -0.1
5003A 9.7 18.2 PBS RNA-seq 3.3
3348A 9.1 19.3 PBS RNA-seq 2.1
3348A 9.1 18.4 PBS RNA-seq 0.5

Supplementary Table 1



CC strain Age Initial weight Treatment Data Weight loss (%)
5004A 8.7 20.5 PBS RNA-seq 0.5
5010A 8.3 19.1 PBS RNA-seq 3.1
5021A 8.9 18.8 PBS RNA-seq 1.1
5022A 9.3 21.9 PBS RNA-seq 1.8
5022A 9.3 19.7 PBS RNA-seq 1.5
5022A 8.7 16.7 PBS RNA-seq 2.4
5023A 9.3 18.7 PBS RNA-seq 1.1

57B 8.1 22.6 PBS RNA-seq 0.0
57B 8.1 19 PBS RNA-seq 0.0
72A 9.0 22.1 PBS RNA-seq 6.8
72A 9.0 19.7 PBS RNA-seq 3.0

2126A 8.4 17.7 Untreated RNA-seq Irrelevant
111A 9.1 17.6 Untreated RNA-seq Irrelevant

1912A 8.7 21 Untreated RNA-seq Irrelevant
2750A 8.9 19.6 Untreated RNA-seq Irrelevant
5023A 8.1 14.5 Untreated RNA-seq Irrelevant

C57BL/6J* 7.6 18.4 Untreated RNA-seq Irrelevant
72A 7.9 18.6 Influenza infection FACS 3.8
72A 9.4 19.5 Influenza infection FACS 11.8
72A 9.4 20.7 Influenza infection FACS 9.7

3912A 8.9 22.7 Influenza infection FACS -0.9
3912A 8.9 20.2 Influenza infection FACS 3.5
4438A 9.0 20.5 Influenza infection FACS 8.8
4438A 9.9 23.5 Influenza infection FACS -0.9
5001A 9.1 18 Influenza infection FACS 9.4
5001A 9.3 19.7 Influenza infection FACS 5.6
5023A 8.6 15 Influenza infection FACS 5.3
5023A 8.6 14.8 Influenza infection FACS 4.1

72A 7.9 19.5 PBS FACS 0.5
3912A 8.9 20.4 PBS FACS 0.0
4438A 9.1 26.9 PBS FACS 5.2
5001A 9.1 20 PBS FACS 1.5
5023A 8.6 14.3 PBS FACS 3.5

Table S1. Description of the animals under study. Shown are the Collaborative 
Cross (CC) strain identifiers (Column A), mouse age (weeks, Column B) and weight 
(in grams; Column C) of each mouse before the treatment. The experimental 
procedure—treatment applied and subsequent measurements—are indicated in 
Columns D and E, respectively. The clinical outcome, namely the percentage of body 
weight loss, is indicated in Columns F. * The C57BL/6J strain is one of the CC 
founder strains.



SUPPLEMENTARY NOTE 1  

The contribution of the CPM algorithm 

CPM, the algorithm developed in this study, utilizes the SVR deconvolution approach, since (i) SVR accuracy 

has been previously demonstrated within the Cibersort framework1, and (ii) SVR can be applied on both 

absolute and relative bulk genomics data (unlike alternative approaches, such as the DCQ framework2). A 

substantial challenge in the application of deconvolution methods to single-cell reference data is in 

maintaining robustness with a large number of reference profiles. Although deconvolution methods are 

generally robust and practical with a relatively small number of reference profiles, scaling to a large reference 

collection is problematic: most methods can handle only a few dozen of reference profiles, while DCQ, which 

is scalable to 200 profiles, was designed specifically to relative bulk data3. Another challenge is the biased 

representation of cell states within the reference data. Here we make two contributions that make the CPM 

methodology accurate and scalable: (1) To solve the scaling issue, we applied SVR multiple times, each time 

on a different subset of the reference profiles, and then aggregated the inferred values into a final abundance 

prediction for each reference profile. This avoids the need to utilize many reference profiles simultaneously 

and to improve robustness with bootstrapping. (2) To avoid biases due to imbalance of reference single cells 

over the cell-state space, we ensured that the cell subsets used in the SVR are uniformly distributed over the 

cell-state space.  

