

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Risk of Dementia after Parkinson's Disease in Taiwan: A Population-based Nationwide Cohort Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025274
Article Type:	Research
Date Submitted by the Author:	10-Jul-2018
Complete List of Authors:	Liu, Chih-Ching; National Cheng Kung University, College of Medicine, Department of Public Health Sun, Yu; En Chu Kong Hospital, Department of Neurology Lee, Pei-Chen; National Taipei University of Nursing and Health Sciences, Department of Health Care Management Li, Chung-Yi; National Cheng Kung University, College of Medicine, Department of Public Health Hu, Susan; National Cheng Kung University, College of Medicine, Department of Public Health
Keywords:	retrospective cohort study, Parkinson's disease, Dementia < NEUROLOGY, competing risk, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

60

BMJ Open

1 2	Risk of Dementia after Parkinson's Disease in Taiwan: A Population-based Nationwide
3 4 5	Cohort Study
6 7	Chih-Ching Liu, MSc ^a , Yu Sun, MD, PhD ^b , Pei-Chen Lee, PhD ^c ,
8 9	Chung-Yi Li, PhD ^{a,d} , Susan C. Hu, PhD ^{a*}
10 11	
12 13	^a Department of Public Health, College of Medicine, National Cheng Kung University, Tainan,
14 15	Taiwan
16 17 19	^b Department of Neurology, En Chu Kong Hospital, Sanxia District, New Taipei City, Taiwan
19 20	^c Department of Health Care Management, National Taipei University of Nursing and Health
21 22	Sciences, Taipei, Taiwan
23 24	^d Department of Public Health, College of Public Health, China Medical University, Taichung,
25 26	Taiwan
27 28	*Chung-Yi Li and Susan C. Hu contributed equally to this article.
29 30	
32 33	Running title: Risk of Dementia after Parkinson's disease
34 35	Word count: text 3800
36 37	
38 39	Correspondence address:
40 41	Dr. Susan C. Hu
42 43	Department of Public Health, College of Medicine, National Cheng Kung University
44 45 46	Tel.: 886-6-2353535 ext. 5599, Fax: 886-6-2359033
47 48	E-mail: shuhu@mail.ncku.edu.tw
49 50	
51 52	
53 54	
55 56	
57 58	1

Abstract

Objectives A nationwide cohort study on the risk of dementia onset after first diagnosis of Parkinson's disease (PD) is lacking. This study aims to assess 11 years of incidence and the relative risks for developing dementia in patients with PD compared with matched controls. **Design** Population-based cohort study.

Setting National Health Insurance database in Taiwan.

Participants A total of 5,932 patients with PD was identified and 29,645 age-, sex-, and index year-matched PD-free individuals were randomly selected.

Intervention None

Outcome measures All subjects were linked to the claim data to identify the first diagnosis of dementia. The Poisson assumption was used to estimate the incidence rate. Fine-Gray proportional hazards models with a partitioning of time at 1 year to account for proportionality were used to estimate the risk of dementia onset.

Results The median duration from the first diagnosis of PD to the development of dementia was 9.02 years. In the first partition (≤ 1 years), the incidence of dementia in PD and control groups was 114.49 and 9.76 per 1,000 person-years, respectively, with an adjusted hazard ratio of 9.62 (95%CI, 7.95-11.64). In the second partition (>1 year), the incidence of dementia in PD and control groups was 30.99 and 10.83 per 1,000 person-years, with an adjusted hazard ratio of 2.37 (95%CI, 2.20-2.57). Notably, in the second partition, both man and women aged<70 had the highest hazard ratio (3.79, 95%CI=2.77-5.18 and 4.18, 95%CI=3.17-5.51, respectively).

Conclusions The risk of dementia onset increases twofold one year after the first diagnosis of PD.

Keywords: epidemiology, retrospective cohort study, Parkinson's disease, dementia,

competing risk

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
24 25	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51 E2	
52 52	
55 51	
54 55	
55 56	
50	
52	
50	

60

Article Summary

Strengths and limitations of this study

- The study strengths include a nationwide and retrospective cohort design for 11 years and more accurate estimates for incidence rates of dementia by using the first diagnosed PD cases rather than the prevalent cases as study subjects.
- Multivariate Cox proportional hazard regression with competing risk analysis was used to control the confounding bias and account for the competing risk of death.
- We were unable to consider a comprehensive list of potential confounders such as smoking, educational level, physical function, and genes in the analysis because of the limited information available from the claims data.
- Another limitation is the lack of clinical symptoms and subtypes of dementia.

INTRODUCTION

Parkinson's disease (PD) has been associated with developing cognition impairments¹. Some studies have reported that older age²⁻¹² and male gender²⁵ are related to increased dementia risk in PD; however, information regarding the age- and sex- stratified dementia incidence rate in PD is scant. In addition, most previous studies on the association between PD and dementia risk were conducted in western countries^{2-8 10-17}, and information for Asian PD populations is lacking. Moreover, to identify robust relative risks of dementia in PD requires a large sample size cohort and a sufficiently long follow-up time to observe the development of symptoms for dementia. To the best of our knowledge, there has been no nationwide cohort study on this topic $^{2-18}$, and most previous cohort studies involved a limited number of person-years with a limited follow-up period^{3-6 8-12 15-17}. Nevertheless, many PD patients have medical comorbidities such as stroke, hypertension, diabetes mellitus, hyperlipidemia, and coronary heart disease, which may have modification effects on the relationship between dementia and PD^{5 16-18}. However, little research has examined medical comorbidities as a potential confounding factor to control⁵⁹¹⁸ and none has considered death as a competing risk³⁻¹⁷, which may induce potential attrition bias and tend to distort the study results.

In Taiwan, the only population-based study with a case-control design showed a positive association between PD and the risk of dementia¹⁸. However, this Taiwanese study recruited prevalent PD cases at various disease stages to investigate the relative risks of developing dementia in PD, which may have caused survival bias. Therefore, a nationwide population-based cohort study was conducted to estimate 11 years of incidence in this study and the relative risks for development of dementia in patients with first-diagnosed PD by age-and sex- specific and selected comorbidities (i.e., hypertension, diabetes, coronary artery disease (CAD), stroke, hyperlipidemia, and chronic obstructive pulmonary disease (COPD)) after accounting for the competing risk of death.

METHODS

Data Source

The dataset were from ambulatory care claims, inpatient claims and the updated registry for beneficiaries retrieving from Taiwan's National Health Insurance Research Database (NHIRD), as provided by the National Health Insurance Administration (NHIA), Ministry of Health and Welfare, Taiwan. A universal National Health Insurance (NHI) program has been implemented in Taiwan since 1995, which more than 99% of Taiwan residents have enrolled in the NHI program after 2000, and the National Health Insurance Administration have contracted with 92.5% of hospitals and clinics¹⁹ The NHIA performs quarterly expert reviews on a random sample of every 50-100 ambulatory and inpatient claims in each hospital and clinic to ensure the accuracy of the claims data¹⁹. False reports of diagnoses result in a severe penalty from the NHIA. Therefore, information obtained from NHIRD is considered to be complete and accurate. Access to the NHIRD has been approved by the National Health Research Institutes Review Committee.

Patient and public involvement

We conducted this study by using the National Health Insurance Research Database. No patients or public were involved in development of the research question and outcome measures. Also, no patients or public were involved in setting out the design of this study, nor were they involved in the recruitment to and conduct of the study. The study results were not disseminated to study subjects.

Study design, Cohorts and Covariates

This was a retrospective cohort study from 2002-2012. We selected 5,932 eligible PD patients between 2002 and 2003 from a previous study for which sample selection details were discussed previously²⁰. The method for identifying PD cases has been validated and found to have a good sensitivity, specificity, positive predictive value, and negative predictive value of 97.6%, 92.3%, 98.8%, and 85.7%, respectively. In brief, the PD cohort in this study

included all cases with at least 3 medical claims (either outpatient or inpatient care) with a diagnostic code of PD (ICD-9-CM: 332.0) who had received 3 or more courses of anti-Parkinsonism medications, including L-dopa or dopamine agonist prescriptions after first-time diagnosis between 2002 and 2003. Moreover, the first and last outpatient or inpatient visits and anti-Parkinsonism medication records were separated by at least 90 days to avoid accidental inclusion of miscoded patients.

We further made the following exclusions to ensure the validity of the PD diagnosis: (1) an age on the index date of less than 40 years, who are more likely to have a genetic etiology; (2) a diagnostic code of secondary Parkinsonism (ICD-9-CM code: 332.1) during the study period; (3) receipt of any neuroleptic medication 180 days prior to the index date, and (4) 3 or more medical claims (either ambulatory or inpatient care) with diagnostic codes of dementia prior to the index date. The first date of initial diagnosis for PD in the period of 2002 to 2003 was set as the index date.

The control subjects were selected from those who had never been diagnosed with PD between 1999 and 2011 and met the same exclusion criteria as those set for the patients with PD. These control subjects were matched by age (each 5-year span), sex, and year of index date for patients with PD at a 5:1 ratio. As a result, 29,645 control subjects were identified. For the control groups, the index date was either January 1, 2002 or January 1, 2003.

Baseline comorbidities that may be associated with an increased risk of dementia were identified for the PD and control groups, including hypertension, diabetes, CAD, stroke, hyperlipidemia, and COPD observed before the index date. Information on the geographic area, urbanization level, occupational status, and salary-based insurance premium at the index date was also obtained from the registry for beneficiaries. The number of medical visits within one year after the index date was adjusted to decrease the potential presence of surveillance bias because subjects with PD visit clinics more frequently and thus may have more opportunities to be diagnosed as having dementia.

BMJ Open

End point and Statistical analysis

The main outcome variable was initial occurrence of dementia (ICD-9-CM code: 290, 294.1, 331.0, and 331.82). To increase the validity of dementia identification, only dementia cases diagnosed with ≥ 3 ambulatory visits or ≥ 1 hospitalization were included in this study. We do not distinguish the subtypes of dementia because it is not clear differences between AD and vascular dementia in certain situations²¹. Also, it is not easy to distinguish the major common type of dementia after PD by using ICD-9-CM codes because there is no specific ICD-9-CM diagnosis codes for Parkinson's disease dementia and the major common type of dementia after PD may be coexist²²⁻²⁴. We followed the study subjects from the index date to the first diagnosed dementia, withdrawal from the NHI, or December 31, 2012, whichever came first. The incidence density of dementia was calculated using an age- and sex- specific and comorbidity-specific stratified analysis based on the Poisson assumption. The cumulative events and rates of dementia according to the PD status over the study period were calculated using a Kaplan-Meier analysis, and the log-rank test was used to test the between-group differences. A Cox proportional hazard regression with competing risk models, according to Fine and Gray's proportional sub-hazards models²⁵, was performed to assess the hazard ratio (HR) of dementia in relation to PD. In addition, we performed sex- and age- stratified analysis and comorbidity-stratified analysis to examine the potential effect-modifications by age, sex, and comorbidity on the association between PD and the risk of dementia. Plots of log (-log (survival function)) vs. log (time) were drawn to test for violations of the proportional-hazards assumption. Therefore, separate time-partitioned models were created, and the hazards within each partition were assessed. Proportionality was held for the new models partitioned at 1 year. If we modeled the hazards for ≤ 1 year (i.e., the first time partition), the censoring day for subsequent events was 1 year. If we modeled the hazards for>1 year (i.e., the second time partition), subjects with earlier events were included and considered to be censors (because the exclusion of these subjects may lead to a survival bias). A p < 0.05 was considered

significant.

RESULTS

Gender, age, geographic area, and urbanization levels were similar in both groups. The prevalence rates of the risk factors for dementia were high in patients with PD. The PD cohort had fewer white-collar workers (25.0% vs 31.2%), a higher prevalence of dependence (39.9% vs 33.8%), a lower insurance premium, and a higher frequency of medical visits (26.5 vs 19.7 per year) than the control group (Table 1).

Figure 1 shows the cumulative incidence of dementia in patients with and without PD. The cumulative incidence of dementia for PD was significantly higher than the corresponding data observed in the non-PD group (log-rank test, p<0.0001).

The median duration from the first diagnosis of PD to the development of dementia was 9.02years. In the period within 1 year after the index date (i.e., the first time partition), the corresponding incidence densities of dementia for the PD and control groups were 114.49 and 9.76 per 1,000 person-years, respectively. Noticeably, the incidence density of dementia increased with age irrespective of PD status and sex, and the highest incidence was observed in those aged \geq 80 years. The adjusted HR of dementia in relation to PD was significantly increased at 9.62 (95%CI 7.95-11.64) and was higher in men than in women (HR: 11.28 vs. 5.64). In addition, there was a significant interaction of PD with age on the risk of dementia for both men (P = 0.0147) and women (P<0.0001) (Table 2).

In the years following the PD diagnosis (i.e., the second time partition), the overall incidence density of dementia was much lower (Table 2). The change in incidence density between the first and the second partition was more pronounced in the PD group (from 114.49 to 30.99 per 1,000 person-years) than in the control group (from 9.76 to 10.83 per 1,000 person-years). The age- and sex- specific incidence densities had a similar pattern in terms of change. However, no significant difference in the sex-specific HRs (hazard ratios) of dementia was observed (p = 0.7064). There was a significant interaction of PD status with age

BMJ Open

(P <0.0001) in both sexes. Age- and sex-specific HRs showed the highest HR to be in PD females aged <70 years (HR: 4.18; 95% CI 3.17-5.51).

Impact of PD on the risk of dementia by selected medical comorbidities was shown in Table 3. Irrespective of various partition of time, the incidence of dementia increased with the number of comorbidities in both groups. The PD group had the highest risk of dementia across various medical comorbidities stratifications after adjusting baseline characteristics. In the first partition of time, the interaction of PD with diabetes (P=0.0070) and COPD (P=0.0033) on the risk of dementia was statistically significant, indicating that subjects without diabetes and COPD had a higher adjusted HR irrespective of PD status. However, although the adjusted HR were also higher in subjects without hypertension, CAD, stroke, and hyperlipidemia than in those with the medical comorbidities, there was no statistically significant modification effect by hypertension, CAD, stroke, and hyperlipidemia on the association between PD and the risk of dementia.

In the second partition of time, effect-modification by hypertension (P<0.0001), CAD (P=0.0111) and stroke (P<0.0001) was statistically significant for dementia, indicating that subjects without those medical comorbidities had a higher adjusted HR irrespective of PD status. Among diabetes, hyperlipidemia, or COPD patients, adjusted HR for dementia also showed statistically significant high risk from 1.97 (95% CI=1.64–2.36) to 2.09 (95% CI=1.81–2.42), but no significant modification effect was found for those with medical comorbidities on the association between PD and the risk of dementia. Whether medical comorbidities exist or not, the HRs were greater in the first partition of time but were smaller in the second partition than those analyzed for all PD.

DISCUSSION

To the best of our knowledge, this is the first nationwide population-based cohort study to demonstrate that patients with the first diagnosis of PD are associated with increased risk of dementia compared with non-PD patients. In this study, we found that the hazard ratio (HR)

of dementia was significantly higher within 1 year after the initial PD diagnosis (HR =9.62, 95%CI=7.59-11.64). However, the magnitude of association varied according to different age and sex stratifications. In general, the risk of dementia was higher in men in the first partition but was similar in both sexes in the second partition. However, the increased risk was highest in both male and female participants aged <70 years in any given partition time. The study results can provide physicians and patients with valuable information and also demonstrate the need for guidelines for detection of dementia risk after the initial diagnosis of PD.

Potential mechanisms contributing to dementia in patients with PD are still poorly understood. The site pathology for dementia in PD includes brain stem nuclei, limbic structures, and the cerebral cortex, and the types of pathological changes have been described as Lewy body (LB) degeneration and Alzheimer-type changes²⁶. Regardless of whether there is additional Alzheimer's pathology (amyloid β (A β) plaques and tau neurofibrillary tangles (NFTs))²²⁻²⁴, the main pathology associated with dementia in PD are Lewy body degeneration in the limbic structures and cerebral cortex, with α -synuclein²⁶. Deficits in dopaminergic, noradrenergic, serotoninergic, and cholinergic neurochemicals are known to be the cause of cognition impairment in PD²⁶.

Some former studies have revealed that the fact that the risk of dementia increases with the disease duration of PD may be due to the Lewy pathology as PD progresses temporally and spatially from the brain stem through the forebrain and limbic system to the neocortex, which is supported by the Braak pathology staging hypothesis^{27 28}. However, our study showed a sharply increased hazard of dementia within1 year after first diagnosis of PD, which is clinically and biologically unbelievable; this situation is probably because a large proportion of patients with dementia remain undiagnosed before the index date of their first clinical visit for PD. Nevertheless, a reasonably increased hazard of dementia more than one year after diagnosis of PD is more likely to be real and may suggest evidence of the mechanisms supported by the Braak pathology staging hypothesis^{27 28}. Our findings were

BMJ Open

similar to another population-based case control study in Taiwan¹⁸, which showed the risk of developing dementia in prevalent Parkinsonism was highest in the first 6 months (AOR:11.98, 95%CI:8.51-16.68) and then became lower in the following months to years after diagnosis.

Age is known to be a risk factor for dementia not only in the general population^{29 30} but also in PD patient population²⁻¹². This may be caused by aging of non-dopaminergic structures (i.e., the locus ceruleus and pedunculopontine nucleus)³¹. However, a modifying effect of age on the risk of dementia after PD may be present in our study. For example, we found that patients with PD had a significantly higher overall risk of dementia than those in the control group, particularly in subjects aged < 70 years. This result is similar to the findings of some prior studies^{11 12}.

Male gender is sometimes identified as a risk factor for dementia in PD^{2 5}; however, there is no clear explanation for this finding. In our study, we found no significant role of gender in the first-diagnosed PD patients one year later. Accordingly, patients with PD, especially younger patients in both sexes, could be selected as a target population to evaluate whether interventions are effective in decreasing the risk of dementia after diagnosis of PD in future studies.

Our study also shows that the overall risk of dementia was more than double (adjusted HR 2.37) among subjects with first-diagnosed PD 1 year later for up to 11 years. After accounting for the competing risk of death and adjustment for the number of medical visits, the findings were similar to those of Perezet al., who reported a higher relative risk of incident dementia (2.31, 95%CI 1.48-3.61) in patients with PD as compared to non-PD subjects¹³. However, other cohort studies have shown a relative risk of 1.7 (95%CI:1.1–2.7) to5.9 (95%CI:3.9–9.1) for incident dementia in PD groups compared with the general population^{7 8} ^{10-12 15}, which is different from our findings. Noticeably, most previous studies were limited by a relatively small sample size³⁻¹⁷, shorter follow-up time^{3-6 8-12 15-17}, the lack of a matched control^{3-6 9 14 16 17}, failure to account for the competing risk of death³⁻¹⁷, or a lack of adjustment

for the number of medical visits to control for surveillance bias^{7 8 10-13 15}, rendering the risk that the estimates were more likely to be imprecise and biased.

We found the incidence of dementia increased with number of comorbidities, including hypertension, diabetes mellitus, CAD, stroke, hyperlipidemia and COPD. However, of the patients with PD in our study, PD alone also has more positive effects on dementia in most circumstances, although effect modifiers such as hypertension, diabetes, stroke, CAD, hyperlipidemia, and COPD had positive effects for dementia. Prior studies regarding the relationship between patients with PD and those comorbidities remain controversial^{5 16-18}. For example, although a study in Taiwan has demonstrated those cerebrovascular or cardiovascular comorbidities in patients with PD had lower risk of dementia onset than patients with PD alone¹⁸, which is similar our findings, other studies have failed to relate those cerebrovascular or cardiovascular risk factors¹⁶¹⁷. Besides, some previous studies have revealed that PD with cardiovascular dysautonomia (such as hypertension, diabetes mellitus, and CAD) and COPD might cause substantial cerebral hypoperfusion and hypoxia, respectively³²⁻³⁴. Hypoxia and hypotension in the brain might cause neuronal damage and increase accumulation of pathologic proteins such as β -amyloid, which result in increased risk of dementia onset^{32 33}. Therefore, future perspective studies focusing on needed the causal relationship between those comorbidities and the risk of dementia in PD are warranted.

There were several strengths in our study. First, we obtained a large, nationwide number of participants by using NHIR datasets, which made it possible to reduce selection bias, to obtain higher statistical power, to obtain a highly representative study population, to have a lower rate of nonresponse or loss to follow-up, and to facilitate the age-, sex- and comorbidities-stratified analyses with an ample simple size to satisfy requirements. To the best of our knowledge, this study is the first to report the age- and sex- specific incidence rates of dementia in a PD group. Secondly, we conducted a longitudinal and retrospective cohort study for 11 years, which is a longer time during which to observe the development of

BMJ Open

dementia than that in many other prior studies^{3-6 8-12 15-17}. Thirdly, more accurate estimates for the incidence rates of dementia in the PD group are available in this study due to the usage of the first diagnosed PD cases rather than the prevalent PD cases, as this might reduce the variations in the incidence of dementia across various PD durations. Fourth, this study used multivariate Cox proportional hazard regression with competing risk analysis to control the confounding bias and account for the competing risk of death.