 

Synthetic data generation and the accuracy score 

A single ‘synthetic data collection’ consisted of 100 input bulk profiles, where each profile is generated by 

mimicking the heterogeneity of cells within a biological complex tissue. Gene expression of a gene j in a 

synthetic bulk profile k, denoted zjk, includes a mix of isolated single cells:   
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where bij denotes the gene expression value of gene j in the reference single cell i, L is the number of single 

cells in the reference data, and fik
 is the fraction of reference cell i in sample k, formalized as: 
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where cik is the quantity of cell i in sample k. We further introduce noise level ik and ik to the values of zjk and 

fik, respectively, by sampling from a normal distribution with a zero mean and a variance that is proportional 

(by a factor γg) to the expected value (namely, the average of zjk or fik
 across the 100 profiles). The level of the 

'expression noise' in our synthetic data is therefore determined by the proportion factor γg. To avoid biases 

due to imbalance of cell densities, all synthetic bulk profiles were generated as a mixture of pre-selected 



L=378 single cells (derived from the infected mouse at 2 days p.i.) that were uniformly distributed over the 

cell-state space.  

Next, using our basic simulation setting (Eqs. 1-2), we generated three types of simulations. All three 

simulation types rely on the partition of single cells into nine cell types, and mainly differ in their cell quantity 

(cik) values. In the first simulation type—'cell-type simulation'—cells of different types attained different 

quantities, whereas all cells within each cell type attained the same cell quantity value. The two other 

simulations, in contrast, are focused on intra-cell-type heterogeneity: either an intra-cell-type gradual change 

in the quantity of cells throughout a certain trajectory of cell states (the 'gradual-change simulation'), or 

alternatively, an intra-cell-type changes in quantities of a selected cell subpopulation (the 'cell-subtype 

simulation').  

Specifically, in the cell-type simulations, the quantity of each cell i within selected cell types was set to cik=1+ 

ec (ec is denoted the 'effect size' of the cell type simulation), whereas the quantity of the remaining cells was 

set to cik=1. In the case of the gradual-change simulation, for each cell type, the position of single cells along 

the activation-state trajectory were used as the cell-state space (see details in the 'reference single-cell data' 

section). Cell quantities were generated based on this cell-state space in four steps. In the first step, we select 

the Kc cell types within which we simulate gradual change in cell quantities. Among these selected cell types, 

we further randomly selected Kr cell types whose activation trajectory was reversed. The second step 

introduced a normally-distributed noise in the positions of all cells with a variance that is proportional to the 

standard deviation of cell positions, using a proportion factor γp. The level of the 'cell space noise' in our 

synthetic data is therefore determined by γp. In the third step, we standardized the positions from the second 

step to lie in [0,1]. In the fourth step, cell quantities (cik) for the selected cell types were calculated using an 

exponential function gx

g bxf )( in which b is the positions from the third step and the exponent gx is the 

'effect size' of the gradual-change simulation. The value of cik in all remaining (unchanged) cells in all samples 

was the mean standardized score of their trajectory. 

For the cell-subtype simulation, for each cell type, we used the first two principle components as the cell-state 

space, and further introduced a cell space noise to the positions of cells within this space, as described above. 

Cell quantities within each given cell type were generated as follows: we first selected a single reference cell 

and then used its neighboring cells, assuming an Euclidian cell space, as the selected cell subtype (using a 

certain 'cell subpopulation size' parameter). Next, the quantity of each cell i within the selected subset was set 

to cik=1+ es where es is the magnitude of cell quantity changes, denoted the 'effect size' of the cell-subtype 

simulation. The default value of cik in all remaining (unchanged) cells in all samples was set to 1. 

   Whereas the data generation above refers to absolute expression values, we also generated relative-

expression synthetic data collections. This was done by generating additional 100 control synthetic profiles for 

each synthetic collection (in which cik is always the mean trajectory standardized score or 1 for either gradual-

change simulation and cell-subtype simulation, respectively), and then calculating the differential expression 

values of each synthetic data profile.  