Still, our study had some limitations. First, because we selected dementia patients only by using NHIR datasets, we might have missed some patients who had been waiting for a pathological diagnosis, which may have resulted in an underestimation of the incidence of dementia. Also, because patients with PD may utilize the health care system more often than control groups, surveillance bias may be present. To address this concern, we calculated the number of medical visits for 1 year after the index date and adjusted for it in the multivariate regression model. Secondly, the severity of dementia is not available in the database, and we could not distinguish subtypes of dementia in our datasets. Therefore, it is essential for patients with PD, particular in high risk groups such as subjects aged <70 years, to have regular cognitive assessments including combinations of neuropsychological markers throughout the early disease stages, which not only would provide benefits for identification of the subtypes in dementia but would also decrease underestimation of risk for dementia in PD. Thirdly, due to the limited information available from the claims data, we were unable to consider a comprehensive list of potential confounders such as smoking, educational level, physical function, and genes in the analysis, which may have resulted in residual confounding bias. To reduce such bias, we used COPD and occupational status as surrogates for smoking and educational level, respectively.

In conclusion, it was found that PD confers a high risk of dementia than non-PD patients, especially in the group of aged< 70 years in both sexes. Regular monitoring for the development of dementia in patients with PD in a long-time follow-up, particularly risk

groups, is recommended. Future research should include further evaluation of the underlying mechanism and subtypes for dementia development after diagnosis of PD.

Acknowledgements We thank the Bureau of National Health Insurance in the Ministry of Health and Welfare, and the National Health Research Institutes by providing the National Health Insurance Research Database for this study. The interpretation and conclusions contained herein do not represent those of the Bureau of National Health Insurance, Ministry of Health and Welfare, or National Health Research Institutes.

Author contributions Chih-Ching Liu analyzed the data and wrote the draft of the manuscript. Yu Sun and Pei-Chen Lee provided further data analyses and interpretation. Chung-Yi Li and Susan C. Hu advised the study and revised the manuscript. All authors have approved the final version of the manuscript.

Funding This study was supported by a grant from Taiwan Ministry of Science and Technology (MOST 106-2314-B-227-010).

Disclaimer The funder had no role in study design, data collection and analysis, and the preparation of the manuscript.

Competing interests None.

Patient consent Not required.

Ethics approval Full review by our institutional review board was not required because the encryption on the identification numbers makes it impossible to identify individuals. Access to the National Health Insurance Research Database datasets is approved by the National Health Research Institutes Review Committee.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement We, as the authors of this original research article, state that there is no additional, unpublished data available from this study. Raw data sharing from National Health Insurance Research Database is prohibited, according to the policy of National Health

15 of 27	BMJ Open
	Research Institutes (NHRI) in Taiwan.
	15 For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

REFERENCES

- 1. Kalia LV, Lang AE. Parkinson's disease. Lancet 2015;386:896-912.
- 2. Xu Y, Yang J, Shang H. Meta-analysis of risk factors for Parkinson's disease dementia. *Transl Neurodegener* 2016;5:11.
- 3. Domellof ME, Ekman U, Forsgren L, *et al.* Cognitive function in the early phase of Parkinson's disease, a five-year follow-up. *Acta Neurol Scand* 2015;132:79-88.
- 4. Kwon KY, Kang SH, Kim M, *et al.* Nonmotor Symptoms and Cognitive Decline in de novo Parkinson's Disease. *Can J Neurol Sci* 2014;41:597-602.
- 5. Anang JB, Gagnon JF, Bertrand JA, *et al.* Predictors of dementia in Parkinson disease: a prospective cohort study. *Neurology* 2014;83:1253-60.
- Zhu K, van Hilten JJ, Marinus J. Predictors of dementia in Parkinson's disease; findings from a 5-year prospective study using the SCOPA-COG. *Parkinsonism Rel Disord* 2014;20:980-5.
- Williams-Gray CH, Mason SL, Evans JR, *et al.* The CamPaIGN study of Parkinson's disease: 10-year outlook in an incident population-based cohort. *J Neurol Neurosur Ps* 2013;84:1258-64.
- 8. Aarsland D, Andersen K, Larsen JP, *et al.* Risk of dementia in Parkinson's disease: a community-based, prospective study. *Neurology* 2001;56:730-6.
- 9. Lee SY, Ryu HJ, Seo JW, *et al.* Dementia-Free Survival and Risk Factors for Dementia in a Hospital-Based Korean Parkinson's Disease Cohort. *J Clin Neurol* 2017;13:21-26.
- 10. Hobson P, Meara J. Risk and incidence of dementia in a cohort of older subjects with Parkinson's disease in the United Kingdom. *Mov Disord* 2004;19:1043-9.
- 11. Marder K, Tang MX, Cote L, *et al.* The frequency and associated risk factors for dementia in patients with Parkinson's disease. *Arch Neurol* 1995;52:695-701.
- 12. Levy G, Schupf N, Tang MX, *et al.* Combined effect of age and severity on the risk of dementia in Parkinson's disease. *Ann Neurol* 2002;51:722-9.
- Perez F, Helmer C, Foubert-Samier A, *et al.* Risk of dementia in an elderly population of Parkinson's disease patients: a 15-year population-based study. *Alzheimers Dement* 2012;8:463-9.
- 14. Auyeung M, Tsoi TH, Mok V, et al. Ten year survival and outcomes in a prospective cohort of new onset Chinese Parkinson's disease patients. J Neurol Neurosur Ps 2012;83:607-11.
- 15. de Lau LM, Schipper CM, Hofman A, *et al.* Prognosis of Parkinson disease: risk of dementia and mortality: the Rotterdam Study. *Arch Neurol* 2005;62:1265-9.
- 16. Haugarvoll K, Aarsland D, Wentzel-Larsen T, et al. The influence of cerebrovascular risk factors on incident dementia in patients with Parkinson's disease. Acta Neurol Scand 2005;112:386-90.
- 17. Levy G, Tang MX, Cote LJ, *et al.* Do risk factors for Alzheimer's disease predict dementia in Parkinson's disease? An exploratory study. *Mov Disord* 2002;17:250-7.

1	
2	18. Huang YC, Wu SI, Lin JJ, <i>et al.</i> Prevalence and risk factors of cognitive impairment in
3	Parkinson disease: a population-based case-control study in Taiwan. Medicine
5	(Baltimore) 2015;94:e782.
6	19. National Health Insurance Administration. Universal Health Coverage in Taiwan.
7	https://www.nhi.gov.tw/English/Content List.aspx?n=8FC0974BBFEFA56D&topn=E
8	D/4 30E51 4 609E49 (accessed May 8 2018)
9 10	20. Lin CC, Li CV, Lee DC, et al. Verietiene in Incidence and Dresslance of Deckinsen's
11	20. Liu CC, Li CY, Lee PC, <i>et al.</i> Variations in incidence and Prevalence of Parkinson's
12	Disease in Taiwan: A Population-Based Nationwide Study. Parkinson's dis
13	2016;2016:8756359.
14	21. Aguero-Torres H, Winblad B. Alzheimer's disease and vascular dementia. Some points of
15	confluence Ann N Y Acad Sci 2000:903:547-52
17	22 (1 1 1 1 0 0 1 0 0 0
18	22. Compta Y, Parkkinen L, O Sullivan SS, <i>et al.</i> Lewy- and Alzneimer-type pathologies in
19	Parkinson's disease dementia: which is more important? <i>Brain</i> 2011;134:1493-505.
20	23. Jellinger KA, Attems J. Prevalence and impact of vascular and Alzheimer pathologies in
21	Lewy body disease. Acta Neuropathol 2008;115:427-36.
22	24 Jellinger KA Sepni K Wenning GK <i>et al.</i> Impact of coexistent Alzheimer nathology on
24	the notural history of Darkinger's disease. I Neural Transm 2002:100:220-20
25	the hatural history of Parkinson's disease. J Neural Transm 2002,109.329-39.
26	25. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk.
27	J Am Stat Assoc 1999;94:496-509.
28 29	26. Emre M. What causes mental dysfunction in Parkinson's disease? Mov Disord
30	2003:18:63-71
31	27 Braak H. Del Tredici K. Bratzke H. at al. Staging of the intracerebral inclusion body
32	27. Braak II, Dei Hedrei K, Bratzke II, et al. Staging of the intracerebrat metasion body
33	pathology associated with idiopathic Parkinson's disease (preclinical and clinical
34 35	stages). J Neurol 2002;249:1-5.
36	28. Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic
37	Parkinson's disease. <i>Neurobiol Aging</i> 2003;24:197-211.
38	29 Matthews FE Stephan BC Robinson L et al. A two decade dementia incidence
39	2). Watthews TE, Stephan DE, Robinson E, et al. A two decade dementia merdence
40 41	comparison from the Cognitive Function and Ageing Studies I and II. Nat Commun
41	2016;7:11398.
43	30. Solomon A, Mangialasche F, Richard E, et al. Advances in the prevention of Alzheimer's
44	disease and dementia. J Intern Med 2014;275:229-50.
45	31 Levy G Tang MX Cote LL <i>et al</i> Motor impairment in PD relationship to incident
46	demontia and ago. Neurology 2000:55:520.44
47 48	dementia and age. <i>Neurology</i> 2000,55.559-44.
49	32. de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to
50	cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012;2012:367516.
51	33. Liu H, Xing A, Wang X, et al. Regulation of beta-amyloid level in the brain of rats with
52	cerebrovascular hypoperfusion. <i>Neurobiol Aging</i> 2012:33:826.e31-42.
53 54	34 Grant I Heaton RK McSweenv A L at al Neuronsychologic findings in hypoxemic
55	structure all structure male and the state of the state o
56	chronic obstructive pulmonary disease. Arch Intern Med 1982;142:14/0-6.
57	17
58	
29	

	Р	D group	Contro	ol group	
Variables ^a	n	%	n	%	P value
Age (years)					
<70	1852	31.2	4220	31.2	1.00 ^d
70-74	1314	21.2	6570	21.2	
75-79	1460	24.6	7300	24.6	
≥ 80	1306	22.0	6515	22.0	
Mean (±SD) ^b	,	72.5±9.4	70	.8±12.7	
Sex					1.00 ^d
Male	3116	52.6	15580	52.6	
Female	2813	47.4	14065	47.4	
Insurance premium (NTD) ^b					< 0.0001
Dependent	2333	39.9	9721	33.8	
<median (19,200)<="" td=""><td>1734</td><td>29.6</td><td>7753</td><td>26.2</td><td></td></median>	1734	29.6	7753	26.2	
>=Median	1787	30.5	12171	41.0	
Mean (±SD) ^c	7102.6±	=11122.9	10194.0±	13197.8	
Urbanization status					0.0007^{d}
Urban	3203	54.7	15197	51.8	
Satellite city/town	2085	35.6	9741	33.2	
Rural area	566	9.8	4424	15.0	
Geographic area					< 0.0001
Northern	2670	45.6	13130	44.8	
Central	1491	25.5	7288	24.9	
Southern	1519	25.9	7957	27.1	
Eastern	174	3.0	931	3.2	
Occupational status					< 0.0001
White collar	1482	25.0	9242	31.2	
Blue collar	2075	35.0	11846	40.0	
Others	2375	40.0	8557	28.8	
History of comorbidity					
Without comorbidities	1151	19.4	16393	55.3	< 0.0001
Hypertension	3578	60.3	11431	38.6	< 0.0001
Diabetes	1430	24.1	4112	13.9	< 0.0001
CAD	1955	33.0	4890	16.5	< 0.0001
Stroke	1977	33.3	2924	9.9	< 0.0001
Hyperlipidemia	1089	18.4	3013	10.2	< 0.0001
COPD	1719	29.0	5624	19.0	< 0.0001

BMJ Open

1 2 3	Mean number of medical	39.6	26.5	21.9	19.7	<0.0001 ^e
4	VISITS	5022	100.0	20645	100.0	
5		5932	100.0	29645	100.0	
7	Inconsistency between total po	opulation and	population s	summed for	individual v	variables was
8	due to missing information.					
9 10	SD=Standard deviation; NID	=New Taiwan	Dollars; CA	AD=Corona	ry artery dis	sease;
11	COPD=chronic obstructive p	ulmonary dise	ase			
12	The dependent insurers were r	not included.				
13 14	"Based on χ^2 test					
15	^e Based on student's t test					
16 17						
17						
19						
20 21						
22						
23						
24 25						
26						
27						
29						
30						
31 32						
33						
34						
36						
37						
38						
40						
41						
42 43						
44						
45						
46 47						
48						
49 50						
50						
52						
53 54						
55						
56						
57 58			19			
59						

2
- २
1
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
21
∠ ı วว
22
23
24
25
26
27
28
29
30
50 51
21
32
33
34
35
36
37
38
39
10
40
41
42
43
44
45
46
47

		≤ 1 years				>1 years			
	ID (95% CI) ^{a,b}		Crude HR	AHR	ID (95% CI) ^{a,b}		Crude HR	AHR	
	Control group	PD group	(95% CI)	(95% CI)	Control group	PD group	(95% CI)	(95% CI)	
		Uh							
Male									
<70	1.61	56.23	34.48	16.06	2.61	17.57	6.46	3.79	
	(0.42-2.81)	(40.16-72.31)	(15.60-76.23)	(6.82-37.79) ^d	(2.13-3.09)	(14.48-20.67)	(5.02-8.33)	(2.77-5.18)*	
70-74	5.61	111.38	19.47	13.03	9.23	32.27	3.27	2.83	
	(3.08-8.13)	(85.29-137.47)	(11.75-32.26)	(7.59-22.37) ^d	(8.16-10.30)	(27.02-37.52)	(2.68-4.00)	(2.23-3.58) ^c	
75-79	7.59	129.62	16.71	9.55	• 14.01	38.05	2.47	2.04	
	(4.92-10.27)	(103.83-155.42)	(11.18-24.99)	(6.12-14.88) ^d	(12.77-15.25)	(32.58-43.51)	(2.08-2.94)	(1.67-2.48) ^c	
≥ 80	22.18	196.24	8.73	6.92	18.94	41.87	2.01	1.88	
	(17.26-27.10)	(161.70-230.78)	(6.58-11.57)	(4.93-9.70) ^d	(17.31-20.57)	(35.34-48.40)	(1.68-2.41)	(1.54-2.29) ^c	
Total	8.81	118.82	13.28	11.28	10.27	30.33	2.74	2.36	
	(7.32-10.29)	(106.16-131.49)	(10.88-16.20)	(8.74-14.55) ^e	(9.74-10.81)	(27.93-32.73)	(2.49-3.02)	(2.11-2.63) ^d	
Female									
<70	1.43	51.66	35.85	11.04	3.35	22.23	6.75	4.18	
	(0.37-2.49)	(37.20-66.12)	(16.24-79.13)	$(4.46-27.30)^{d}$	(2.85-3.86)	(18.98-25.49)	(5.48-8.33)	(3.17-5.51) ^c	
70-74	7.37	89.93	12.06	4.66	10.81	33.61	3.03	2.69	
	(4.36-10.38)	(65.72-114.14)	(7.41-19.63)	$(2.66-8.18)^{d}$	(9.62-12.00)	(28.25-38.97)	(2.49-3.68)	$(2.15-3.38)^{\circ}$	

Table 2. Age- and sex- specific incidence densities of dementia (ICD-9: 290, 294.1, 331.0, 331.82)in the Parkinson's disease and control groups

20

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
34	
35	
36	
27	
37 20	
20	
29 40	
40 41	
41	
42	
43	
44	
45	
46	
47	

75-79	10.92	165.75	14.86	8.31	17.61	43.22	2.40	2.22
	(7.25-14.59)	(132.06-199.4)	(10.06-21.96)	$(5.42-12.76)^d$	(16.04-19.18)	(36.70-49.70)	(2.01-2.87)	(1.82-2.70) ^c
≥ 80	31.19	180.68	5.75	3.31	22.99	38.74	1.63	1.53
	(24.60-37.79)	(143.56-217.8)	(4.29-7.72)	$(2.29-4.78)^{d}$	(20.97-25.02)	(32.00-45.47)	(1.34-1.99)	(1.23-1.91) ^c
Total	10.80	109.89	10.07	5.64	11.41	31.72	2.71	2.37
	(9.08-12.53)	(97.16-122.63)	(8.27-12.26)	(4.48-7.08) ^e	(10.83-12.00)	(29.24-34.21)	(2.46-2.98)	(2.12-2.64) ^d
Overall	9.76	114.49	11.58	9.62	10.83	30.99	2.72	2.37
	(8.62-10.89)	(105.51-123.4)	(10.07-13.32)	(7.95-11.64) ^f	(10.43-11.22)	(29.27-32.72)	(2.55-2.91)	(2.20- 2.57) ^e

In the first time partition (≤ 1 years), the interactions were significant for PD with age (p<0.0001)and with sex (p=0.0010),with age in men (p=0.0147), and with age in women (p<0.0001). In the second time partition (>1 years), the interactions were significant for PD with age (p<0.0001), with age in men (p<0.0001), and with age in women ((p<0.0001), but not for PD with sex (p=0.7064).

^aID= incidence density(per 1,000 person-years), CI=confidence interval, AHR=adjusted hazard ratio, HR=hazard ratio,

^bBased on Poisson assumption

^cBased on Cox proportional hazard regression with competing risk analysis and adjusted for all variables, except for age and sex.

^dBased on Cox proportional hazard regression with competing risk analysis and adjusted for all variables, except for sex.

^eBased on Cox proportional hazard regression with competing risk analysis and adjusted for age, sex, insurance premium, urbanization status, geographic area,occupational status, status of hypertension, diabetes, CAD, stroke, hyperlipidemia, COPD, and number of medical visits. **P*<0.05

≤ 1 years				>1 years			
ID (95% CI) ^{a,b}		Crude HR	AHR	ID (95% CI) ^{a,b}		Crude HR	AHR
Control group	PD group	(95% CI)	(95% CI)	Control group	PD group	(95% CI)	(95% CI)
	~~						
7.49	110.98	14.58	7.84	8.57	27.99	3.18	2.94
(6.23-8.76)	(96.94-125.02)	(11.82-17.99)	$(6.13-10.01)^{c}$	(8.13-9.01)	(25.45-30.53)	(2.86-3.53)	(2.60-3.33) ^c
13.40	116.81	8.64	7.76	14.80	33.14	2.15	2.02
(11.26-15.55)	(105.12-128.49)	(7.16-10.43)	(6.16-9.79) ^c	(14.03-15.56)	(30.81-35.48)	(1.97-2.35)	(1.83-2.22) ^c
		Interact	ion: p=0.3336			Interaction	: p<0.0001
9.13	115.65	12.49	10.52	10.15	29.39	2.78	2.45
(7.95-10.31)	(105.28-126.02)	(10.68-14.61)	(8.55-12.94) ^c	(9.74-10.56)	(27.48-31.29)	(2.58-3.01)	(2.24-2.67) ^c
13.69	110.87	8.05	4.50	15.46	36.57	2.24	2.09
(10.07-17.31)	(92.88-128.85)	(5.91-10.96)	$(3.22-6.29)^{\rm c}$	(14.13-16.79)	(32.61-40.53)	(1.95-2.58)	(1.78-2.44) ^c
		Interacti	on: p= 0.0070			Interaction	: p= 0.1674
8.47	107.08	12.49	7.41	10.11	29.77	2.82	2.47
(7.31-9.62)	(96.49-117.67)	(10.56-14.77)	(6.13-8.96) ^c	(9.69-10.52)	(27.73-31.81)	(2.60-3.05)	(2.26-2.71) ^c
16.39	129.78	7.86	7.06	14.85	33.69	2.21	2.02
(12.75-20.02)	(113.04-146.52)	(6.08-10.15)	$(5.15 - 9.70)^{c}$	(13.66-16.04)	(30.47-36.91)	(1.95-2.50)	(1.76-2.32) ^c
		Interacti	on: p= 0.5289			Interaction	n: p=0.0111
			22				
	ID (95 Control group 7.49 (6.23-8.76) 13.40 (11.26-15.55) 9.13 (7.95-10.31) 13.69 (10.07-17.31) 8.47 (7.31-9.62) 16.39 (12.75-20.02)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c } \hline ID (95\% CI)^{a,b} & Crude HR \\ \hline Control group & PD group & (95\% CI) \\\hline \hline 7.49 & 110.98 & 14.58 \\ (6.23-8.76) & (96.94-125.02) & (11.82-17.99) \\ 13.40 & 116.81 & 8.64 \\ (11.26-15.55) & (105.12-128.49) & (7.16-10.43) \\ & & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 27	Page	23	of 27	,
---------------	------	----	-------	---

BMJ Open

Stroke								
No	7.84	99.07	12.48	7.86	9.99	29.39	2.85	2
	(6.77-8.91)	(88.88-109.26)	(10.52-14.79)	$(6.52 - 9.49)^{c}$	(9.59-10.39)	(27.37-31.40)	(2.63-3.09)	(2.38
Yes	27.73	146.13	5.26	5.84	19.94	34.66	1.71	1
	(21.57-33.88)	(128.41-163.86)	(4.09- 6.77)	$(4.32-7.88)^{\rm c}$	(18.09-21.80)	(31.36-37.97)	(1.50-1.96)	(1.47
			Interaction	: p= 0.4950			Interaction:	p=<0.
Hyperlipidemia								
No	9.83	118.50	11.88	9.66	10.49	30.64	2.76	2
	(8.63-11.03)	(108.36-128.63)	(10.24-13.78)	(7.92-11.78) ^c	(10.08-10.90)	(28.73-32.54)	(2.56-2.97)	(2.25
Yes	9.08	97.10	10.62	5.97	13.82	32.52	2.30	1
	(5.66-12.51)	(77.97-116.23)	(6.95-16.24)	(3.72-9.57) ^c	(12.40-15.23)	(28.46-36.58)	(1.95-2.70)	(1.64
			Interaction	: p= 0.4354			Interaction	i: p= 0.2
COPD								
No	8.72	108.70	12.28	10.62	10.21	29.59	2.79	2.4
	(7.53-9.91)	(98.33-119.07)	(10.41-14.50)	(8.56-13.16) ^c	(9.79-10.63)	(27.62-31.56)	(2.57-3.02)	(2.27
Yes	14.27	128.85	9.00	5.50	13.77	34.86	2.41	2
	(11.10-17.43)	(111.08-146.02)	(6.94-11.68)	(4.10-7.40) ^c	(12.70-14.84)	(31.31-38.41)	(2.12-2.75)	(1.81-
			Interaction	: p= 0.0033			Interaction	n: p= 0.1
Number of								
Comorbidities								
0	5.88	99.30	16.68	8.61	7.48	24.63	3.28	3
	(4.56-7.19)	(80.40-118.21)	(12.45-22.35)	$(6.24-11.87)^{d}$	(7.01-7.96)	(21.32-27.94)	(2.82-3.82)	(2.83-
1	9.60	104.64	10.77	7.93	11.76	28.61	2.39	2
				23				

	(7.19-12.00)	(85.26-124.02)	(7.90-14.70)	$(5.74-10.95)^{d}$	(10.87-12.65)	(24.94-32.27)	(2.06-2.77)	$(2.17-2.98)^{d}$
≥ 2	15.08	122.57	8.07	7.83	15.28	34.21	2.16	2.08
	(12.65-17.52)	(110.65-134.5)	(6.69-9.74)	$(6.26-9.80)^{d}$	(14.43-16.12)	(31.83-36.60)	(1.98-2.36)	$(1.89-2.29)^{d}$
		$\mathbf{\wedge}$	Interaction	: p= 0.0743			Interaction	:: p<0.0001

^aID= incidence density, CI=confidence interval

^bBased on Poisson assumption

^cBased on Cox proportional hazard regression with competing risk analysis and adjusted for age, sex, insurance premium, urbanization status, geographic area, occupational status, status of hypertension, diabetes, CAD, stroke, hyperlipidemia, COPD, and number of medical visits. ^dBased on Cox proportional hazard regression with competing risk analysis and adjusted for all variables, except for comorbidities.

review only

* P<0.05

Figure 1 Comparison of Kaplan-Meier failure estimates of dementia onset between the two groups. PD, Parkinson's disease.

59x34mm (300 x 300 DPI)

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item	Page	
	NO	No	Recommendation
Title and abstract	1	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract
		2	(b) Provide in the abstract an informative and balanced summary of what
			was done and what was found
		In	traduction
Background/rationale	2	4	Explain the scientific background and rationale for the investigation being
			reported
Objectives	3	4	State specific objectives, including any prespecified hypotheses
•		М	ethods
Study design	4	5	Present key elements of study design early in the paper
Setting	5	5	Describe the setting, locations, and relevant dates, including periods of
6			recruitment, exposure, follow-up, and data collection
Participants	6	5-6	(a) Cohort study—Give the eligibility criteria, and the sources and methods
1			of selection of participants. Describe methods of follow-up
			<i>Case-control study</i> —Give the eligibility criteria and the sources and
			methods of case ascertainment and control selection. Give the rationale for
			the choice of cases and controls
			Cross sectional study Give the eligibility criteria and the sources and
			mathada af salaatian af participanta
		6	(b) Cohort study—For matched studies, give matching criteria and number
			of exposed and unexposed
			Case-control study—For matched studies, give matching criteria and the
			number of controls per case
Variables	7	6-7	Clearly define all outcomes, exposures, predictors, potential confounders,
			and effect modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	5-7	For each variable of interest, give sources of data and details of methods of
measurement			assessment (measurement). Describe comparability of assessment methods if
			there is more than one group
Bias	9	6	Describe any efforts to address potential sources of bias
Study size	10	5-6	Explain how the study size was arrived at
Quantitative variables	11	7	Explain how quantitative variables were handled in the analyses. If
			applicable, describe which groupings were chosen and why
Statistical methods	12	7	(a) Describe all statistical methods, including those used to control for
			confounding
		7	(b) Describe any methods used to examine subgroups and interactions
		-	(c) Explain how missing data were addressed
		-	(d) Cohort study—If applicable, explain how loss to follow-up was
			addressed
			<i>Case-control study</i> —If applicable, explain how matching of cases and
			controls was addressed
			Cross-sectional study—If applicable, describe analytical methods taking
			account of sampling strategy
		_	(e) Describe any sensitivity analyses
			(c) Deserve any sensitivity analyses

For peer review only - http://bmjopen!bmj.com/site/about/guidelines.xhtml

Participants	13*	5-6	(a) Report numbers of individuals at each stage of study—eg numbers potentially
i unicipants	15	5.0	eligible examined for eligibility confirmed eligible included in the study completing
			follow-up, and analysed
		-	(b) Give reasons for non-participation at each stage
		-	(c) Consider use of a flow diagram
Descriptive	14*	8	(a) Give characteristics of study participants (eg demographic, clinical, social) and
data			information on exposures and potential confounders
		18-	(b) Indicate number of participants with missing data for each variable of interest
		19	
		8	(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	8-9	Cohort study—Report numbers of outcome events or summary measures over time
		-	Case-control study—Report numbers in each exposure category, or summary measures
			of exposure
		-	Cross-sectional study—Report numbers of outcome events or summary measures
Main results	16	8-9	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
			their precision (eg, 95% confidence interval). Make clear which confounders were
			adjusted for and why they were included
		8-9	(b) Report category boundaries when continuous variables were categorized
		8-9	(c) If relevant, consider translating estimates of relative risk into absolute risk for a
			meaningful time period
Other analyses	17	8-9	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
			analyses
		D	iscussion
Key results	18	9	Summarise key results with reference to study objectives
Limitations	19	13	Discuss limitations of the study, taking into account sources of potential bias or
			imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	9-	Give a cautious overall interpretation of results considering objectives, limitations,
		14	multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	9-	Discuss the generalisability (external validity) of the study results
		14	
		0	ther information
Funding	22	14	Give the source of funding and the role of the funders for the present study and, if
			applicable, for the original study on which the present article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Risk of Dementia after Parkinson's Disease in Taiwan: A Population-based Retrospective Cohort Study Using National Health Insurance Claims

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025274.R1
Article Type:	Research
Date Submitted by the Author:	17-Oct-2018
Complete List of Authors:	Liu, Chih-Ching; National Cheng Kung University, College of Medicine, Department of Public Health Sun, Yu; En Chu Kong Hospital, Department of Neurology Lee, Pei-Chen; National Taipei University of Nursing and Health Sciences, Department of Health Care Management Li, Chung-Yi; National Cheng Kung University, College of Medicine, Department of Public Health Hu, Susan; National Cheng Kung University, College of Medicine, Department of Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Neurology, Public health
Keywords:	retrospective cohort study, Parkinson's disease, Dementia < NEUROLOGY, competing risk, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

1		
2 3	1	Risk of Dementia after Parkinson's Disease in Taiwan: A Population-based Retrospective
4 5	2	Cohort Study Using National Health Insurance Claims
6 7	2	
8	5	
9 10	4	Chih-Ching Liu, MSc ^a , Yu Sun, MD, PhD ^b , Pei-Chen Lee, PhD ^c ,
11 12 13	5	Chung-Yi Li, PhD ^{a,d} , Susan C. Hu, PhD ^{a*}
13 14 15	6	
16 17	7	^a Department of Public Health, College of Medicine, National Cheng Kung University, Tainan,
18 19	8	Taiwan
20 21 22	9	^b Department of Neurology, En Chu Kong Hospital, Sanxia District, New Taipei City, Taiwan
22 23 24	10	^c Department of Health Care Management, National Taipei University of Nursing and Health
25 26	11	Sciences, Taipei, Taiwan
27 28	12	^d Department of Public Health, College of Public Health, China Medical University, Taichung,
29 30 31	13	Taiwan
32 33	14	*Chung-Yi Li and Susan C. Hu contributed equally to this article.
34 35	15	
36 37	16	Running title: Risk of Dementia after Parkinson's disease
38 39 40	17	Word count: text 4399
41 42	18	
43 44	19	Correspondence address:
45 46	20	Dr. Susan C. Hu
47 48 40	21	Department of Public Health, College of Medicine, National Cheng Kung University
49 50 51	22	Tel.: 886-6-2353535 ext. 5599, Fax: 886-6-2359033
52 53	23	E-mail: shuhu@mail.ncku.edu.tw
54 55 56 57 58	24	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	1	Abstract
3 4	2	
5 6	3	Objectives: A nationwide cohort study on the risk of dementia onset after first diagnosis of
7 8 0	4	Parkinson's disease (PD) is lacking. This study aims to assess 11 years of incidence and the hazard
9 10 11	5	ratios for developing dementia in patients with PD compared with matched controls.
12 13	6	Design: A population-based cohort study.
14 15	7	Setting: National Health Insurance database in Taiwan.
16 17	8	Participants: A total of 5,932 patients with PD were identified, and 29,645 age-, sex-, and index
18 19 20	9	year-matched PD-free individuals were randomly selected.
21 22	10	Intervention: None
23 24	11	Outcome measures: All subjects were linked to the claim data to identify the first diagnosis of
25 26 27	12	dementia. The Poisson assumption was used to estimate the incidence rate. Cause-specific hazards
27 28 29	13	models with a partitioning of time at 1 year to account for proportionality were used to estimate
30 31	14	the risk of dementia onset.
32 33	15	Results: The median duration from the first diagnosis of PD to the development of dementia was
34 35 26	16	9.02 years. In the first partition (≤ 1 years), the incidence of dementia in the PD and control groups
37 38	17	was 114.49 and 9.76 per 1,000 person-years, respectively, with an adjusted hazard ratio of 6.43
39 40	18	(95%CI 5.46-7.57). In the second partition (>1 year), the incidence of dementia in the PD and
41 42	19	control groups was 30.99 and 10.83 per 1,000 person-years, with an adjusted hazard ratio of 2.42
43 44 45	20	(95%CI 2.23-2.61). Notably, in the second partition, both men and women aged<70 had the highest
46 47	21	hazard ratio (3.82, 95%CI 2.79-5.22 and 4.27, 95%CI 3.25-5.63, respectively).
48 49	22	Conclusions: The risk of dementia in PD subjects was higher in men in the first partition, but it
50 51	23	was similar in both genders in the second partition. The increased risk was highest in subjects aged
52 53 54	24	<70 years in the case of both men and women at any given partition time.
55 56	25	Keywords: epidemiology, retrospective cohort study, Parkinson's disease, dementia, competing
57 58 59	26	risk

1 2	1	Art	ticle Summary
3 4	2	-	
5 6 7	3	Str	engths and limitations of this study
7 8 9	4	•	The study strengths include the fact that it is a nationwide, retrospective cohort design for 11
10 11	5		years with more accurate estimates of the incidence rates of dementia by using the first
12 13	6		diagnosed PD cases rather than the prevalent cases as study subjects.
14 15 16	7	•	A multivariate Cox proportional hazard regression with a competing risk analysis was used to
17 18	8		control the confounding bias and account for the competing risk of death.
19 20	9	•	We were unable to consider a comprehensive list of potential confounders, such as smoking,
21 22 23	10		educational level, physical function, and genes in the analysis because of the limited
23 24 25	11		information available from the claims data.
26 27	12	•	Another limitation is the lack of clinical symptoms and subtypes of dementia.
28 29	13		
30 31 32			
32 33 34			
35 36			
37 38			
39 40			
41 42 42			
43 44 45			
46 47			
48 49			
50 51			
52			
55 54			
55 56			
57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

INTRODUCTION

Dementia, a symptom of cognitive disturbances, can be potentially disabling and can also
related to increased mortality rates and costs^{1 2}. Thus, information about which patients will
eventually develop dementia is an important issue in public health and clinical practice³.

Parkinson's disease (PD) has been associated with developing cognitive impairments⁴. However, most previous studies on the association between PD and dementia risk were conducted in western countries⁵⁻¹⁹, and information for Asian PD populations is lacking. Moreover, to identify robust hazard ratios (HRs) of dementia in PD requires a large sample size cohort and a sufficiently long follow-up time to observe the development of symptoms of dementia in incident cases of PD. To the best of our knowledge, there has been no whole population-based nationwide cohort study on this topic⁵⁻²³, and only few cohort studies have involved incident cases of PD to investigate the frequency of dementia with a follow-up period of more than 10 years. The Sydney Multicentre Study of PD followed 136 newly diagnosed PD patients more than 20 years and reported that 83% of the 30 survivors developed dementia. However, only PD cases who received low-dose levodopa or low-dose bromocriptine were included in this study, which may not represent PD within the population as a whole¹⁹. The CamPaIGN study followed 121 newly diagnosed PD cases for 10 years, of which 41 PD cases developed dementia. This study estimated dementia incidence in PD subjects was 54.7 per 1,000 person-years (95% CI 35.4 to 74.1), which was 2.6-fold higher than that in an age- and geographically- matched population. However, this study also only included only a few newly diagnosed PD cases $(n=121)^9$.

Moreover, many studies have included prevalent PD cases at varying disease stages to investigate the risk of dementia, which may have caused survival bias^{6-8 10 12-15 17 18 20 22 23}. For example, the Rotterdam study recruited 72 prevalent and 67 incident PD cases with only an overall mean follow-up time of 6.9 years and found a positive association between PD and dementia incidence¹⁴. In Taiwan, the only population-based study with a case-control design also showed a

BMJ Open

positive association between PD and the risk of dementia²². However, potential survival bias resulting from recruitment of prevalent PD cases at various disease stages may have been present in these studies.

Some studies have reported that older age^{5-10 13 15 20 23} and male gender⁵ are related to increased dementia risk in PD; however, information regarding the age- and sex- stratified dementia incidence rate in PD is scant. In addition, many PD patients have medical comorbidities such as stroke, hypertension, diabetes mellitus, hyperlipidemia, and coronary heart disease, which may have modification effects on the relationship between dementia and PD^{7 16 17 22}. However, little research has examined medical comorbidities as a potential confounding factor that should be controlled for^{7 22 23}. Moreover, because of the increased age and co-morbidities in a long-term follow-up study, competing risk of death should be considered. However, none of studies on this topic has considered death as a competing risk^{6-21 23}, which may induce potential attrition bias and tend to distort the study results.

Given the abovementioned methodological problems and limited information on this topic, the association between PD and the risk of dementia needs to be further explored. Therefore, in this study, a nationwide population-based cohort study was conducted to estimate 11 years of incidence and the hazard ratios for development of dementia in patients with first-diagnosed PD by age and sex and by comorbidities (i.e., hypertension, diabetes, coronary artery disease (CAD), stroke, hyperlipidemia, and chronic obstructive pulmonary disease (COPD)), after accounting for the competing risk of death.

METHODS

Data Source

The dataset was from ambulatory care claims, inpatient claims, and the updated registry for beneficiaries retrieved from Taiwan's National Health Insurance Research Database (NHIRD), as

provided by the National Health Insurance Administration (NHIA), Ministry of Health and Welfare, Taiwan. A universal National Health Insurance (NHI) program has been implemented in Taiwan since 1995, and more than 99% of Taiwan residents enrolled in the NHI program after 2000. The National Health Insurance Administration has contracted with 92.5% of the hospitals and clinics in Taiwan²⁴. The NHIA performs quarterly expert reviews on a random sample of every 50-100 ambulatory and inpatient claims in each hospital and clinic to ensure the accuracy of the claims data²⁴. False reports of diagnoses result in a severe penalty from the NHIA. Therefore, information obtained from the NHIRD is considered to be complete and accurate. The NHI datasets have been used in many published epidemiologic studies on PD^{25 26} and dementia²⁷. Access to the NHIRD was approved by the National Health Research Institutes Review Committee.

11 Patient and public involvement

We conducted this study by using the National Health Insurance Research Database. No patients or members of the public were involved in the development of the research question and outcome measures. Also, no patients or members of the public were involved in setting out the design of this study, nor were they involved in the recruitment of and conducting of the study. The study results were not disseminated to the study subjects.

17 Study design, Cohorts and Covariates

This was a retrospective cohort study from 2002-2012. We selected 5,932 eligible PD patients between 2002 and 2003 from a previous study for which sample selection details were discussed previously²⁸. In brief, the PD cohort in this study included all cases with at least 3 medical claims (either outpatient or inpatient care) with a diagnostic code of PD (ICD-9-CM: 332.0) who had received 3 or more courses of anti-Parkinsonism medications, including L-dopa or dopamine agonist prescriptions after a first-time diagnosis between 2002 and 2003. Moreover, the first and last outpatient or inpatient visits and anti-Parkinsonism medication records were separated by at least 90 days to avoid accidental inclusion of miscoded patients.
Page 7 of 32

BMJ Open

We further made the following exclusions to ensure the validity of the PD diagnosis: (1) an age on the index date of less than 40 years, who are more likely to have a genetic etiology; (2) a diagnostic code of secondary Parkinsonism (ICD-9-CM code: 332.1) during the study period; (3) receipt of any neuroleptic medication 180 days prior to the index date, and (4) 3 or more medical claims (either ambulatory or inpatient care) with diagnostic codes of dementia prior to the index date. The first date of initial diagnosis of PD in the period of 2002 to 2003 was set as the index date.

We previously conducted a pilot study to validate the accuracy of the ICD-9 coding in PD patients²⁸. In the validation study, medical records including symptoms/signs, diagnostic procedures, use of anti-parkinsonism medication, as well as response to medication of 290 randomly selected patients with ICD-9-CM coded 332.0 were examined in detail by three experienced neurologists from January 2012 to October 2012. Among these 290 cases, 245 were confirmed as PD patients based on the aforementioned clinical information. The sensitivity, specificity, positive predictive value, and negative predictive value were 97.6%, 92.3%, 98.8% and 85.7%, respectively. The accuracy of our method for identifying PD cases was 96.9%. Moreover, cases in this study were not only ascertained using the ICD code but also required having been prescribed at least 3 courses of anti-parkinsonism medication including L-dopa or a dopamine agonist to minimize the possibility of miscoding.

19 The control subjects were selected from those who had not been diagnosed with PD or treated 20 with any anti-PD medications during the entire study period and met the same exclusion criteria as 21 those set for the patients with PD. These control subjects were matched by age (each 5-year span), 22 sex, and year of index date for patients with PD at a 5:1 ratio. As a result, 29,645 control subjects 23 were identified. For the control groups, the index date was either January 1, 2002 or January 1, 2003.

Baseline comorbidities that may be associated with an increased risk of dementia were

identified for the PD and control groups. These comorbidities included hypertension, diabetes, CAD, stroke, hyperlipidemia, and COPD observed before the index date. The comorbidity score observed before the index date was calculated using the Charlson Comorbidity Index, a weighted summery measure of common comorbid conditions adopted for use with ICD-9-CM coded administrative databases²⁹⁻³¹. Information on the geographic area, urbanization level, occupational status, and salary-based insurance premium at the index date was also obtained from the registry for beneficiaries. The number of medical visits within one year after the index date was adjusted to decrease the potential presence of surveillance bias because subjects with PD visit clinics more frequently and thus may have more opportunities to be diagnosed as having dementia.

10 End point and Statistical analysis

The main outcome variable was the initial occurrence of dementia (ICD-9-CM code: 290, 294.1, 331.0, and 331.82). A Taiwanese study reported that the diagnostic accuracy of dementia is approximately 90% when relying on diagnosis codes (ICD-9-CM) to identify dementia²⁷. To increase the validity of dementia identification, only dementia cases diagnosed with ≥ 3 ambulatory visits or ≥ 1 hospitalization were included in this study. We did not distinguish the subtypes of dementia because of data limitations due to a lack of information regarding symptoms/signs, lab data, and image findings, and further outcome analyses with dementia subtype classifications, such as dementia with Lewy bodies (DLB), Alzheimer's dementia, frontotemporal dementia, or just Parkinson's disease dementia (PDD), were not performed. However, according to the criteria set forth by the consensus report of the Lewy Body Consortium³², clinicians and researchers use the "1-year rule" to help verify the diagnoses of DLB and PDD. Thus, we analyzed the dementia incidence within and after one year of PD diagnosis, respectively.