 For each simulation setting we generated a single synthetic data collection and analyzed the 

performance of each method on this collection. In particular, for each synthetic profile collection, an 

'accuracy' metric was calculated as the Pearson correlation between the actual fractions fik and predicted 

fractions across all L reference single cells and 100 bulk profiles. Overall we generated 1671  synthetic data 

collection, for three simulations settings (cell-type, cell-subtype and gradual-change  simulations), seven 

different levels of expression noise (γg ranges from 0.001 to 0.9), seven levels of cell space noise (γp ranges 

from 0.1 to 3), seven cell subtypes in the cell-subtype simulations (fractions ranging between 0.1 to 0.7 of 

cells) assuming either absolute or relative bulk data, nine combinations of Kc and Kr, and 5 effect size levels in 

the gradual-change simulation. The effect sizes of the cell type and cell subtype simulations (ec and es) were 

fixed to 0.5 as the range of effects parallels the abovementioned changes in noise factors. In the cell-type 

simulation, the effect was added to cells within six arbitrarily-selected cell types. Our default set of parameter 

is: cell space noise = 0.5, expression noise = 0.1, cell subpopulation size = 0.3, Kc = 6 and Kr=0, assuming 

relative bulk data, and effect size xg= 1 (corresponding to a linear function). In all cases, we report only the 

particular parameters that are different from this default setting.  

Generating reference data for the compared methods 

Since the compared deconvolution methods rely on a relatively small number of input reference profiles, the 

reference data was constructed using the input scRNA-seq profiles. In particular, we implemented the 

methodology that was previously applied in scRNA-seq-based deconvolution studies4,5: single cells of each cell 

type were partitioned into cell groups using DBSCAN clustering (using =3 and minPts=15; as previously 

described6). Then, the center of each such group was used as a reference profile; the 'mean center' (namely, 

the averaged cell profiles) of each cell group was used as its center. We refer to this approach as the 'DBSCAN 

+ mean center method'. To generalize the reference-construction approach to a pre-selected size of reference 

dataset, we clustered the cells within each cell type using K-means clustering (instead of DBSCAN) and then 

identified the center of each cell group (the clustering relies on the cell-state space). K therefore specifies the 

number of single cell groups within each cell type and is referred to as the 'level of granularity'. We applied 

three alternative center-identification methods: (1) the 'mean-center', as detailed above; (2) the 'median-

center', which is the median vector across cells; and (3) the 'harmonic-center', defined as the in verse of the 

mean of the in verse of the values.  In all  settings, gene marker selection was done by selecting a set of genes 

that minimizes the condition number. We refer to these approaches as the 'K-means + mean-/median-

/harmonic-center' methods. All reported results, except from Supplementary Fig. 4E, use K-means clustering 

followed by the mean-center statistics. Specifically, each of the compared methods was analyzed using a 

variety of granularity (K) values.  

Synthetic data analysis demonstrates the tradeoff between complexity and scalability 

The lower performance of the alternative deconvolution methods (compared to CPM; e.g., Figure 2CD) could 

be due to either a lack of scalability to a large number of reference profiles, or simply due to the cell-state 

complexity within the bulk cell population. Examination of the performance across varying levels of 

granularity indicated that the existing methods compromise between scaling issues and cell-state complexity: 

as the number of reference profiles increases, the ability to accurately estimate the cell-state complexity 



increases; however, further increase in the number of reference profiles leads to decreased accuracy due to 

scaling issues (Supplementary Fig. 2F).  

We further observed that the high performance of CPM depended not only on its 'scalability', but also on its 

ability to handle a high cell-state complexity: analysis of an "enrichment scheme", which analyzes each 

reference profile independently and thereby is scalable to a large reference collection, resulted in 

substantially lower accuracy compared to CPM (Supplementary Fig. 2G). In particular, the enrichment scheme 

was implemented as previously descried7. In brief, we used the single-sample GSEA (ssGSEA8) method to 

determine the enrichment of gene markers associated with each reference profile within the top-ranked 

genes of the complex tissue. The set of gene markers associated with each reference profile was defined as 

the Ng top ANOVA-scored genes. Importantly, the comparison of CPM to ssGSEA was applied on the cell-

subtype simulations, but using only a single cell type in each synthetic data collection (a 'single-cell-type 

design'). Current enrichment-based methods differ in their post-processing step that typically compensates 

between cell types but does not compensate between cell states of the same cell type7; our single-cell-type 

design therefore provides a broad comparison to the different enrichment-based approaches regardless their 

particular post-processing compensation strategy. 