We followed the study subjects from the index date to the first diagnosis of dementia,
withdrawal from the NHI, or December 31, 2012, whichever came first. The incidence density of
dementia was calculated using an age- and sex- specific and comorbidity-specific stratified analysis

Page 9 of 32

BMJ Open

based on the Poisson assumption. The cumulative events and rates of dementia according to the PD status over the study period were calculated using a Kaplan-Meier analysis, and the log-rank test was used to test the between-group differences.

Since death is the competing risk of dementia occurrence in this long-term follow-up study, analytical approaches used in competing risk settings must be used to assess the association between PD and the risk of dementia. Cause-specific hazards models, one of the most common analytical methods used in competing risk settings, are better suited for studying the etiology of diseases³³. The cause-specific hazard is the instantaneous risk of dying from a particular cause k given that the subject is still alive at time t^{34} . Thus, in this study, a Cox proportional hazard regression with competing risk models, according to cause-specific hazards models, was performed to assess the hazard ratio (HR) of dementia in relation to PD.

In addition, we performed a sex- and age- stratified analysis and a comorbidity-stratified analysis to examine the potential effect-modifications by age, sex, and comorbidity on the association between PD and the risk of dementia. Plots of log (-log(survival function)) vs. log(time) were drawn to test for violations of the proportional-hazards assumption. Therefore, separate timepartitioned models were created, and the hazards within each partition were assessed. Proportionality was held for the new models partitioned at 1 year. If we modeled the hazards for ≤ 1 year (i.e., the first time partition), the censoring day for subsequent events was 1 year. If we modeled the hazards for >1 year (i.e., the second time partition), subjects with earlier events were included and considered to be censors (because the exclusion of these subjects may lead to a survival bias). A p<0.05 was considered significant.

RESULTS

Gender, age, geographic area, and urbanization levels were similar in both groups. The prevalence rates of the risk factors for dementia were high in patients with PD. The PD cohort had

fewer white-collar workers (25.0% vs. 31.2%, p<0.0001), a higher prevalence of dependence
(39.9% vs. 33.8%, p<0.0001), a lower insurance premium (percentage with none or a lower than
median insurance premium: 69.5 vs. 60.0, p<0.0001), a higher Charlson's score (percentage with
score of 1 to ≥ 2 : 52.1% vs. 25.4%, p<0.0001), and a higher frequency of medical visits (39.6 vs.
21.9 per year, p<0.0001) than the control group (Table 1).

Figure 1 shows the cumulative incidence of dementia in patients with and without PD. The
cumulative incidence of dementia for PD was significantly higher than the corresponding data
observed in the non-PD group (log-rank test, *p*<0.0001).

9 Among the total of 5,932 first diagnosed PD cases, only 492 of these cases (8.3%) were 10 derived from inpatient records. The adjusted hazard ratios of dementia either in the overall PD 11 cases or in the PD cases only enrolled in an outpatient group were significantly higher than those 12 in the control group without PD. The median duration from the overall first diagnosis of PD to the 13 development of dementia was 9.02 years.

During the 11 years of follow-up, a total of 1,836 PD patients developed dementia, and 1,226 PD patients died without developing dementia. In the same period, a total of 3,159 control subjects developed dementia, and 5,223 control subjects died without developing dementia. In the period within 1 year after the index date (i.e., the first time partition), a total of 5,932 PD subjects encountered 624 medical episodes due to first diagnosed dementia in the 5,450.09 person-years observed, representing incidence densities of dementia of 114.49 per 1,000 person-years. In the same period, a total of 29.645 PD subjects encountered 285 medical episodes due to first diagnosed dementia in 29,208.39 person-years observed, representing incidence densities of dementia of 9.76 per 1,000 person-years. Noticeably, the incidence density of dementia increased with age irrespective of PD status and sex, and the highest incidence was observed in those aged ≥ 80 years. The adjusted HR of dementia in relation to PD was significantly increased at 6.43 (95%CI 5.46-7.57) and was higher in men than in women (HR: 7.18, 95%CI 5.73-9.01 vs. 5.54, 95%CI 4.39-

BMJ Open

6.99). In addition, there was a significant interaction of PD with age on the risk of dementia for
 both men (*p*=0.0149) and women (*p*<0.0001) (Table 2).

In the years following the PD diagnosis (i.e., the second time partition), the overall incidence density of dementia was much lower (Table 2). The change in incidence density between the first and the second partition was more pronounced in the PD group (from 114.49 to 30.99 per 1,000 person-years) than in the control group (from 9.76 to 10.83 per 1,000 person-years). The age- and sex- specific incidence densities had a similar pattern in terms of change. However, no significant difference in the sex-specific HRs of dementia was observed (p=0.2267). There was a significant interaction of PD status with age (p < 0.0001) in both sexes. Age- and sex-specific HRs showed the highest HR to be in PD females aged <70 years (HR: 4.27; 95% CI 3.25-5.63).

Impact of PD on the risk of dementia by comorbidity is shown in Table 3. Irrespective of the various time partitions, the incidence of dementia increased with the number of comorbidities in both groups. The PD group had the highest risk of dementia across various medical comorbidity stratifications or Charlson's scores after adjusting for baseline characteristics. In the first time partition, the interaction of PD with hypertension (p=0.0058), CAD (p=0.0196), stroke (p<0.0001), and COPD (p=0.0400) on the risk of dementia also was statistically significant, indicating that subjects without hypertension, CAD, stroke, and COPD had a higher adjusted HR for dementia. However, although the adjusted HR for dementia was also higher in subjects without diabetes and hyperlipidemia than in those with medical comorbidities, there was no statistically significant modification effect by diabetes and hyperlipidemia on the association between PD and the risk of dementia. In terms of the Charlson's scores, subjects with scores of 0 had a higher adjusted HR for dementia than those with scores of 1 and ≥ 2 . The interactions were significant for PD with Charlson's score (p=0.0003) on the risk of dementia.

In the second time partition, effect-modification by hypertension (*p*<0.0001), CAD (*p*=0.0048)
and stroke (*p*<0.0001) was statistically significant for dementia, indicating that subjects without

those medical comorbidities had a higher adjusted HR for dementia. Among diabetes, hyperlipidemia, or COPD patients, adjusted HR for dementia also showed a statistically significant high risk from 2.02 (95% CI=1.68–2.43) to 2.21 (95% CI=1.89–2.59), but no significant modification effect was found for those with medical comorbidities on the association between PD and the risk of dementia. In terms of the Charlson's scores, subjects with scores of 0 had a higher adjusted HR for dementia than those with scores of 1 and \geq 2. Also, a significant modification effect of Charlson's scores on the association between PD and the risk of dementia (*p*=0.0059) was found. Regardless of whether medical comorbidities existed or not, the HRs for dementia were greater in the first time partition but were smaller in the second time partition.

DISCUSSION

To the best of our knowledge, this is the first nationwide population-based cohort study to demonstrate that patients with the first diagnosis of PD are associated with increased risk of dementia compared with non-PD patients. However, our study showed a sharply increased hazard of dementia within 1 year after the first diagnosis of PD, which is clinically and biologically unbelievable; this situation is probably because a large proportion of patients with dementia remain undiagnosed before the index date of their first clinical visit for PD.

In other words, many patients with pre-existing cognitive impairment and PD were classed as new PD cases because their condition had deteriorated and had only been recognized because they had been referred for an expert opinion. This is also supported by the decline in the number of PD patients with dementia in the subsequent period of observation. In this study, we found that the overall risk of dementia onset increased nearly twofold in up to 11 years (adjusted HR 2.42, 95%CI 2.23-2.61) among those who survived at least 1 year and had an initial PD diagnosis thereafter. The magnitude of this association varied according to different age and sex stratifications. In general, the risk of dementia was higher in men in the first partition but was similar in both sexes

2

BMJ Open

1	
-	
د د	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	
60	

in the second partition. However, the increased risk was highest in both male and female
participants aged <70 years in any given partition time. The study results can provide physicians
and patients with valuable information and also demonstrate the need for guidelines for detection
of dementia risk after the initial diagnosis of PD.

5 Our study shows that a reasonably increased hazard of dementia more than one year after 6 diagnosis of PD is more likely to be real and may suggest evidence of the mechanisms supported 7 by the Braak pathology staging hypothesis^{35 36}. Our findings were similar to another population-8 based case control study in Taiwan²², which showed the risk of developing dementia in prevalent 9 Parkinsonism was highest in the first 6 months (AOR:11.98, 95%CI:8.51-16.68) and then became 10 lower in the following months to years after diagnosis.

Age is known to be a risk factor for dementia not only in the general population^{37 38} but also in the PD patient population^{5-10 13 15 20 23}. This may be caused by aging of non-dopaminergic structures (i.e., the locus ceruleus and pedunculopontine nucleus)³⁹. However, a modifying effect of age on the risk of dementia after PD may be present in our study. For example, we found that patients with PD had a significantly higher overall risk of dementia than those in the control group, particularly in subjects aged < 70 years. This result is similar to the findings of some prior studies¹³ 17

Male gender is sometimes identified as a risk factor for dementia in PD⁵; however, there is no clear explanation for this finding. In our study, we found no significant role of gender in the firstdiagnosed PD patients one year later. Accordingly, patients with PD, especially younger patients in both sexes, could be selected in future studies as a target population to evaluate whether interventions are effective in decreasing the risk of dementia after diagnosis of PD.

Our study also shows that the overall risk of dementia was more than double (adjusted HR
2.42) among subjects with first-diagnosed PD 1 year later for up to 11 years. After accounting for
the competing risk of death and adjustment for the number of medical visits, the findings were

similar to those of Perez et al., who reported a higher hazard ratio of incident dementia (2.47, 95%CI 1.55-3.59) in patients with PD as compared to non-PD subjects¹¹. However, other cohort studies have shown a hazard ratio ranging from 1.7 (95%CI 1.1–2.7) to 5.9 (95%CI 3.9–9.1) for incident dementia in PD groups compared with the general population^{9 10 12-15 18}, which is different from our findings. Noticeably, most previous studies were limited by a relatively small sample size^{6-17 19-21 23}, shorter follow-up time^{6-8 10 12-18 20}, the lack of a matched control^{6-8 16 17 19-21 23}, failure to account for the competing risk of death^{6-21 23}, or a lack of adjustment for the number of medical visits to control for surveillance bias^{9-15 18}, rendering the risk that the estimates were more likely to be imprecise and biased.

We found the incidence of dementia increased with the number of comorbidities, including hypertension, diabetes mellitus, CAD, stroke, hyperlipidemia, and COPD. However, of the patients with PD in our study, PD alone also had more positive effects on the risk of dementia in most circumstances although effect modifiers such as hypertension, diabetes, stroke, CAD, hyperlipidemia, and COPD had positive effects on increasing the risk of dementia. Prior studies regarding the relationship between patients with PD and these comorbidities remain controversial⁷ ¹⁶ ¹⁷ ²². For example, although a study in Taiwan demonstrated that patients with PD with cerebrovascular or cardiovascular comorbidities had a lower risk of dementia onset than patients with PD alone²², which is similar our findings, other studies have failed to find this relationship¹⁶ ¹⁷. In addition, some previous studies have shown that PD with cardiovascular dysautonomia (such as hypertension, diabetes mellitus, and CAD) and COPD might cause substantial cerebral hypoperfusion and hypoxia, respectively⁴⁰⁻⁴². Hypoxia and hypotension in the brain might cause neuronal damage and increase accumulation of pathologic proteins such as β-amyloid, which result in increased risk of dementia onset⁴⁰⁴¹. Therefore, future perspective studies focusing on the causal relationship between such comorbidities and the risk of dementia in PD are warranted.

There were several strengths in our study. First, we obtained a large, nationwide number of

Page 15 of 32

BMJ Open

participants by using NHIR datasets, which made it possible to reduce selection bias, to obtain higher statistical power, to obtain a highly representative study population, to have a lower rate of nonresponse or loss to follow-up, and to facilitate the age-, sex- and comorbidities-stratified analyses with an ample simple size to satisfy requirements. To the best of our knowledge, this study is the first to report the age- and sex- specific incidence rates of dementia in a PD group. Secondly, we conducted a longitudinal and retrospective cohort study for 11 years, which is a longer time during which to observe the development of dementia than that in many other prior studies^{6-8 10 12-} ¹⁸ ²⁰. Thirdly, more accurate estimates for the incidence rates of dementia in the PD group are available in this study due to the usage of the first diagnosed PD cases rather than the prevalent PD cases, as this might reduce the variations in the incidence of dementia across various PD durations. Fourth, a multivariate Cox proportional hazard regression with a competing risk analysis was used to control for the confounding bias and to account for the competing risk of death.

Still, our study had some limitations. Firstly, we solely selected our PD cases according to physician-recorded diagnosis and prescriptions reported in medical claims, which might have led to potential disease misclassification. To avoid accidental inclusion of miscoded patients, we managed to solely include PD patients who had at least three ambulatory or inpatient visits with PD diagnosis and prescriptions with the first and last visits more than 90 days apart during the study period, which would largely decrease the likelihood of disease misclassification. Similarly, because we selected patients with dementia only by using NHIR datasets, potential disease misclassification may be present. To address this concern, we only included dementia cases diagnosed with ≥ 3 ambulatory visits or ≥ 1 hospitalization in this study to increase the validity of dementia identification.

Also, because patients with PD may utilize the health care system more often than control
groups, surveillance bias may be present. To address this concern, we calculated the number of
medical visits for 1 year after the index date and adjusted for this in the multivariate regression

model. Secondly, the severity of dementia is not available in the database, and we could not distinguish subtypes of dementia in our datasets. Therefore, it is essential for patients with PD, particularly in high risk groups such as subjects aged <70 years, to have regular cognitive assessments including combinations of neuropsychological markers throughout the early disease stages, which not only will provide benefits for identification of the subtypes in dementia but will also decrease underestimation of risk for dementia in PD.

Thirdly, due to the limited information available from the claims data, we were unable to consider a comprehensive list of potential confounders such as smoking, educational level, physical function, and genes in the analysis, which may have resulted in residual confounding bias. To reduce such bias, we used COPD and occupational status as surrogates for smoking and educational level, respectively. Fourthly, the disease symptoms of PD cases at different disease stages may play a role, to some extent, in the relationship between PD and the risk of dementia. Because information on the disease symptoms is unavailable from the NHI data, we have left this area (such as non-motor symptoms) for further investigations.

In conclusion, it was found that PD confers a higher risk of dementia than is the case for nonPD patients, especially in those aged <70 years in both sexes. Regular monitoring for the</p>
development of dementia in patients with PD in a long-time follow-up, particularly risk groups, is
recommended. Future research should include further evaluation of the underlying mechanism and
subtypes for dementia development after diagnosis of PD.

Acknowledgements: We thank the Bureau of National Health Insurance in the Ministry of Health and Welfare and the National Health Research Institutes for providing the National Health Insurance Research Database used in this study. The interpretation and conclusions contained herein do not represent those of the Bureau of National Health Insurance, Ministry of Health and Welfare, or National Health Research Institutes.

1		
2 3	1	Author contributions: Chih-Ching Liu analyzed the data and wrote the draft of the manuscript.
4 5	2	Yu Sun and Pei-Chen Lee provided further data analyses and interpretation. Chung-Yi Li and
6 7 8	3	Susan C. Hu advised the study and revised the manuscript. All authors have approved the final
9 10	4	version of the manuscript.
11 12	5	Funding: This study was supported by a grant from Taiwan Ministry of Science and Technology
13 14	6	(MOST 106-2314-B-227-010).
15 16 17	7	Disclaimer: The funder had no role in study design, data collection and analysis, and the
17 18 19	8	preparation of the manuscript.
20 21	9	Competing interests: None.
22 23	10	Patient consent: Not required.
24 25 26	11	Ethics approval: A full review by the institutional review board was not required because the
20 27 28	12	encryption of the identification numbers makes it impossible to identify individuals. Access to the
29 30	13	National Health Insurance Research Database datasets is approved by the National Health Research
31 32	14	Institutes Review Committee.
33 34 35	15	Provenance and peer review: Not commissioned; externally peer reviewed.
36 37	16	Data sharing statement: We, as the authors of this original research article, state that there is no
38 39	17	additional, unpublished data available from this study. Raw data sharing from National Health
40 41	18	Insurance Research Database is prohibited according to the National Health Research Institutes
42 43 44	19	(NHRI) policies in Taiwan.
45 46		
47 48		
49		
50 51		
52		
53 54		
55		
56		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2 3	1	REFE	CRENCES
4	2	1.	World Health Organization. Dementia: a public health priority. 2012 [cited 2018 April
5 6	3		2]. http://www.who.int/mental_health/publications/dementia_report_2012/en/
7	4	2.	Alzheimer's Disease International. World Alzheimer Report 2015: The Global Impact of
8 0	5		Dementia. 2015 [cited 2018 April 1]. <u>https://www.alz.co.uk/research/world-report-</u>
) 10	6		<u>2015</u>
11 12	7	3.	Russell A, Drozdova A, Wang W, et al. The impact of dementia development concurrent
13	8		with Parkinson's disease: a new perspective. CNS Neurol Disord Drug Targets
14 15	9		2014;13:1160-8.
16	10	4.	Kalia LV, Lang AE. Parkinson's disease. <i>Lancet</i> 2015;386:896-912.
17 18	11	5.	Xu Y, Yang J, Shang H. Meta-analysis of risk factors for Parkinson's disease dementia.
19	12		Transl Neurodegener 2016;5:11.
20 21	13	6.	Domellof ME, Ekman U, Forsgren L, et al. Cognitive function in the early phase of
22	14		Parkinson's disease, a five-year follow-up. Acta Neurol Scand 2015;132:79-88.
23 24	15	7.	Anang JB, Gagnon JF, Bertrand JA, et al. Predictors of dementia in Parkinson disease: a
25	16		prospective cohort study. <i>Neurology</i> 2014;83:1253-60.
26 27	17	8.	Zhu K, van Hilten JJ, Marinus J. Predictors of dementia in Parkinson's disease; findings
28	18		from a 5-year prospective study using the SCOPA-COG. Parkinsonism Relat Disord
29 30	19		2014;20:980-5.
31	20	9.	Williams-Gray CH, Mason SL, Evans JR, et al. The CamPalGN study of Parkinson's disease:
32 33	21		10-year outlook in an incident population-based cohort. J Neurol Neurosurg Psychiatry
34	22		2013;84:1258-64.
35 36	23	10.	Aarsland D, Andersen K, Larsen JP, et al. Risk of dementia in Parkinson's disease: a
37	24		community-based, prospective study. <i>Neurology</i> 2001;56:730-6.
38 39	25	11.	Perez F, Helmer C, Foubert-Samier A, et al. Risk of dementia in an elderly population of
40	26		Parkinson's disease patients: a 15-year population-based study. Alzheimers Dement
41 42	27		2012;8:463-9.
43	28	12.	Marder K, Tang MX, Cote L, et al. The frequency and associated risk factors for dementia
44 45	29		in patients with Parkinson's disease. Arch Neurol 1995;52:695-701.
46	30	13.	Levy G, Schupf N, Tang MX, et al. Combined effect of age and severity on the risk of
47 48	31		dementia in Parkinson's disease. Ann Neurol 2002;51:722-9.
49	32	14.	de Lau LM, Schipper CM, Hofman A, et al. Prognosis of Parkinson disease: risk of
50 51	33		dementia and mortality: the Rotterdam Study. Arch Neurol 2005;62:1265-9.
52	34	15.	Hobson P, Meara J. Risk and incidence of dementia in a cohort of older subjects with
53 54	35		Parkinson's disease in the United Kingdom. Mov Disord 2004;19:1043-9.
55	36	16.	Haugarvoll K, Aarsland D, Wentzel-Larsen T, et al. The influence of cerebrovascular risk
56 57	37		factors on incident dementia in patients with Parkinson's disease. Acta Neurol Scand
58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 32

1			
2 3	1		2005;112:386-90.
4	2	17.	Levy G, Tang MX, Cote LJ, et al. Do risk factors for Alzheimer's disease predict dementia
5	3		in Parkinson's disease? An exploratory study. Mov Disord 2002;17:250-7.
6 7	4	18.	Breteler MM, de Groot RR, van Romunde LK, et al. Risk of dementia in patients with
8	5		Parkinson's disease, epilepsy, and severe head trauma: a register-based follow-up study.
9 10	6		Am J Epidemiol 1995;142:1300-5.
11	7	19.	Hely MA, Reid WG, Adena MA, et al. The Sydney multicenter study of Parkinson's
12 13	8		disease: the inevitability of dementia at 20 years. Mov Disord 2008;23:837-44.
14	9	20.	Kwon KY, Kang SH, Kim M, et al. Nonmotor Symptoms and Cognitive Decline in de novo
15 16	10		Parkinson's Disease. Can J Neurol Sci 2014;41:597-602.
17	11	21.	Auyeung M, Tsoi TH, Mok V, et al. Ten year survival and outcomes in a prospective
18 19	12		cohort of new onset Chinese Parkinson's disease patients. J Neurol Neurosurg Psychiatry
20	13		2012;83:607-11.
21 22	14	22.	Huang YC, Wu ST, Lin JJ, et al. Prevalence and risk factors of cognitive impairment in
23	15		Parkinson disease: a population-based case-control study in Taiwan. <i>Medicine</i>
24 25	16		(Baltimore) 2015;94:e782.
26	17	23.	Lee SY, Ryu HJ, Seo JW, et al. Dementia-Free Survival and Risk Factors for Dementia in a
27 28	18		Hospital-Based Korean Parkinson's Disease Cohort. J Clin Neurol 2017;13:21-6.
29	19	24.	National Health Insurance Administration. Universal Health Coverage in Taiwan. 2017
30 31	20		[cited 2018 May 8].
32	21		https://www.nhi.gov.tw/English/Content List.aspx?n=8FC0974BBFEFA56D&topn=ED4A
33 34	22		30E51A609E49
35	23	25.	Sun Y, Chang YH, Chen HF, et al. Risk of Parkinson disease onset in patients with
36 37	24		diabetes: a 9-year population-based cohort study with age and sex stratifications.
38	25		Diabetes Care 2012;35:1047-9.
39 40	26	26.	Shen CC, Tsai SJ, Perng CL, et al. Risk of Parkinson disease after depression: a nationwide
41	27		population-based study. <i>Neurology</i> 2013;81:1538-44.
42 43	28	27.	Chiang CJ, Yip PK, Wu SC, et al. Midlife risk factors for subtypes of dementia: a nested
44	29		case-control study in Taiwan. Am J Geriatr Psychiatry 2007;15:762-71.
45 46	30	28.	Liu CC, Li CY, Lee PC, et al. Variations in Incidence and Prevalence of Parkinson's Disease
47	31		in Taiwan: A Population-Based Nationwide Study. Parkinsons Dis 2016;2016:8756359.
48 49	32	29.	Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic
50	33		comorbidity in longitudinal studies: development and validation. J Chronic Dis
51 52	34		1987;40:373-83.
53	35	30.	Charlson M, Szatrowski TP, Peterson J, et al. Validation of a combined comorbidity index.
54 55	36		J Clin Epidemiol 1994;47:1245-51.
56	37	31.	Driver JA, Kurth T, Buring JE, et al. Parkinson disease and risk of mortality: a prospective
57 58			
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2	1		comorbidity-matched cohort study. Neurology 2008;70:1423-30.
3 4	2	32.	McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with
5	3		Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017;89:88-
6 7	4		100.
8	5	33.	Noordzij M, Leffondre K, van Stralen KJ, et al. When do we need competing risks
9 10	6		methods for survival analysis in nephrology? Nephrol Dial Transplant 2013;28:2670-7.
11	7	34.	Prentice RL, Kalbfleisch JD, Peterson AV, Jr., et al. The analysis of failure times in the
12 13	8		presence of competing risks. <i>Biometrics</i> 1978;34:541-54.
14	9	35.	Braak H, Del Tredici K, Bratzke H, et al. Staging of the intracerebral inclusion body
15 16	10		pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages).
17	11		J Neurol 2002;249 Suppl 3:Iii/1-5.
18 19	12	36.	Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic
20	13		Parkinson's disease. Neurobiol Aging 2003;24:197-211.
21 22	14	37.	Matthews FE, Stephan BC, Robinson L, <i>et al</i> . A two decade dementia incidence
23	15		comparison from the Cognitive Function and Ageing Studies I and II. Nat Commun
24 25	16		2016;7:11398.
26	17	38.	Solomon A, Mangialasche F, Richard E, et al. Advances in the prevention of Alzheimer's
27 28	18		disease and dementia. J Intern Med 2014;275:229-50.
29	19	39.	Levy G, Tang MX, Cote LJ, et al. Motor impairment in PD: relationship to incident
30 31	20		dementia and age. <i>Neurology</i> 2000;55:539-44.
32	21	40.	de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to
33 34	22		cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012;2012:367516.
35	23	41.	Liu H, Xing A, Wang X, et al. Regulation of beta-amyloid level in the brain of rats with
30 37	24		cerebrovascular hypoperfusion. Neurobiol Aging 2012;33:826.e31-42.
38	25	42.	Grant I, Heaton RK, McSweeny AJ, et al. Neuropsychologic findings in hypoxemic chronic
39 40	26		obstructive pulmonary disease. Arch Intern Med 1982;142:1470-6.
41 42	27		
42 43	28		
44 45			
45 46			
47 49			
40 49			
50			
52			
53 54			
55			
56 57			
58			
59 60			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml
00			

	PD grou	р	Control g	group	
Variables ^a	n	%	n	%	P value
Age (years)					
<70	1852	31.2	4220	31.2	1.00 ^d
70-74	1314	21.2	6570	21.2	
75-79	1460	24.6	7300	24.6	
≥ 80	1306	22.0	6515	22.0	
Mean (±SD) ^b	72.5±9.4	1	70.8±12.	7	
Sex					1.00 ^d
Male	3116	52.6	15580	52.6	
Female	2813	47.4	14065	47.4	
Insurance premium (NTD) ^b					< 0.000
Dependent	2333	39.9	9721	33.8	
<median (19,200)<="" td=""><td>1734</td><td>29.6</td><td>7753</td><td>26.2</td><td></td></median>	1734	29.6	7753	26.2	
>=Median	1787	30.5	12171	41.0	
Mean (±SD) ^{b,c}	7102.6±	11122.9	10194.0=	±13197.8	
Urbanization status					0.0007
Urban	3203	54.7	15197	51.8	
Satellite city/town	2085	35.6	9741	33.2	
Rural area	566	9.8	4424	15.0	
Geographic area					< 0.000
Northern	2670	45.6	13130	44.8	
Central	1491	25.5	7288	24.9	
Southern	1519	25.9	7957	27.1	
Eastern	174	3.0	931	3.2	
Occupational status					< 0.000
White collar	1482	25.0	9242	31.2	
Blue collar	2075	35.0	11846	40.0	
Others	2375	40.0	8557	28.8	
History of comorbidity					
Without comorbidities	1151	19.4	16393	55.3	< 0.000
Hypertension	3578	60.3	11431	38.6	< 0.000
Diabetes	1430	24.1	4112	13.9	< 0.000
CAD	1955	33.0	4890	16.5	< 0.000
Stroke	1977	33.3	2924	9.9	< 0.000
Hyperlinidemia	1089	18 4	3013	10.2	<0.000

1 Table 1. Characteristics of the study subjects

COPD	1719	29.0	5624	19.0	<0.0001 ^d
Charlson's score					<0.0001 ^d
0	2841	47.9	22123	74.6	
1	1707	28.8	4640	15.7	
>=2	1384	23.3	2282	9.7	
Mean number of medical visits (±SD) ^b	39.6 (±26.5	5)	21.9 (±19.7	7)	<0.0001 °
Total	5932	100.0	29645	100.0	
	1 1	1.1	1	1.0 . 1.	

^aInconsistency between the total population and the population summed for individual variables was due to missing information.

^bSD=Standard deviation; NTD=New Taiwan Dollars; CAD=Coronary artery disease;

COPD=chronic obstructive pulmonary disease

^cThe dependent insurers were not included.

^dBased on χ^2 test

nt's t test ^eBased on a Student's t test

Table 2. Age- and sex- specific incidence densities of dementia (ICD-9: 290, 294.1, 331.0, 331.82) in the Parkinson's disease and control

2 groups

	≤ 1 years				>1 years			
	ID (95% CI) ^{a,b}		Crude HR	AHR	ID (95% CI) ^{a,b}		Crude HR	AHR
Variables	Control group	PD group	(95% CI)	(95% CI)	Control group	PD group	(95% CI)	(95% CI)
		<i>\</i>						
Male								
<70	1.61	56.23	34.44	15.74	2.61	17.57	6.93	3.82
	(0.42-2.81)	(40.16-72.31)	(15.58-76.13)	(6.67-37.10) ^c	(2.13-3.09)	(14.48-20.67)	(5.38-8.93)	(2.79- 5.22) ^c
70-74	5.61	111.38	19.44	13.00	9.23	32.27	3.65	3.06
	(3.08-8.13)	(85.29-137.47)	(11.73-32.21)	(7.59-22.26)°	(8.16-10.30)	(27.02-37.52)	(2.98-4.47)	(2.41-3.89) ^c
75-79	7.59	129.62	16.69	9.84	14.01	38.05	2.87	2.26
	(4.92-10.27)	(103.83-155.42)	(11.16-24.95)	(6.27-15.46) ^c	(12.77-15.25)	(32.58-43.51)	(2.42-3.41)	(1.85-2.75) ^c
$\geq \! 80$	22.18	196.24	8.64	4.35	18.94	41.87	2.25	1.90
	(17.26-27.10)	(161.70-230.78)	(6.58-11.57)	(3.13-6.05) ^c	(17.31-20.57)	(35.34-48.40)	(1.87-2.69)	(1.55-2.33) ^c
Total	8.81	118.82	13.23	7.18	10.27	30.33	3.02	2.44
	(7.32-10.29)	(106.16-131.49)	(10.85-16.14)	(5.73-9.01) ^d	(9.74-10.81)	(27.93-32.73)	(2.75-3.33)	$(2.19-2.73)^d$
Female								
<70	1.43	51.66	35.81	10.55	3.35	22.23	7.14	4.27
	(0.37-2.49)	(37.20-66.12)	(16.24-79.13)	(4.21-26.45) ^c	(2.85-3.86)	(18.98-25.49)	(5.78-8.81)	(3.25-5.63) ^c
70-74	7.37	89.93	12.04	4.98	10.81	33.61	3.29	2.82
	(4.36-10.38)	(65.72-114.14)	(7.40-19.60)	(2.84-8.74) ^c	(9.62-12.00)	(28.25-38.97)	(2.71-4.01)	(2.25-3.53) ^c
75-79	10.92	165.75	14.81	8.09	17.61	43.22	2.56	2.30
	(7.25-14.59)	(132.06-199.4)	(10.02-21.89)	(5.23-12.51) ^c	(16.04-19.18)	(36.70-49.70)	(2.14-3.07)	(1.88-2.81) ^c
						· · · · · · · · · · · · · · · · · · ·	· · · · · ·	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2										
3 4		≥ 80	31.19	180.68	5.69	3.17	22.99	38.74	1.68	1.49
5			(24.60-37.79)	(143.56-217.8)	(4.24-7.64)	(2.18-4.62) ^c	(20.97-25.02)	(32.00-45.47)	(1.38-2.05)	(1.19-1.86) ^c
6 7		Total	10.80	109.89	10.03	5.54	11.41	31.72	2.85	2.41
7 8			(9.08-12.53)	(97.16-122.63)	(8.23-12.21)	(4.39-6.99) ^d	(10.83-12.00)	(29.24-34.21)	(2.60-3.14)	(2.15-2.69) ^d
9		Overall	9.76	114.49	11.54	6.43	10.83	30.99	2.93	2.42
10 11			(8.62-10.89)	(105.51-123.4)	(10.04-13.27)	(5.46-7.57) ^e	(10.43-11.22)	(29.27-32.72)	(2.75-3.14)	(2.23-2.61) ^e
12	1	In the first time	e partition (≤ 1	years), the intera	actions were sig	gnificant for PD w	ith age (<i>p</i> <0.00	01) and with sex	x (p=0.0462), y	with age in men
13 14	2	(<i>p</i> =0.0149) an	d with age in w	vomen (<i>n</i> <0.000	1) In the seco	nd time partition (>1 years) the i	nteractions wer	e significant f	for PD with age
15	2	(p < 0.001), un (n < 0.0001) with	th age in men $(r$	< 0.0001) and y	vith age in wor	pen (n < 0.0001) but	t not for PD wit	th sex $(n=0.226)$	7)	
16 17	7	(p < 0.0001), wi	donsity (por 1.)	0.0001, and 0.0001) Cl=confidon	contraction (p < 0.0001), 00	adjusted hazard	ratio UP -haze	,).	
17	4	hD- incluence	density (per 1,0	100 person-years	s), CI–colliden	ce interval, ATIK-	aujusteu nazaru	Tatio, TIK-IIaZa	uu latto,	
19	5	Based on Pois	son assumption	. .			1 1.0 . 11			
20 21	6	Based on Cox	proportional ha	zard regression	with competing	risk analysis and	adjusted for all	variables, excep	ot for age and s	sex.
22	7	^d Based on Cox	proportional ha	zard regression	with competing	risk analysis and	adjusted for all	variables, excep	ot for sex.	
23	8	^e Based on Cox	proportional ha	zard regression	with competing	risk analysis and a	adjusted for age	, sex, insurance	premium, urb	anization status,
24 25	9	geographic ar	ea, occupationa	l status, hyperte	nsion status, di	abetes, CAD, stro	ke, hyperlipider	mia, COPD, Ch	arlson's score,	, and number of
26	10	medical visits								
27	11	*P<0.05								
28 29	12									
30										
31 32										
33										
34										
35										
30 37										
38										
39										
40										
41										
42										
43										
44 45				For peer re	eview only - http://	/bmjopen.bmj.com/s	ite/about/quidelir	ies.xhtml		
46										

\leq I years				>1 years			
ID (95% CI) ^{a,l}	5	Crude HR	AHR	ID (95% CI) ^{a,!})	Crude HR	AHR
Control group	PD group	(95% CI)	(95% CI)	Control group	PD group	(95% CI)	(95% CI)
7.49	110.98	14.55	7.75	8.57	27.99	3.36	3.05
(6.23-8.76)	(96.94-125.02)	(11.79- 17.95)	(6.05-9.94) ^c	(8.13-9.01)	(25.45-30.53)	(3.02-3.73)	(2.69-3.45)
13.40	116.81	8.59	5.25	14.80	33.14	2.29	2.07
(11.26-15.55)	(105.12-128.49)	(7.12-10.37)	(4.26-6.47) ^c	(14.03-15.56)	(30.81-35.48)	(2.09-2.50)	(1.87-2.28)
		Interaction: p	=0.0058			Interaction: p	< 0.0001
9.13	115.65	12.45	6.99	10.15	29.39	2.97	2.47
(7.95-10.31)	(105.28-126.02)	(10.64-	(5.82-8.41) ^c	(9.74-10.56)	(27.48-31.29)	(2.75-3.21)	(2.26-2.70)
		14.56)					
13.69	110.87	7.99	4.43	15.46	36.57	2.42	2.21
(10.07-17.31)	(92.88-128.85)	(5.87-10.89)	(3.16-6.22) ^c	(14.13-16.79)	(32.61-40.53)	(2.10-2.78)	(1.89-2.59)
		Interaction: p	=0.0935			Interaction: p	= 0.1891
		-				_	
8.47	107.08	12.45	7.38	10.11	29.77	3.02	2.58
(7.31-9.62)	(96.49-117.67)	(10.53-	(6.09- 8.95) ^c	(9.69-10.52)	(27.73-31.81)	(2.79-3.28)	(2.35-2.83)
		14.73)					· · · · ·
16.39	129.78	7.79	4.16	14.85	33.69	2.32	2.04
(12.75-20.02)	(113.04-146.52)	(6.03-10.06)	(3.13- 5.55) ^c	(13.66-16.04)	(30.47-36.91)	(2.05-2.63)	(1.77-2.35)
× /	· · · · · · · · · · · · · · · · · · ·	Interaction: <i>p</i>	= 0.0196	, ,	· · · · · · · · · · · · · · · · · · ·	Interaction: <i>p</i>	=0.0048
		1				1	
	For peer reviev	/ only - http://bn	njopen.bmj.com/s	ite/about/guideline	es.xhtml		
	$ = 1 \text{ years} $ $ = 1 \text{ years} $ $ = 10 (95\% \text{ CI})^{a,l} $ $ = 10 (95\% \text{ CI})^{a,l} $ $ = 10 (95\% \text{ CI})^{a,l} $ $ = 10 (1000 \text{ Group})^{2} $ $ = 10 (10.23 - 8.76)^{2} $ $ = 10 (11.26 - 15.55)^{2} $ $ = 10 (11.$	Series ID (95% CI) ^{a,b} Control group PD group 7.49 110.98 (6.23-8.76) (96.94-125.02) 13.40 116.81 (11.26-15.55) (105.12-128.49) 9.13 115.65 (7.95-10.31) (105.28-126.02) 13.69 110.87 (10.07-17.31) (92.88-128.85) 8.47 107.08 (7.31-9.62) (96.49-117.67) 16.39 129.78 (12.75-20.02) (113.04-146.52)	$ { D }{ P } reper review only - http://bm$	ID (95% CI) ^{a,b} Crude HR (95% CI)AHR (95% CI)7.49110.9814.557.75(6.23-8.76)(96.94-125.02)(11.79- (17.95)(6.05-9.94)^c (17.95)13.40116.818.595.25(11.26-15.55)(105.12-128.49)(7.12-10.37)(4.26-6.47)^c (4.26-6.47)^c Interaction: $p=0.0058$ 9.13115.6512.456.99(7.95-10.31)(105.28-126.02)(10.64- 	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c } \hline c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

No	7.84	99.07	12.44	7.79	9.99	29.39	3.03	2.71
	(6.77-8.91)	(88.88-109.26)	(10.49-	(6.44- 9.42) ^c	(9.59-10.39)	(27.37-31.40)	(2.80-3.29)	(2.48-2.97) ^c
			14.75)					
Yes	27.73	146.13	5.20	3.75	19.94	34.66	1.73	1.68
	(21.57-33.88)	(128.41-163.86)	(4.04-6.69)	(2.87- 4.90) ^c	(18.09-21.80)	(31.36-37.97)	(1.52-1.98)	(1.46-1.94) ^c
			Interaction: p-	<0.0001			Interaction: p	< 0.0001
Hyperlipidem	ie							
No	9.83	118.50	11.84	6.50	10.49	30.64	2.99	2.51
	(8.63-11.03)	(108.36-128.63)	(10.20- 13.73)	(5.46- 7.73) ^c	(10.08-10.90)	(28.73-32.54)	(2.78-3.23)	(2.30-2.73) ^c
Yes	0.08	07.10	10.57	5.83	13.82	32 52	2.42	2.02
	9.08	97.10 (77.07.116.23)	(6.91-16.16)	(3.64-	(12.40, 15.23)	(28, 16, 36, 58)	(2.05-2.84)	(1.68-2.43) ^c
	(3.00-12.31)	(77.97-110.23)		9.32)°	(12.40-13.23)	(28.40-30.38)		
			Interaction: p=	= 0.9212			Interaction: p=	=0.1841
COPD								
No	8.72	108.70	12.25	6.78	10.21	29.59	2.98	2.54
	(7.53-9.91)	(98.33-119.07)	(10.38-	(5.60- 8.21) ^c	(9.79-10.63)	(27.62-31.56)	(2.76-3.23)	(2.32-2.78) ^c
			14.46)					
Yes	14.27	128.85	8.91	5.33	13 77	34.86	2.56	2.11
	(11, 10, 17, 43)	(111.08-	(6.87-	(3.94-	(12, 70, 14, 84)	(31, 31, 38, 41)	(2.25-2.91)	(1.82- 2.45)
	(11.10-17.43)	146.02)	11.56)	7.19)°	(12.70-14.84)	(31.31-38.41)		c
			Interaction: p=	= 0.0400			Interaction: p=	=0.0772
Number of								
Comorbidities								
0	5.88	99.30	16.66	8.68	7.48	24.63	3.40	3.52
	(4.56-7.19)	(80.40-118.21)	(12.43-	(6.27-12.00) ^d	(7.01-7.96)	(21.32-27.94)	(2.93-3.96)	(2.97-4.16) ^d
			22.33)					
		For a constant of the		tanan kastaan (ste	- /-			
		For peer review	/ only - http://br	jopen.pmj.com/site	e/about/guideline	s.xntmi		

1	0.(0	104 (4	10.72	7 70	11.76	2	2.47	2 (7
1	9.60	104.64	10./3	/./U	11./6	28.61	2.4/	2.67
	(7.19-12.00)	(85.26-124.02)	(/.86-	(5.56-10.69) ^a	(10.8/-12.65)	(24.94-32.27)	(2.13-2.87)	(2.27-3.1.
> 1	15.00	100.57	14.64)	4.00	15 20	24.21	2.20	0.11
≤ 2	15.08	122.57	8.01	4.90	15.28	34.21	2.28	2.11
	(12.65-17.52)	(110.65-134.5)	(6.63-9.66)	(4.01-5.99) ^a	(14.43-16.12)	(31.83-36.60)	(2.08-2.49)	(1.92-2.3
			Interaction: p	p=0.0006			Interaction: p	<0.0001
Charlson's								
score								
0	7.16	95.08	13.07	7.34	9.73	28.39	3.00	2.67
	(6.04-8.28)	(83.31-106.84)	(10.72-	(5.88-9.17) ^e	(9.30-10.15)	(26.09-30.70)	(2.73-3.29)	(2.41-2.9
			15.96)					
1	16.55	120.17	7.15	4.36	14.92	34.79	2.38	2.11
	(12.80-20.29)	(102.99-137.35)	(5.47-9.33)	(3.26-5.83) ^e	(13.70-16.13)	(31.34-38.25)	(2.09-2.71)	(1.83-2.4
≥ 2	19 33	148 51	7.60	5.08	13.93	32 35	2.32	2.07
	$(14 \ 13 \ 24 \ 53)$	$(127 \ 11 \ 160 \ 01)$	(5.61-	(3.62-7.13) ^e	(12 36-15 51)	(28.45 - 36.24)	(1.96-2.73)	(1.71-2.5
	(14.15-24.55)	(127.11-109.91)	10.31)		(12.30-13.31)	(20.45-50.24)		
			Interaction	n = 0.0003			Interaction r	0.0050
			11010100110101	n = (1 (1) (1) + 3			Intorpotion: r	
^a ID= incidenc ^b Based on Poi ^c Based on Coy geographic a medical visit ^d Based on Coy	e density, CI=conf isson assumption x proportional haza trea, occupational s ts. x proportional haza x proportional haza	idence interval ard regression with status, status of hy ard regression with ard regression with	n competing ri pertension, di n competing r	sk analysis and abetes, CAD, str isk analysis and isk analysis and	adjusted for age oke, hyperlipide adjusted for all adjusted for all	, sex, insurance p emia, COPD, Ch variables, except variables, except	premium, urba arlson's score, t for comorbid	nization st and numb ities. s score.