Synthetic data analysis of different sequencing depths 

To explore whether the quality of scRNA-seq data can derive improved performance, we further analyzed the 

impact of the number of single cells as well as the sequencing depth per cell. As the quality of scRNA-seq 

increased, the performance of CPM also increased; specifically, the impact of data quality on CPM appeared to 

be more substantial than that on alternative methods (Supplementary Fig. 6AB). In addition, the absence of 

an entire cell type from the reference dataset was also evaluated (Supplementary Fig. 6C), suggesting that 

CPM is more robust to missing cell types than the existing deconvolution methods. 

Pre-processing of bulk RNA-Seq data  

Reads alignment and transcript quantification were performed as described earlier2, with several 

modifications. In brief, reads were aligned using the HISAT aligner9 to the mouse reference genome (NCBI 37, 

mm9). Reads that were mapped to multiple positions were excluded. Recorded are those reads that were 

mapped to mouse gene exons (using the UCSC transcript annotation). Expression levels were then calculated 

and normalized by the total number of mapped reads per experiment, using HOMMER10. The absolute bulk 

profile of an infected mouse are the HOMMER-normalized expression values of the relevant lung sample. 

Additional analyses support the gradual change predicted by the CPM method 

To support the observed stepwise change in cell-to-phenotype correlations (Figure 3C), we performed several 

analyses. First, additional analyses showed that the same gradual changes also appeared using alternative 

techniques by which the trajectory was defined (Supplementary Fig. 7C), for absolute input profiles 

(Supplementary Fig. 7D), when analysing the average prediction of each genetic background (Supplementary 

Fig. 7E), and using reference data from another mouse (Supplementary Fig. 7F).  



Second, we analyzed microarray gene expression data from a public repository (GEO accession number 

GSE30506), consisting of bulk profiles of the lung tissue at 4 days after influenza virus infection, across a 

collection of 44 pre-CC mice with extreme weight-loss phenotypes. In this analysis, CPM combined bulk and 

single-cell expression datasets that were generated by different labs and experimental settings: bulk pre-CC 

profiles at 4 days p.i.11 and scRNA-seq profiles that were generated at 2 days p.i.12. Comparison with weight 

loss data at 4 days post influenza infection across the pre-CCs11 confirmed the gradual change in cell-to-

phenotype correlations (Supplementary Fig. 7G).  

Third, to further confirm the gradual change in cell-to-phenotype coefficients over the trajectory, we designed 

and applied two statistical tests: a gradual-change test and a stepwise-change test. (i) Gradual-change testing. 

To assess gradual (ever-increasing) changes, we calculated the average cell-to-phenotype coefficients through 

a 50-cells sliding window along the antiviral trajectory. Each window was assigned a "+" sign if its average 

coefficient was the maximal compared to all its predecessors and a "-" sign otherwise. The test statistics was 

defined as the percentage of windows carrying a "+" sign. Statistical significance was evaluated by repeating 

this procedure 100 times, each time using permuted data that was generated by shuffling the position of cells 

along the trajectory; each reported P-value was then calculated based on the approximated distribution of 

permuted test statistics. (ii) Stepwise-change testing. We observe that the cell-to-phenotype coefficients are 

negative in low-antiviral state and positive in high-antiviral state, indicating a transition in the level of the cell-

to-phenotypes coefficients during the progression of cells along the activation trajectory. Our null hypothesis 

is therefore a standard model of a one-step transition, and the alternative hypothesis is a stepwise transition. 