Figure 1 Comparison of Kaplan-Meier failure estimates of dementia onset between the two groups. PD, Parkinson's disease.

153x90mm (300 x 300 DPI)

	Item No	Page	Decommondation
Title and abstract	1	2	(a) Indicate the study's design with a commonly used term in the titl
			abstract
		3	(b) Provide in the abstract an informative and balanced summary of
			was done and what was found
		In	troduction
Background/rationale	2	4-5	Explain the scientific background and rationale for the investigation reported
Objectives	3	5	State specific objectives, including any prespecified hypotheses
		М	ethods
Study design	4	6	Present key elements of study design early in the paper
Setting	5	5-6	Describe the setting, locations, and relevant dates, including periods
			recruitment, exposure, follow-up, and data collection
Participants	6	6-7	(a) Cohort study—Give the eligibility criteria, and the sources and m
			of selection of participants. Describe methods of follow-up
			Case-control study—Give the eligibility criteria, and the sources and
			methods of case ascertainment and control selection. Give the rational
			the choice of cases and controls
			<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources a
			methods of selection of participants
		6-7	(b) Cohort study—For matched studies, give matching criteria and nu
			of exposed and unexposed
			<i>Case-control study</i> —For matched studies, give matching criteria and
Variables	7	7-8	Clearly define all outcomes, exposures, predictors, potential confound
	,	, 0	and effect modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	5-8	For each variable of interest, give sources of data and details of meth
measurement			assessment (measurement). Describe comparability of assessment me
			there is more than one group
Bias	9	6-7	Describe any efforts to address potential sources of bias
Study size	10	5-6	Explain how the study size was arrived at
Quantitative variables	11	7-8	Explain how quantitative variables were handled in the analyses. If
			applicable, describe which groupings were chosen and why
Statistical methods	12	8-9	(a) Describe all statistical methods, including those used to control for
			confounding
		8-9	(b) Describe any methods used to examine subgroups and interaction
		-	(c) Explain how missing data were addressed
		-	(d) Cohort study—If applicable, explain how loss to follow-up was
			addressed
			Case-control study—If applicable, explain how matching of cases an

Participants	13*	5-7	(a) Report numbers of individuals at each stage of study—eg numbers potentially
			eligible examined for eligibility confirmed eligible included in the study completing
			follow-up, and analysed
		_	(b) Give reasons for non-participation at each stage
		_	(c) Consider use of a flow diagram
Descriptive	14*	9-	(a) Give characteristics of study participants (eg demographic, clinical, social) and
data		10	information on exposures and potential confounders
		21-	(b) Indicate number of participants with missing data for each variable of interest
		22	
		10	(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	10-	Cohort study-Report numbers of outcome events or summary measures over time
		12	
		-	Case-control study—Report numbers in each exposure category, or summary measur
			of exposure
		-	Cross-sectional study—Report numbers of outcome events or summary measures
Main results	16	9-	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		12	their precision (eg, 95% confidence interval). Make clear which confounders were
			adjusted for and why they were included
		9-	(b) Report category boundaries when continuous variables were categorized
		12	
		9-	(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		12	meaningful time period
Other analyses	17	10-	Report other analyses done-eg analyses of subgroups and interactions, and sensitiv
		12	analyses
		D	viscussion
Key results	18	12-	Summarise key results with reference to study objectives
		13	
Limitations	19	15-	Discuss limitations of the study, taking into account sources of potential bias or
		16	imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	12-	Give a cautious overall interpretation of results considering objectives, limitations,
		16	multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	12-	Discuss the generalisability (external validity) of the study results
		16	
		C	other information
Funding	22	17	Give the source of funding and the role of the funders for the present study and, if
			applicable for the original study on which the present article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely

available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For beer terien only

BMJ Open

Risk of Dementia after Parkinson's Disease in Taiwan: A Population-based Retrospective Cohort Study Using National Health Insurance Claims

Journal:	BMJ Open	
Manuscript ID	bmjopen-2018-025274.R2	
Article Type:	Research	
Date Submitted by the Author:	08-Dec-2018	
Complete List of Authors:	Liu, Chih-Ching; National Cheng Kung University, College of Medicine, Department of Public Health Sun, Yu; En Chu Kong Hospital, Department of Neurology Lee, Pei-Chen; National Taipei University of Nursing and Health Sciences, Department of Health Care Management Li, Chung-Yi; National Cheng Kung University, College of Medicine, Department of Public Health Hu, Susan; National Cheng Kung University, College of Medicine, Department of Public Health	
Primary Subject Heading :	Epidemiology	
Secondary Subject Heading:	Neurology, Public health	
Keywords:	retrospective cohort study, Parkinson's disease, Dementia < NEUROLOGY, competing risk, EPIDEMIOLOGY	

SCHOLARONE[™] Manuscripts

1	Risk of Dementia after Parkinson's Disease in Taiwan: A Population-based Retrospective
2	Cohort Study Using National Health Insurance Claims
3	
4	Chih-Ching Liu, MSc ^a , Yu Sun, MD, PhD ^b , Pei-Chen Lee, PhD ^c ,
5	Chung-Yi Li, PhD ^{a,d} , Susan C. Hu, PhD ^{a*}
6	
7	^a Department of Public Health, College of Medicine, National Cheng Kung University,
8	Tainan, Taiwan
9	^b Department of Neurology, En Chu Kong Hospital, Sanxia District, New Taipei City, Taiwan
10	^c Department of Health Care Management, National Taipei University of Nursing and Health
11	Sciences, Taipei, Taiwan
12	^d Department of Public Health, College of Public Health, China Medical University, Taichung,
13	Taiwan
14	*Chung-Yi Li and Susan C. Hu contributed equally to this article.
15	
16	Running title: Risk of Dementia after Parkinson's disease
17	Word count: text 4549
18	
19	Correspondence address:
20	Dr. Susan C. Hu
21	Department of Public Health, College of Medicine, National Cheng Kung University
22	Tel.: 886-6-2353535 ext. 5599, Fax: 886-6-2359033
23	E-mail: shuhu@mail.ncku.edu.tw
24	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 2	1	Abstract									
5 4 5	2	Objectives: A nationwide cohort study on the risk of dementia onset after first diagnosis of									
6 7	3	Parkinson's disease (PD) is lacking. This study aims to assess 11 years of incidence and the									
8 9	4	hazard ratios for developing dementia in patients with PD compared with matched controls.									
10 11	5	Design: A population-based cohort study.									
12 13	6	Setting: National Health Insurance database in Taiwan.									
14 15	7	Participants: A total of 5,932 patients with PD were identified, and 29,645 age-, sex-, and									
16 17 18	8	index year-matched PD-free individuals were randomly selected.									
19 20	9	Outcome measures: All subjects were linked to the claim data to identify the first diagnosi									
21 22	10	of dementia. The Poisson assumption was used to estimate the incidence rate. Cause-specific									
23 24 25	11	hazards models with a partitioning of time at one year to account for proportionality were									
26 27	12	used to estimate the risk of dementia onset.									
28 29	13	Results: The median duration from the first diagnosis of PD to the development of dementia									
30 31 32	14	was 9.02 years. In the first partition (\leq one year), the incidence of dementia in the PD and									
32 33 34	15	control groups was 114.49 and 9.76 per 1,000 person-years, respectively, with an adjusted									
35 36	16	hazard ratio of 6.43 (95% CI 5.46 - 7.57). In the second partition (> one year), the incidence									
37 38 30	17	of dementia in the PD and control groups was 30.99 and 10.83 per 1,000 person-years, with									
40 41	18	an adjusted hazard ratio of 2.42 (95% CI 2.23 - 2.61). Notably, in the second partition, both									
42 43	19	men and women aged <70 had the highest hazard ratio (3.82, 95% CI 2.79 - 5.22 and 4.27,									
44 45	20	95% CI 3.25 - 5.63, respectively).									
46 47	21	Conclusions: This study noted an increased risk of dementia after a diagnosis of PD. The									
48 49 50	22	magnitude of effect estimation was higher in men in the first partition, but was similar in both									
50 51 52	23	genders in the second partition. PD patients aged <70 years have the highest risk of dementia									
53 54	24	in any given partition time.									
55 56	25	Keywords: epidemiology, retrospective cohort study, Parkinson's disease, dementia,									

25 Keywords: epidemiology, retrospective cohort study, Parkinson's disease, dementia,
26 competing risk

57 58

59 60 **Article Summary**

Strengths and limitations of this study

1

BMJ Open

The study strengths include the fact that it is a nationwide, retrospective cohort design

for 11 years with more accurate estimates of the incidence rates of dementia by using the

A multivariate Cox proportional hazard regression with a competing risk analysis was

We were unable to consider a comprehensive list of potential confounders, such as

smoking, educational level, physical function, and genes in the analysis because of the

review only

used to control the confounding bias and account for the competing risk of death.

Another limitation is the lack of clinical symptoms and subtypes of dementia.

first diagnosed PD cases rather than the prevalent cases as study subjects.

limited information available from the claims data.

2	1
5 4 5	2
6 7	3
, 8 9	4
10 11	5
12 13	6
14 15	7
16 17	8
18 19 20	9
20 21	5
22 23	10
24 25	11
26 27	12
28 29	13
30 31	
32	
33 24	
34 35	
36	
37 38	
39	
40 41	
41	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53	
54 55	
56	
57 58	
58 59	
60	

2			
3			
4			
5			
6			
7			
, מ			
ი ი			
9 1	~		
1	1		
1	1		
1	2		
1	3		
1	4		
1	5		
1	6		
1	7		
1	8		
1	g		
י ר	ñ		
∠ ∽	1		
2	1		
2	2		
2	3		
2	4		
2	5		
2	6		
2	7		
2	8		
2	9		
2	0		
2	1		
ט ר	י ר		
3	2		
3	3		
3	4		
3	5		
3	6		
3	7		
3	8		
3	9		
4	ō		
т ⊿	1		
- 1	י ר		
4 1	2		
4	3		
4	4		
4	5		
4	6		
4	7		
4	8		
4	9		
5	0		
5	1		
5	ว		
5	∠ ⊃		
5	د ۸		
э г	4		
5	5		
5	6		
5	7		
5	8		
5	9		
6	ი		

1

INTRODUCTION

2 Dementia, a symptom of cognitive disturbances, can be potentially disabling and can 3 also be related to increased mortality rates and costs.¹ ² Thus, information about which 4 patients will eventually develop dementia is an important issue in public health and clinical 5 practice.³

Parkinson's disease (PD) has been associated with the development of cognitive
impairment.⁴ However, most previous studies on the association between PD and dementia
risk have been conducted in western countries,⁵⁻¹⁹ and information for Asian PD populations
is lacking. Moreover, to identify robust hazard ratios (HRs) of dementia in PD requires a large
sample size cohort and a sufficiently long follow-up time to observe the development of
symptoms of dementiain incident cases of PD.

12 To the best of our knowledge, there has been no whole population-based nationwide cohort study on this topic, 5-23 and only few cohort studies have involved incident cases of PD 13 to investigate the frequency of dementia with a follow-up period of more than 10 years. The 14 Sydney Multicentre Study of PD followed 136 newly diagnosed PD patients more than 20 15 16 years and reported that 83% of the 30 survivors developed dementia. However, only PD cases 17 who received low-dose levodopa or low-dose bromocriptine were included in this study, which may not represent PD within the population as a whole.¹⁹ The CamPaIGN study 18 19 followed 121 newly diagnosed PD cases for 10 years, of which 41 PD cases developed dementia. This study estimated dementia incidence in PD subjects was 54.7 per 1,000 20 21 person-years (95% confidence interval (CI) 35.4 to 74.1), which was 2.6-fold higher than that 22 in an age- and geographically- matched population. However, this study also only included 23 only a few newly diagnosed PD cases (n=121).9

Moreover, many studies have included prevalent PD cases at varying disease stages to investigate the risk of dementia, which may have caused survival bias.^{6-8 10 12-15 17 18 20 22 23} For example, the Rotterdam study recruited 72 prevalent and 67 incident PD cases with only an Page 5 of 30

BMJ Open

overall mean follow-up time of 6.9 years and found a positive association between PD and
dementia incidence.¹⁴ In Taiwan, the only population-based study with a case-control design
also showed a positive association between PD and the risk of dementia.²² However, potential
survival bias resulting from recruitment of prevalent PD cases at various disease stages may
have been present in these studies.

Some studies have reported that older age⁵⁻¹⁰ ¹³ ¹⁵ ²⁰ ²³ and male gender⁵ are related to increased dementia risk in PD; however, information regarding the age- and sex- stratified dementia incidence rate in PD is scant. In addition, many PD patients may have medical comorbidities such as stroke, hypertension, diabetes mellitus, hyperlipidemia, and coronary heart disease, which may have modification effects on the relationship between dementia and PD.7 16 17 22 However, little research has examined medical comorbidities as a potential confounding factor that should be controlled for.^{7 22 23} Moreover, because of the increased age and co-morbidities in a long-term follow-up study, competing risk of death should be considered. However, none of studies on this topic have considered death as a competing risk, ^{6-21 23} which may induce potential attrition bias and tend to distort the study results.

Given the abovementioned methodological problems and limited information on this topic, the association between PD and the risk of dementia needs to be further explored. Therefore, in this study, a nationwide population-based cohort study was conducted to estimate 11 years of incidence and the HRs for development of dementia in patients with first-diagnosed PD by age and sex and by comorbidities (i.e., hypertension, diabetes, coronary artery disease (CAD), stroke, hyperlipidemia, and chronic obstructive pulmonary disease (COPD)), after accounting for the competing risk of death.

25 Data Source

The dataset was drawn from ambulatory care claims, inpatient claims, and the updated

METHODS

registry for beneficiaries retrieved from Taiwan's National Health Insurance Research Database (NHIRD), as provided by the National Health Insurance Administration (NHIA), Ministry of Health and Welfare, Taiwan. A universal National Health Insurance (NHI) program has been implemented in Taiwan since 1995, and more than 99% of Taiwan residents enrolled in the NHI program after 2000. The NHIA has contracts with 92.5% of the hospitals and clinics in Taiwan.²⁴ The NHIA performs quarterly expert reviews on a random sample of every 50-100 ambulatory and inpatient claims in each hospital and clinic to ensure the accuracy of the claims data.²⁴ Therefore, information obtained from the NHIRD is considered to be complete and accurate. The NHI datasets have been used in many published epidemiological studies on PD^{25 26} and dementia²⁷. Access to the NHIRD was approved by the National Health Research Institutes Review Committee.

Patient and public involvement

We conducted this study by using the National Health Insurance Research Database. No patients or members of the public were involved in the development of the research question and outcome measures. Also, no patients or members of the public were involved in setting out the design of this study, nor were they involved in the recruitment of and conducting of the study. The study results were not disseminated to the study subjects.

Study design, Cohorts and Covariates

This was a retrospective cohort study from 2002-2012. We selected 5,932 eligible PD patients between 2002 and 2003 from a previous study for which sample selection details were discussed previously.²⁸ In brief, the PD cohort in this study included all cases with at least three medical claims (either outpatientor inpatient care) with a diagnostic code of PD (ICD-9-CM: 332.0) who receiving at least three times of prescriptions of anti-Parkinsonism medications, including L-dopa or dopamine agonist prescriptions after a first-time diagnosis between 2002 and 2003. Moreover, the first and last outpatient or inpatient visits and anti-Parkinsonism medication records were separated by at least 90 days to avoid accidental

BMJ Open

 1 inclusion of miscoded patients.

To ensure that the PD diagnosis was reliable and consistent, cases were excluded if: (1) an age on the index date of less than 40 years, who are more likely to have a genetic etiology; (2) a diagnostic code of secondary Parkinsonism (ICD-9-CM code: 332.1) during the study period; (3) receipt of any neuroleptic medication 180 days prior to the index date, and (4) three or more medical claims (either ambulatory or inpatient care) with diagnostic codes of dementia prior to the index date. The first date of initial diagnosis of PD in the period of 2002 to 2003 was set as the index date.

We previously conducted a pilot study to validate the accuracy of the ICD-9 coding in PD patients.²⁸ In this study, medical records including symptoms/signs, diagnostic procedures, use of anti-parkinsonism medication, as well as response to medication of 290 randomly selected patients with ICD-9-CM coded 332.0 were examined in detail by three experienced neurologists from January to October 2012. Among these 290 cases, 245 were confirmed as PD patients based on the aforementioned clinical information. The sensitivity, specificity, positive predictive value, and negative predictive value were 97.6%, 92.3%, 98.8% and 85.7%, respectively. The accuracy of our method for identifying PD cases was 96.9%. Moreover, cases in this study were not only ascertained using the ICD code but also required having been prescribed at least three times of anti-parkinsonism medication including L-dopa or a dopamine agonist to minimize the possibility of miscoding.

The control subjects were selected from those who had not been diagnosed with PD or treated with any anti-PD medications during the entire study period and met the same exclusion criteria as those set for the patients with PD. These control subjects were matched by age (each five-year span), sex, and year of index date for patients with PD at a 5:1 ratio. As a result, 29,645 control subjects were identified. For the control groups, the index date was either January 1, 2002 or January 1, 2003.

Baseline comorbidities that may be associated with an increased risk of dementia were

identified for the PD and control groups. These included hypertension, diabetes, CAD, stroke, hyperlipidemia, and COPD observed before the index date. The comorbidity score observed before the index date was calculated using the Charlson Comorbidity Index, which is a weighted summery measure of common comorbid conditions adopted for use with ICD-9-CM coded administrative databases.²⁹⁻³¹ Information on the geographic area, urbanization level, occupational status, and salary-based insurance premium at the index date was also obtained from the registry for beneficiaries. The number of medical visits within one year after the index date was adjusted to decrease the potential presence of surveillance bias because subjects with PD visit clinics more frequently and thus may have more opportunities to be diagnosed as having dementia.

11 End point and Statistical analysis

The main outcome variable was the initial occurrence of dementia (ICD-9-CM code: 290, 294.1, 331.0, and 331.82). A Taiwanese has previously reported that the diagnostic accuracy of dementia is approximately 90% when relying on diagnosis codes (ICD-9-CM) to identify dementia.²⁷ To increase the validity of dementia identification, only dementia cases diagnosed with \geq three ambulatory visits or \geq one hospitalization were included in this study. We did not distinguish the subtypes of dementia because of data limitations due to a lack of information regarding symptoms/signs, lab data, and image findings, and further outcome analyses with dementia subtype classifications, such as dementia with Lewy bodies (DLB), Alzheimer's dementia, frontotemporal dementia, just Parkinson's disease dementia (PDD), were not performed. However, according to the criteria set forth by the consensus report of the Lewy Body Consortium,³² clinicians and researchers use the "one-year rule" to help verify the diagnoses of DLB and PDD. Thus, we analyzed the dementia incidence within and after one year of PD diagnosis, respectively.

We followed the study subjects from the index date to the first diagnosis of dementia,
 withdrawal from the NHI, or December 31, 2012, whichever came first. The incidence

BMJ Open

density of dementia was calculated using an age- and sex- specific and comorbidity-specific
 stratified analysis based on the Poisson assumption. The cumulative events and rates of
 dementia according to the PD status over the study period were calculated using a
 Kaplan-Meier analysis, and the log-rank test was used to test the between-group differences.

Since death is the competing risk of dementia occurrence in this long-term follow-up study, analytical approaches used in competing risk settings must be used to assess the association between PD and the risk of dementia. Cause-specific hazards models, one of the most common analytical methods used in competing risk settings, are better suited for studying the etiology of diseases.³³ The cause-specific hazard is the instantaneous risk of dving from a particular cause k given that the subject is still alive at time t.³⁴ Thus, in this study, a Cox proportional hazard regression with competing risk models, according to cause-specific hazards models, was performed to assess the hazard ratio of dementia in relation to PD.

In addition, we performed a sex- and age- stratified analysis and a comorbidity-stratified analysis to examine the potential effect-modifications by age, sex, and comorbidity on the association between PD and the risk of dementia. Plots of log (-log (survival function)) vs. log (time) were drawn to test for violations of the proportional-hazards assumption. Therefore, separate time-partitioned models were created, and the hazards within each partition were assessed. Proportionality was held for the new models partitioned at one year. If we modeled the hazards for \leq one year (i.e., the first time partition), the censoring day for subsequent events was one year. If we modeled the hazards for > one year (i.e., the second time partition), subjects with earlier events were included and considered to be censors (because the exclusion of these subjects may lead to a survival bias). A p < 0.05 was considered significant.

RESULTS
The distributions of age and gender were no significant difference in both groups. The percentages of PD patients who lived in urban (54.7 vs. 51.8%) and suburban (35.6 vs. 33.2%) areas and in northern (45.6 vs. 44.8%) and central (25.5 vs. 24.9%) Taiwan were higher than those of the controls. The prevalence rates of the risk factors for dementia were high in patients with PD. The PD cohort had fewer white-collar workers (25.0% vs. 31.2%, p < 0.0001), a lower insurance premium (percentage with none or a lower than median insurance premium: 69.5 vs. 60.0, p < 0.0001), a higher Charlson's score (percentage with score of one to \geq two: 52.1% vs. 25.4%, p<0.0001), and a higher frequency of medical visits (39.6 vs. 21.9 per year, p < 0.0001), than the control group (Table 1).

Figure 1 shows the cumulative incidence of dementia in patients with and without PD.
The cumulative incidence of dementia for PD was significantly higher than the corresponding
data observed in the non-PD group (log-rank test, *p*<0.0001).

Among the total of 5,932 first diagnosed PD cases, only 492 of these cases (8.3%) were derived from inpatient records. The adjusted hazard ratios of dementia either in the overall PD cases or in the PD cases only enrolled in an outpatient group were significantly higher than those in the control group without PD. The median duration from the overall first diagnosis of PD to the development of dementia was 9.02 years.

During the 11 years of follow-up, a total of 1,836 PD patients developed dementia, and 1,226 PD patients died without developing dementia. In the same period, a total of 3,159 control subjects developed dementia, and 5,223 control subjects died without developing dementia. In the period within one year after the index date (i.e., the first time partition), a total of 5,932 PD subjects encountered 624 medical episodes due to first diagnosed dementia in the 5,450.09 person-years observed, representing incidence densities of dementia of 114.49 per 1,000 person-years. In the same period, a total of 29,645 PD subjects encountered 285 medical episodes due to first diagnosed dementia in 29,208.39 person-years observed, representing incidence densities of dementia of 9.76 per 1,000 person-years. Noticeably, the

Page 11 of 30

BMJ Open

incidence density of dementia increased with age irrespective of PD status and sex, and the highest incidence was observed in those aged ≥ 80 years. The adjusted HR of dementia in relation to PD was significantly increased at 6.43 (95% CI 5.46 - 7.57) and was higher in men than in women (HR: 7.18, 95% CI 5.73 - 9.01 vs. 5.54, 95% CI 4.39 - 6.99). In addition, there was a significant interaction of PD with age on the risk of dementia for both men (*p*=0.02) and women (*p*<0.0001) (Table 2).

In the years following the PD diagnosis (i.e., the second time partition), the overall incidence density of dementia was much lower (Table 2). The change in incidence density between the first and the second partition was more pronounced in the PD group (from 114.49 to 30.99 per 1,000 person-years) than in the control group (from 9.76 to 10.83 per 1,000 person-years). The age- and sex- specific incidence densities had a similar pattern in terms of change. However, no significant difference in the sex-specific HRs of dementia was observed (p=0.23). There was a significant interaction of PD status with age (p<0.0001) in both sexes. Further analyses of age- and sex-specific HRs showed the highest HR was observed in PD females aged <70 years (HR: 4.27; 95% CI 3.25 - 5.63).

Impact of PD on the risk of dementia by comorbidity is shown in Table 3. Irrespective of the various time partitions, the incidence of dementia increased with the number of comorbidities in both groups. The PD group had the highest risk of dementia across various medical comorbidity stratifications or Charlson's scores after adjusting for baseline characteristics. In the first time partition, the interaction of PD with hypertension (p=0.01), CAD (p=0.02), stroke (p<0.0001), and COPD (p=0.04) on the risk of dementia also was statistically significant, indicating that subjects without hypertension, CAD, stroke, and COPD had a higher adjusted HR for dementia. However, although the adjusted HR for dementia was also higher in subjects without diabetes and hyperlipidemia than in those with medical comorbidities, there was no statistically significant modification effect by diabetes and hyperlipidemia on the association between PD and the risk of dementia. In terms of the

Charlson's scores, subjects with scores of 0 had a higher adjusted HR for dementia than those with scores of one and \geq two. The interactions were significant for PD with Charlson's score (*p*=0.01) on the risk of dementia.

In the second time partition, effect-modification by hypertension (p < 0.0001), CAD (p=0.01) and stroke (p<0.0001) was statistically significant for dementia, indicating that subjects without those medical comorbidities had a higher adjusted HR for dementia. Among diabetes, hyperlipidemia, or COPD patients, adjusted HR for dementia also showed a statistically significant high risk from 2.02 (95% CI=1.68 - 2.43) to 2.21 (95% CI=1.89 - 2.59), but no significant modification effect was found for those with medical comorbidities on the association between PD and the risk of dementia. In terms of the Charlson's scores, subjects with scores of 0 had a higher adjusted HR for dementia than those with scores of one and \geq two. Also, a significant modification effect of Charlson's scores on the association between PD and the risk of dementia $(p=0.01)^{4}$ was found. Regardless of whether medical comorbidities existed or not, the HRs for dementia were greater in the first time partition but were smaller in the second time partition.

DISCUSSION

To the best of our knowledge, this is the first nationwide population-based cohort study to demonstrate that patients with the first diagnosis of PD are associated with increased risk of dementia compared with non-PD patients. However, our study showed a sharply increased hazard of dementia within one year after the first diagnosis of PD, which is clinically and biologically questionable, probably because a large proportion of patients with dementia remain undiagnosed before the index date of their first clinical visit for PD.

In other words, many patients with pre-existing cognitive impairment and PD were classed as new PD cases because their condition had deteriorated and had only been recognized because they had been referred for an expert opinion. This is also supported by the

BMJ Open

decline in the number of PD patients with dementia in the subsequent period of observation. In this study, we found that the overall risk of dementia onset increased nearly twofold in up to 11 years (adjusted HR: 2.42, 95% CI: 2.23 - 2.61) among those who survived at least one year and had an initial PD diagnosis thereafter. The magnitude of this association varied according to different age and sex stratifications. In general, the increased risk of dementia was higher in men in the first partition but was similar in both genders in the second partition. In addition, younger PD patients have the highest risk of dementia in any given partition time. The study results can provide physicians and patients with valuable information and also demonstrate the need for guidelines for detection of dementia risk after the initial diagnosis of PD.

Our study shows that a reasonably increased hazard of dementia more than one year after diagnosis of PD is more likely to be real and may suggest evidence of the mechanisms supported by the Braak pathology staging hypothesis.³⁵ ³⁶ Our findings were similar to another population-based case control study in Taiwan,²² which showed the risk of developing dementia in prevalent Parkinsonism was highest in the first six months (adjusted odds ratio (AOR): 11.98, 95% CI: 8.51 - 16.68) and then became lower in the following months to years after diagnosis.

Age is known to be a risk factor for dementia not only in the general population^{37 38} but also in the PD patient population⁵⁻¹⁰ ¹³ ¹⁵ ²⁰ ²³. This may be caused by aging of non-dopaminergic structures (i.e., the locus ceruleus and pedunculopontine nucleus).³⁹ However, a modifying effect of age on the risk of dementia after PD may be present in our study. For example, we found that patients with PD had a significantly higher overall risk of dementia than those in the control group, particularly in subjects aged < 70 years. This result is similar to the findings of some prior studies.^{13 18}

Male sometimes is identified as a risk factor for dementia in PD;⁵ however, there is no
 clear explanation for this finding. In our study, we found that the risk of dementia was similar

in both men and women who had first-diagnosed PD one year later (HR: 2.44, 95% CI
2.19-2.73 and HR: 2.41, 95% CI 2.15-2.69, respectively). Accordingly, patients with PD,
especially younger patients in both sexes, could be selected in future studies as a target
population to evaluate whether interventions are effective in decreasing the risk of dementia
after diagnosis of PD.

Our study also shows that the overall risk of dementia was more than double (adjusted HR 2.42) among subjects with first-diagnosed PD one year later for up to 11 years. After accounting for the competing risk of death and adjustment for the number of medical visits, the findings were similar to those of Perezet al., who reported a higher HR of incident dementia (2.47, 95%CI 1.55 - 3.59) in patients with PD as compared to non-PD subjects.¹¹ However, other cohort studies have shown a HR ranging from 1.7 (95% CI 1.1 - 2.7) to 5.9 (95% CI 3.9 - 9.1) for incident dementia in PD groups compared with the general population,⁹ ¹⁰ ¹²⁻¹⁵ ¹⁸ which is different from our findings. Noticeably, most previous studies were limited by a relatively small sample size,⁶⁻¹⁷ ¹⁹⁻²¹ ²³ shorter follow-up time,⁶⁻⁸ ¹⁰ ¹²⁻¹⁸ ²⁰ the lack of a matched control,^{6-8 16 17 19-21 23} failure to account for the competing risk of death,^{6-21 23} or a lack of adjustment for the number of medical visits to control for surveillance bias,^{9-15 18} rendering the risk that the estimates were more likely to be imprecise and biased.

We found the incidence of dementia increased with the number of comorbidities, including hypertension, diabetes mellitus, CAD, stroke, hyperlipidemia, and COPD, irrespective of PD status. However, in our study, the adjusted HR for dementia was higher in PD alone than in those with medical comorbidities. The effect-modification by hypertension, CAD and stroke was statistically significant for the association between PD and dementia in any given partition time. Prior studies regarding the relationship between patients with PD and these comorbidities remain controversial.^{7 16 17 22} For example, although a study in Taiwan demonstrated that patients with PD with cerebrovascular or cardiovascular comorbidities had a lower risk of dementia onset than patients with PD alone,²² which is similar our findings,

BMJ Open

other studies have failed to find this relationship.^{16 17} In addition, some previous studies have
shown that PD with cardiovascular dysautonomia (such as hypertension, diabetes mellitus,
and CAD) and COPD might cause substantial cerebral hypoperfusion and hypoxia,
respectively.⁴⁰⁻⁴² Hypoxia and hypotension in the brain might cause neuronal damage and
increase accumulation of pathologic proteins such as β-amyloid, which result in increased risk
of dementia onset.^{40 41} Therefore, future perspective studies focusing on the causal
relationship between such comorbidities and the risk of dementia in PD are warranted.

There were several strengths in our study. First, we obtained a large, nationwide number of participants by using NHIR datasets, which made it possible to reduce selection bias, to obtain higher statistical power, to obtain ahighly representative study population, to have a lower rate of nonresponse or loss to follow-up, and to facilitate the age-, sex- and comorbidities-stratified analyses with an ample simple size to satisfy requirements. To the best of our knowledge, this study is the first to report the age- and sex- specific incidence rates of dementia in a PD group. Secondly, we conducted a longitudinal and retrospective cohort study for 11 years, which is a longer time during which to observe the development of dementia than that in many other prior studies.^{6-8 10 12-18 20} Thirdly, more accurate estimates for the incidence rates of dementia in the PD group are available in this study due to the usage of the first diagnosed PD cases rather than the prevalent PD cases, as this might reduce the variations in the incidence of dementia across various PD durations. Lastly, a multivariate Cox proportional hazard regression with a competing risk analysis was used to control for the confounding bias and to account for the competing risk of death.

Still, our study had some limitations. Firstly, we solely selected our PD cases according to physician-recorded diagnosis and prescriptions reported in medical claims, which might have led to potential disease misclassification. However, we used at least three PD-related diagnoses and prescriptions, with the first and last visits >90 days apart, which greatly decrease the likelihood of disease misclassification. Similarly, because we selected patients

with dementia only by using NHIR datasets, potential disease misclassification may be
 present. To address this concern, we only included dementia cases diagnosed with ≥ three
 ambulatory visits or ≥ one hospitalization in this study to increase the validity of dementia
 identification.

Secondly, because patients with PD may utilize the health care system more often than control groups, surveillance bias may be present. Thus, to address this concern, we calculated the number of medical visits for one year after the index date and adjusted for this in the multivariate regression model. Also, the severity of dementia is not available in the database, and we could not distinguish subtypes of dementia in our datasets. Therefore, it is essential for patients with PD, particularly in high risk groups such as subjects aged <70 years, to have regular cognitive assessments including combinations of neuropsychological markers throughout the early disease stages, which not only will provide benefits for identification of the subtypes in dementia but will also decrease underestimation of risk for dementia in PD.

Thirdly, due to the limited information available from the claims data, we were unable to consider a comprehensive list of potential confounders such as smoking, educational level, physical function, and genesin the analysis, which may have resulted in residual confounding bias. To reduce such bias, we used COPD and occupational status as surrogates for smoking and educational level, respectively. Finally, the disease symptoms of PD cases at different disease stages may play a role, to some extent, in the relationship between PD and the risk of dementia. However, because information on the disease symptoms is unavailable from the NHI data, we have left this area (such as non-motor symptoms) for further investigations.

In conclusion, it was found that PD confers a higher risk of dementia than the general population, especially in those aged <70 years in both sexes. Regular monitoring for the development of dementia in patients with PD longitudinally is recommended. Future research should include further evaluation of the underlying mechanism and subtypes for dementia development after diagnosis of PD. Page 17 of 30

2 3	1								
4 5	2	Acknowledgements: We thank the Bureau of National Health Insurance in the Ministry of							
6 7 8	3	Health and Welfare and the National Health Research Institutes for providing the National							
9 10	4	Health Insurance Research Database used in this study. The interpretation and conclusions							
11 12	5	contained herein do not represent those of the Bureau of National Health Insurance, Ministry							
13 14 15	6	of Health and Welfare, or National Health Research Institutes.							
16 17 18 19 20	7	Author contributions: Chih-Ching Liu analyzed the data and wrote the draft of the							
	8	manuscript. Yu Sun and Pei-Chen Lee provided further data analyses and interpretation.							
20 21	9	Chung-Yi Li and Susan C. Hu advised the study and revised the manuscript. All authors have							
22 23 24	10	approved the final version of the manuscript.							
25 26	11	Funding: This study was supported by a grant from Taiwan Ministry of Science and							
27 28	12	Technology (MOST 106-2314-B-227-010).							
29 30	13	Disclaimer: The funder had no role in study design, data collection and analysis, and the							
31 32 33	14	preparation of the manuscript.							
34 35	15	Competing interests: None.							
36 37	16	Patient consent: Not required.							
38 39	17	Ethics approval: A full review by theinstitutional review board was not required because the							
40 41 42	18	encryption of the identification numbers makes it impossible to identify individuals. Access to							
43 44	19	the National Health Insurance Research Database datasets is approved by the National Health							
45 46	20	Research Institutes Review Committee.							
47 48	21	Provenance and peer review: Not commissioned; externally peer reviewed.							
49 50 51	22	Data sharing statement: We, as the authors of this original research article, state that there is							
52 53	23	no additional, unpublished data available from this study. Raw data sharing from National							
54 55	24	Health Insurance Research Database is prohibited according to the National Health Research							
56 57	25	Institutes (NHRI) policies in Taiwan.							
58 59 60									

1			
2 3	1	REFE	CRENCES
4	2	1.	World Health Organization. Dementia: a public health priority. 2012 [cited 2018
5 6	3		April 2]. http://www.who.int/mental_health/publications/dementia_report_2012/en/
7	4	2.	Alzheimer's Disease International. World Alzheimer Report 2015: The Global Impact
8 9	5		of Dementia. 2015 [cited 2018 April 1].
10	6		https://www.alz.co.uk/research/world-report-2015
11 12	7	3.	Russell A, Drozdova A, Wang W, et al. The impact of dementia development
13	8		concurrent with Parkinson's disease: a new perspective. CNS Neurol Disord Drug
14 15	9		Targets 2014;13:1160-8.
16	10	4.	Kalia LV, Lang AE. Parkinson's disease. Lancet 2015;386:896-912.
17 18	11	5.	Xu Y, Yang J, Shang H. Meta-analysis of risk factors for Parkinson's disease dementia.
19	12		Transl Neurodegener 2016;5:11.
20 21	13	6.	Domellof ME, Ekman U, Forsgren L, et al. Cognitive function in the early phase of
22	14		Parkinson's disease, a five-year follow-up. Acta Neurol Scand 2015;132:79-88.
23 24	15	7.	Anang JB, Gagnon JF, Bertrand JA, et al. Predictors of dementia in Parkinson disease:
25	16		a prospective cohort study. <i>Neurology</i> 2014;83:1253-60.
26 27	17	8.	Zhu K, van Hilten JJ, Marinus J. Predictors of dementia in Parkinson's disease;
28	18		findings from a 5-year prospective study using the SCOPA-COG. Parkinsonism Relat
29 30	19		Disord 2014;20:980-5.
31	20	9.	Williams-Gray CH, Mason SL, Evans JR, et al. The CamPaIGN study of Parkinson's
32 33	21		disease: 10-year outlook in an incident population-based cohort. J Neurol Neurosurg
34	22		Psychiatry 2013;84:1258-64.
35 36	23	10.	Aarsland D, Andersen K, Larsen JP, et al. Risk of dementia in Parkinson's disease: a
37	24		community-based, prospective study. Neurology 2001;56:730-6.
38 39	25	11.	Perez F, Helmer C, Foubert-Samier A, et al. Risk of dementia in an elderly population
40	26		of Parkinson's disease patients: a 15-year population-based study. Alzheimers Dement
41 42	27		2012;8:463-9.
43	28	12.	Marder K, Tang MX, Cote L, et al. The frequency and associated risk factors for
44 45	29		dementia in patients with Parkinson's disease. Arch Neurol 1995;52:695-701.
46	30	13.	Levy G, Schupf N, Tang MX, et al. Combined effect of age and severity on the risk of
47 48	31		dementia in Parkinson's disease. Ann Neurol 2002;51:722-9.
49	32	14.	de Lau LM, Schipper CM, Hofman A, et al. Prognosis of Parkinson disease: risk of
50 51	33		dementia and mortality: the Rotterdam Study. Arch Neurol 2005;62:1265-9.
52	34	15.	Hobson P, Meara J. Risk and incidence of dementia in a cohort of older subjects with
53 54	35		Parkinson's disease in the United Kingdom. Mov Disord 2004;19:1043-9.
55	36	16.	Haugarvoll K, Aarsland D, Wentzel-Larsen T, et al. The influence of cerebrovascular
56 57	37		risk factors on incident dementia in patients with Parkinson's disease. Acta Neurol
58	38		<i>Scand</i> 2005;112:386-90.
59 60	39	17.	Levy G, Tang MX, Cote LJ, et al. Do risk factors for Alzheimer's disease predict

Page 19 of 30

1			
2 3	1		dementia in Parkinson's disease? An exploratory study. Mov Disord 2002;17:250-7.
4	2	18.	Breteler MM, de Groot RR, van Romunde LK, et al. Risk of dementia in patients with
5	3		Parkinson's disease, epilepsy, and severe head trauma: a register-based follow-up
7	4		study. Am J Epidemiol 1995;142:1300-5.
8	5	19.	Hely MA, Reid WG, Adena MA, et al. The Sydney multicenter study of Parkinson's
9 10	6		disease: the inevitability of dementia at 20 years. Mov Disord 2008;23:837-44.
11	7	20.	Kwon KY, Kang SH, Kim M, et al. Nonmotor Symptoms and Cognitive Decline in de
12 13	8		novo Parkinson's Disease. Can J Neurol Sci 2014;41:597-602.
14	9	21.	Auyeung M, Tsoi TH, Mok V, et al. Ten year survival and outcomes in a prospective
15 16	10		cohort of new onset Chinese Parkinson's disease patients. J Neurol Neurosurg
17	11		Psychiatry 2012;83:607-11.
18 19	12	22.	Huang YC, Wu ST, Lin JJ, et al. Prevalence and risk factors of cognitive impairment
20	13		in Parkinson disease: a population-based case-control study in Taiwan. Medicine
21 22	14		(Baltimore) 2015;94:e782.
23	15	23.	Lee SY, Ryu HJ, Seo JW, et al. Dementia-Free Survival and Risk Factors for
24 25	16		Dementia in a Hospital-Based Korean Parkinson's Disease Cohort. J Clin Neurol
26	17		2017;13:21-6.
27 28	18	24.	National Health Insurance Administration. Universal Health Coverage in Taiwan.
29	19		2017 [cited 2018 May 8].
30 31	20		https://www.nhi.gov.tw/English/Content_List.aspx?n=8FC0974BBFEFA56D&topn=
32	21		ED4A30E51A609E49
33 34	22	25.	Sun Y, Chang YH, Chen HF, et al. Risk of Parkinson disease onset in patients with
35	23		diabetes: a 9-year population-based cohort study with age and sex stratifications.
36 37	24		Diabetes Care 2012;35:1047-9.
38	25	26.	Shen CC, Tsai SJ, Perng CL, et al. Risk of Parkinson disease after depression: a
39 40	26		nationwide population-based study. Neurology 2013;81:1538-44.
41	27	27.	Chiang CJ, Yip PK, Wu SC, et al. Midlife risk factors for subtypes of dementia: a
42 43	28		nested case-control study in Taiwan. Am J Geriatr Psychiatry 2007;15:762-71.
44	29	28.	Liu CC, Li CY, Lee PC, et al. Variations in Incidence and Prevalence of Parkinson's
45 46	30		Disease in Taiwan: A Population-Based Nationwide Study. Parkinsons Dis
47	31		2016;2016:8756359.
48 49	32	29.	Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic
50	33		comorbidity in longitudinal studies: development and validation. J Chronic Dis
51 52	34		1987;40:373-83.
52	35	30.	Charlson M, Szatrowski TP, Peterson J, et al. Validation of a combined comorbidity
54 55	36		index. J Clin Epidemiol 1994:47:1245-51.
55 56	37	31.	Driver JA, Kurth T, Buring JE, <i>et al.</i> Parkinson disease and risk of mortality: a
57 58	38		prospective comorbidity-matched cohort study. <i>Neurology</i> 2008:70:1423-30
58 59	39	32	McKeith IG Boeve BF Dickson DW <i>et al</i> Diagnosis and management of dementia
60	55	52.	mercetario, boeve br, brekson bw, et al. bragnosis and management of dementia