In accordance, the cell-state trajectory was divided into either two intervals (the null hypothesis) or ten equal 

consecutive intervals (the alternative hypothesis), and Gaussian parameters were fitted for the cell-to-

phenotype coefficients of cells within each such interval. We then calculate a likelihood ratio (LR) score as the 

ratio between the goodness of fit of the two models - namely, the ratio between the maximal likelihood value 

when using a ten-Gaussian model versus the maximal likelihood among all 2-bins models that differ in their 

particular division cutoff. To estimate statistical significance, we repeated this procedure 100 times with 

randomly shuffled positions of cells along the activation trajectory, and then calculated a P-value for the 

observed LR score based on the approximated distribution of shuffling-based LR scores.  

Overall, the data supported gradual changes in the levels of cell-to-phenotype correlations over the activation 

process (p < 10−5, gradual-change test; Supplementary Fig. 7H, top) and a better fit of the stepwise model 

compared to the one-step model (p < 0.1, stepwise-change test; Supplementary Fig. 7H, bottom). 

Finally, we asked whether the gradual-change trend is also revealed by alternative deconvolution methods or 

by using an unrelated reference dataset. Supplementary Fig. 7I shows that using each of the alternative 

deconvolution methods, the increasing trend in cell-to-phenotype correlation cannot be determine due to the 

lack of consistency among different levels of granularity (e.g., Cibersort captured the trend with a granularity 

of 10 but have missed the trend with a granularity of 4 and 20). Similarly, the lack of a trend when using an 

uninfected-reference dataset (Supplementary Fig. 7J) exemplifies the importance of using reference and bulk 

data derived from a similar experimental setting. These findings therefore highlight the advantage of a CPM 



model that is based on a continuous space of cell states, and which is constructed using reference data of a 

similar protocol. 

Analysis of deconvolution using naive mice 

We used lung tissues from naive (untreated) mice to demonstrate the robustness of deconvolution on a very 

different dataset: whereas the infected lung tissue harbors substantial cell-activation heterogeneity within 

each cell type, the naive lungs typically harbor discrete cell types with a limited cell-activation heterogeneity 

within each cell type12. To test deconvolution in this case, we generated RNA-seq data of the lung tissue from 

five naive CC mice (Supplementary Table 1), and applied CPM and alternative deconvolution methods on this 

bulk data. As a reference data we used scRNA-seq profiles of an uninfected mouse (2075 cells that were 

partitioned into nine cell types12; data from GEO accession number GSE107947). Since we focused on inter-

cell-type heterogeneity, granularity=1 (a single group for each cell type) was used to construct the reference 

data for the alternative methods. Using comparison with known cell-type fractions in naive mice 

(Supplementary Fig. 1B), we find strong support for the accuracy of all compared methods in predicting the 

quantities of discrete cell types.   

Cell population maps, inferred by CPM, are a valuable resource for future investigations  

CPM can be used not only to predict the cell composition by their lineage association and state, but also to 

utilize those predictions for future investigations. For instance, these cell-state-specific quantities may be 

used to calculate cell-state-specific expression within a complex tissue, as previously described for the case 

of cell types13. As another example, Supplementary Figure 8 demonstrates how temporal dynamics can be 

inferred from cell-state-specific quantities. In particular, our simplified cell-state transition model suggested 

relationships between cell-state transition rates and physiological outcomes. Further studies are needed in 

order to combine additional key features of this dynamic process (such as a potential 'lag' in onset time), 

which may contribute to inter-individual variation in influenza-infection outcomes. While this study 

demonstrates a simplified stochastic model, the interpretation of CPM-reconstructed cell population maps 

should be further enhanced by advanced utilization of complex neighborhood structures (such as cyclic and 

bifurcating trajectories), as well as by continuous stochastic modeling, as suggested in previous studies14.  

Furthermore, extensive single-cell resource catalogues such as the Human Cell Atlas15 are currently being 

accumulated, suggesting that CPM may soon become applicable to analyze both archived and newly 

generated bulk profiles without requiring expertise in single-cell technologies. For instance, application of 

CPM to the growing number of genomic datasets, such as TCGA16 and GTeX17, should provide a resource for 

studying the genetic basis of cellular heterogeneity and its relationships with disease outcome. This may 

motivate the development of a new generation of personalized predictive tools and risk factor identification 

methodologies18 that are especially designed to exploit complex patterns of inter-individual variation in the 

cellular population structure. 
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