1			
2 3	1		with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology
4	2		2017;89:88-100.
5	3	33.	Noordzij M, Leffondre K, van Stralen KJ, et al. When do we need competing risks
7	4		methods for survival analysis in nephrology? Nephrol Dial Transplant
8 0	5		2013;28:2670-7.
10	6	34.	Prentice RL, Kalbfleisch JD, Peterson AV, Jr., et al. The analysis of failure times in
11 12	7		the presence of competing risks. <i>Biometrics</i> 1978;34:541-54.
13	8	35.	Braak H, Del Tredici K, Bratzke H, et al. Staging of the intracerebral inclusion body
14 15	9		pathology associated with idiopathic Parkinson's disease (preclinical and clinical
16	10		stages). J Neurol 2002;249 Suppl 3:Iii/1-5.
17 18	11	36.	Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic
19	12		Parkinson's disease. Neurobiol Aging 2003;24:197-211.
20 21	13	37.	Matthews FE, Stephan BC, Robinson L, et al. A two decade dementia incidence
22	14		comparison from the Cognitive Function and Ageing Studies I and II. Nat Commun
23 24	15		2016;7:11398.
25	16	38.	Solomon A, Mangialasche F, Richard E, et al. Advances in the prevention of
26 27	17		Alzheimer's disease and dementia. J Intern Med 2014;275:229-50.
28	18	39.	Levy G, Tang MX, Cote LJ, et al. Motor impairment in PD: relationship to incident
29 30	19		dementia and age. Neurology 2000;55:539-44.
31	20	40.	de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to
32 33	21		cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012;2012:367516.
34	22	41.	Liu H, Xing A, Wang X, et al. Regulation of beta-amyloid level in the brain of rats
35 36	23		with cerebrovascular hypoperfusion. Neurobiol Aging 2012;33:826.e31-42.
37	24	42.	Grant I, Heaton RK, McSweeny AJ, et al. Neuropsychologic findings in hypoxemic
38 39	25		chronic obstructive pulmonary disease. Arch Intern Med 1982;142:1470-6.
40	26		
41 42	27		
43			
44 45			
46			
47 48			
49			
50 51			
52			
53 54			
55			
56 57			
58			
59 60			

	PD grou	р	Control group		_	
Variables ^a	n	%	n	%	P value	
Age (years)						
<70	1852	31.2	4220	31.2	1.00 ^d	
70-74	1314	21.2	6570	21.2		
75-79	1460	24.6	7300	24.6		
≥ 80	1306	22.0	6515	22.0		
Mean (±SD) ^b	72.5±9.4	1	70.8±12.	7		
Sex					1.00 ^d	
Male	3116	52.6	15580	52.6		
Female	2813	47.4	14065	47.4		
Insurance premium (NTD) ^b					< 0.000	
Dependent	2333	39.9	9721	33.8		
<median (19,200)<="" td=""><td>1734</td><td>29.6</td><td>7753</td><td>26.2</td><td></td></median>	1734	29.6	7753	26.2		
>=Median	1787	30.5	12171	41.0		
Mean (±SD) ^{b,c}	7102.6±	11122.9	10194.0=	⊧13197.8		
Urbanization status					0.01 ^d	
Urban	3203	54.7	15197	51.8		
Suburban	2085	35.6	9741	33.2		
Rural	566	9.8	• 4424	15.0		
Geographic area					< 0.000	
Northern	2670	45.6	13130	44.8		
Central	1491	25.5	7288	24.9		
Southern	1519	25.9	7957	27.1		
Eastern	174	3.0	931	3.2		
Occupational status					< 0.000	
White collar	1482	25.0	9242	31.2		
Blue collar	2075	35.0	11846	40.0		
Others	2375	40.0	8557	28.8		
History of comorbidity						
Without comorbidities	1151	19.4	16393	55.3	< 0.000	
Hypertension	3578	60.3	11431	38.6	< 0.000	
Diabetes	1430	24.1	4112	13.9	< 0.000	
CAD	1955	33.0	4890	16.5	< 0.000	
Stroke	1977	33.3	2924	9.9	< 0.000	
Hyperlipidemia	1089	18.4	3013	10.2	< 0.000	
COPD	1719	29.0	5624	19.0	<0.000	

1]	Table 1.	Characte	ristics	of the	study	subjects
-----	----------	----------	---------	--------	-------	----------

1 ว											
2 3		Charlson's score					<0.0001 ^a				
4		0	2841	47.9	22123	74.6					
5 6		1	1707	28.8	4640	15.7					
7		>=2	1384	23.3	2282	9.7					
8 9		Mean number of medical	39.6 (±26.:	5)	21.9 (±19.7	7)	<0.0001 °				
10 11		VISIUS (±SD) ⁶	5022	100.0	20645	100.0					
12	1	alagangistangay hatugan tha	3932	100.0	29043	100.0	formin dissi dasal				
13 14	1	"Inconsistency between the	iotal popul	ation and	the populat	ion summed	Torindividual				
15	2	bSD=Standard deviation:	NTD-New	Taiwan	Dollars	CAD-Corr	noru ortoru				
16 17	3 1	disease:COPD=chronic obstr	INTD-New	Taiwan	Dollars,	CAD-Con	mary artery				
18 10		^c The dependent insurers were not included									
19 20	6	^d Based on γ^2 test	not meruded	•							
21	7	Based on a Student's t test									
22	-										
24 25											
25 26											
27											
28 29											
30											
31 32											
33											
34 35											
36											
37											
30 39											
40											
41 42											
43											
44 45											
45 46											
47											
48 49											
50											
51											
52 53											
54											
55 56											
סכ 57											
58											

 BMJ Open

	≤ 1 years			>1 years				
	ID (95% CI) ^{a,b}		Crude HR	AHR	ID (95% CI) ^{a,b}		Crude HR	AHR
Variables	Control group	PD group	(95% CI)	(95% CI)	Control group	PD group	(95% CI)	(95% CI)
Male								
<70	1.61	56.23	34.44	15.74	2.61	17.57	6.93	3.82
	(0.42 - 2.81)	(40.16 - 72.31)	(15.58 - 76.13)	(6.67 - 37.10) ^c	(2.13 - 3.09)	(14.48 - 20.67)	(5.38 - 8.93)	(2.79 - 5.22)
70-74	5.61	111.38	19.44	13.00	9.23	32.27	3.65	3.06
	(3.08 - 8.13)	(85.29 - 137.47)	(11.73 - 32.21)	(7.59 - 22.26)°	(8.16 - 10.30)	(27.02 - 37.52)	(2.98 - 4.47)	(2.41 - 3.89
75-79	7.59	129.62	16.69	9.84	14.01	38.05	2.87	2.26
	(4.92 - 10.27)	(103.83 - 155.42)	(11.16 - 24.95)	(6.27 - 15.46)°	(12.77 - 15.25)	(32.58 - 43.51)	(2.42 - 3.41)	(1.85 - 2.75
≥ 80	22.18	196.24	8.64	4.35	18.94	41.87	2.25	1.90
	(17.26 - 27.10)	(161.70 - 230.78)	(6.58 - 11.57)	(3.13 - 6.05) ^c	(17.31 - 20.57)	(35.34 - 48.40)	(1.87 - 2.69)	(1.55 - 2.33
Total	8.81	118.82	13.23	7.18	10.27	30.33	3.02	2.44
	(7.32 - 10.29)	(106.16 - 131.49)	(10.85 - 16.14)	$(5.73 - 9.01)^d$	(9.74 - 10.81)	(27.93 - 32.73)	(2.75 - 3.33)	(2.19 - 2.73
Female								
<70	1.43	51.66	35.81	10.55	3.35	22.23	7.14	4.27
	(0.37 - 2.49)	(37.20 - 66.12)	(16.24 - 79.13)	(4.21 - 26.45) ^c	(2.85 - 3.86)	(18.98 - 25.49)	(5.78 - 8.81)	(3.25 - 5.63
70-74	7.37	89.93	12.04	4.98	10.81	33.61	3.29	2.82
	(4.36 - 10.38)	(65.72 - 114.14)	(7.40 - 19.60)	(2.84 - 8.74) ^c	(9.62 - 12.00)	(28.25 - 38.97)	(2.71 - 4.01)	(2.25 - 3.53
75-79	10.92	165.75	14.81	8.09	17.61	43.22	2.56	2.30
	(7.25 - 14.59)	(132.06 - 199.4)	(10.02 - 21.89)	(5.23 - 12.51) ^c	(16.04 - 19.18)	(36.70 - 49.70)	(2.14 - 3.07)	(1.88 - 2.81

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2												
3		≥ 80	31.19	180.68	5.69	3.17	22.99	38.74	1.68	1.49		
4 5			(24.60 - 37.79)	(143.56 - 217.8)	(4.24 - 7.64)	(2.18 - 4.62) ^c	(20.97 - 25.02)	(32.00 - 45.47)	(1.38 - 2.05)	(1.19 - 1.86) ^c		
6		Total	10.80	109.89	10.03	5.54	11.41	31.72	2.85	2.41		
7 8			(9.08 - 12.53)	(97.16 - 122.63)	(8.23 - 12.21)	$(4.39 - 6.99)^d$	(10.83 - 12.00)	(29.24 - 34.21)	(2.60 - 3.14)	$(2.15 - 2.69)^d$		
9		Overall	9.76	114.49	11.54	6.43	10.83	30.99	2.93	2.42		
10 11			(8.62 - 10.89)	(105.51 - 123.4)	(10.04 - 13.27)	(5.46 - 7.57) ^e	(10.43 - 11.22)	(29.27 - 32.72)	(2.75 - 3.14)	(2.23 - 2.61) ^e		
12	1	In the first time	e partition (≤ 1	years), the interac	tions were signif	ficant for PD with a	age (p<0.0001) an	nd with sex $(p=0)$.04), with age in	n men (<i>p</i> =0.02),		
13 14	2	and with age in women ($p < 0.0001$). In the second time partition (>1 years), the interactions were significant for PD with age ($p < 0.0001$), with age in										
15	3	men (<i>p</i> <0.0001), and with age ir	n women (<i>p</i> <0.000	01), but not for P	PD with sex ($p=0.23$).		C 4			
10	4	^a ID= incidence	density (per 1,00	0 person-years), (CI=confidence in	nterval, AHR=adjus	ted hazard ratio, l	HR=hazard ratio				
18 10	5	^b Based on Pois	son assumption									
20	6	^c Based on Cox proportional hazard regression with competing risk analysis and adjusted for all variables, except for age and sex.										
21 22	7	^d Based on Cox proportional hazard regression with competing risk analysis and adjusted for all variables, except for sex.										
23	8	Based on Cox proportional hazard regression with competing risk analysis and adjusted for age, sex, insurance premium, urbanization status,										
24 25	9	geographic area, occupational status, hypertension status, diabetes, CAD, stroke, hyperlipidemia, COPD, Charlson's score, and number of medical										
26	10	visits.										
27 28	11	*P<0.05										
28 29	12											
30 21												
32												
33 24												
34 35												
36												
37												
39												
40												
41 42												
43				For pee	r review only - http:	://bmiopen.bmi.com/si	ite/about/quideline	.xhtml				
44 45												

Variables				>1 years				
	ID (95% CI) ^{a,b}		Crude HR	AHR	ID (95% CI) ^{a,b}		Crude HR	AHR
	Control group	PD group	(95% CI)	(95% CI)	Control group	PD group	(95% CI)	(95% CI)
Hypertension								
No	7.49	110.98	14.55	7.75	8.57	27.99	3.36	3.05
	(6.23 - 8.76)	(96.94 - 125.02)	(11.79 - 17.95)	(6.05 - 9.94) ^c	(8.13 - 9.01)	(25.45 - 30.53)	(3.02 - 3.73)	(2.69 - 3.45)
Yes	13.40	116.81	8.59	5.25	14.80	33.14	2.29	2.07
	(11.26 - 15.55)	(105.12 - 128.49)	(7.12 - 10.37)	(4.26 - 6.47) ^c	(14.03 - 15.56)	(30.81 - 35.48)	(2.09 - 2.50)	(1.87 - 2.28)
			Interaction: <i>p</i> =	0.01			Interaction: p<0.0001	
Diabetes								
No	9.13	115.65	12.45	6.99	10.15	29.39	2.97	2.47
	(7.95 - 10.31)	(105.28 - 126.02)	(10.64 - 14.56)	(5.82 - 8.41)°	(9.74 - 10.56)	(27.48 - 31.29)	(2.75 - 3.21)	(2.26 - 2.70)
Yes	13.69	110.87	7.99	4.43	15.46	36.57	2.42	2.21
	(10.07 - 17.31)	(92.88 - 128.85)	(5.87 - 10.89)	(3.16 - 6.22) ^c	(14.13 - 16.79)	(32.61 - 40.53)	(2.10 - 2.78)	(1.89 - 2.59)
			Interaction: <i>p</i> =	0.09			Interaction: <i>p</i> =	0.19
CAD								
No	8.47	107.08	12.45	7.38	10.11	29.77	3.02	2.58
	(7.31 - 9.62)	(96.49 - 117.67)	(10.53 - 14.73)	(6.09 - 8.95) ^c	(9.69 - 10.52)	(27.73 - 31.81)	(2.79 - 3.28)	(2.35 - 2.83)
Yes	16.39	129.78	7.79	4.16	14.85	33.69	2.32	2.04
	(12.75 - 20.02)	(113.04 - 146.52)	(6.03 - 10.06)	(3.13 - 5.55) ^c	(13.66 - 16.04)	(30.47 - 36.91)	(2.05 - 2.63)	(1.77 - 2.35)
			Interaction: <i>p</i> =	0.02			Interaction: <i>p</i> =	0.01
Stroke								
			1 1			1		
		For peer revi	ew only - http://br	mjopen.pmj.com/site	/about/guidelines.x	ntmi		

No	7.84	99.07	12.44	7.79	9.99	29.39	3.03	2.71
	(6.77 - 8.91)	(88.88 - 109.26)	(10.49 - 14.75)	(6.44 - 9.42) ^c	(9.59 - 10.39)	(27.37 - 31.40)	(2.80 - 3.29)	(2.48 - 2.97) ^c
Yes	27.73	146.13	5.20	3.75	19.94	34.66	1.73	1.68
	(21.57 - 33.88)	(128.41 - 163.86)	(4.04 - 6.69)	(2.87 - 4.90) ^c	(18.09 - 21.80)	(31.36 - 37.97)	(1.52 - 1.98)	(1.46 - 1.94) ^c
			Interaction: <i>p</i> <	0.0001			Interaction: <i>p</i> <	0.0001
Hyperlipidemia	L							
No	9.83	118.50	11.84	6.50	10.49	30.64	2.99	2.51
	(8.63 - 11.03)	(108.36 - 128.63)	(10.20 - 13.73)	(5.46 - 7.73) ^c	(10.08 - 10.90)	(28.73 - 32.54)	(2.78 - 3.23)	(2.30 - 2.73) ^c
Yes	9.08	97.10	10.57	5.83	13.82	32.52	2.42	2.02
	(5.66 - 12.51)	(77.97 - 116.23)	(6.91 - 16.16)	(3.64 - 9.32) ^c	(12.40 - 15.23)	(28.46 - 36.58)	(2.05 - 2.84)	(1.68 - 2.43) ^c
			Interaction: <i>p</i> =	0.92			Interaction: <i>p</i> =	0.18
COPD								
No	8.72	108.70	12.25	6.78	10.21	29.59	2.98	2.54
	(7.53 - 9.91)	(98.33 - 119.07)	(10.38 - 14.46)	(5.60 - 8.21)°	(9.79 - 10.63)	(27.62 - 31.56)	(2.76 - 3.23)	(2.32 - 2.78) ^c
Yes	14 27	128 85	8.91	5.33	13 77	34.86	2.56	2.11
	$(11\ 10\ -\ 17\ 43)$	(111.08 - 146.02)	(6.87 - 11.56	(3.94 - 7.19)°	(12, 70 - 14, 84)	(31 31 - 38 41)	(2.25 - 2.91)	(1.82 - 2.45) ^c
	(11.10 17.43)	(111.00 140.02))		(12.70 14.04)	(51.51 50.41)		
			Interaction: <i>p</i> =	0.04			Interaction: <i>p</i> =	0.08
Number of								
Comorbidities								
0	5.88	99.30	16.66	8.68	7.48	24.63	3.40	3.52
	(4.56 - 7.19)	(80.40 - 118.21)	(12.43 - 22.33)	$(6.27 - 12.00)^d$	(7.01 - 7.96)	(21.32 - 27.94)	(2.93 - 3.96)	(2.97 - 4.16) ^d
1	9.60	104.64	10.73	7.70	11.76	28.61	2.47	2.67
	(7.19 - 12.00)	(85.26 - 124.02)	(7.86 - 14.64)	(5.56 - 10.69) ^d	(10.87 - 12.65)	(24.94 - 32.27)	(2.13 - 2.87)	$(2.27 - 3.13)^d$
≥ 2	15.08	122.57	8.01	4.90	15.28	34.21	2.28	2.11

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3			(12 (5 17 52)	(110 (5 1245)		(4.01 5.00)d	(14.42 1(.12)	(21.82, 26.60)	(2.08, 2.40)	(1.02, 2.22) d			
4 5			(12.03 - 17.52)	(110.03 - 134.3)	(0.03 - 9.00) Interaction: $p=$	(4.01 - 3.99) ^a 0.01	(14.45 - 10.12)	(31.83 - 30.00)	(2.08 - 2.49)	(1.92 - 2.52)*			
6 7		Charlson's score	Charlson's score										
7 8		0	7.16	95.08	13.07	7.34	9.73	28.39	3.00	2.67			
9 10 11 12 13			(6.04 - 8.28)	(83.31 - 106.84)	(10.72 - 15.96)	(5.88 - 9.17) ^e	(9.30 - 10.15)	(26.09 - 30.70)	(2.73 - 3.29)	(2.41 - 2.97) ^e			
		1	16.55	120.17	7.15	4.36	14.92	34.79	2.38	2.11			
			(12.80 - 20.29)	(102.99 - 137.35)	(5.47 - 9.33)	(3.26 - 5.83) ^e	(13.70 - 16.13)	(31.34 - 38.25)	(2.09 - 2.71)	(1.83 - 2.44) ^e			
13 14		≥ 2	19.33	148.51	7.60	5.08	13.93	32.35	2.32	2.07			
15			(14.13 - 24.53)	(127.11 - 169.91)	(5.61 - 10.31)	(3.62 - 7.13) ^e	(12.36 - 15.51)	(28.45 - 36.24)	(1.96 - 2.73)	$(1.71 - 2.51)^{e}$			
16 17					Interaction: <i>p</i> =	0.01	``````````````````````````````````````		Interaction: <i>p</i> =	0.01			
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	1 2 3 4 5 6 7 8 9	^a ID= incidence de ^b Based on Poisso ^c Based on Cox geographic area visits. ^d Based on Cox pr ^e Based on Cox pr * <i>P</i> <0.05	ensity, CI=confid n assumption proportional haza , occupational sta coportional hazard	ence interval ard regression with atus, status of hyper d regression with co d regression with co	meraction, <i>p</i> -	sk analysis and es, CAD, stroke, nalysis and adjus nalysis and adjust	adjusted for age , hyperlipidemia, ted for all variable ted for all variable	, sex, insurance p COPD, Charlson's es, except for come es, except for Char	premium, urbar score,and num orbidities. lson's score.	nization status, ber of medical			
42 43 44 45				For peer revi	ew only - http://b	mjopen.bmj.com/si	ite/about/guidelines	.xhtml					

Figure 1 Comparison of Kaplan-Meier failure estimates of dementia onset between the two groups. PD, Parkinson's disease.

153x90mm (300 x 300 DPI)

	Item	Page	
	No	No	Recommendation
Title and abstract	1	2	(<i>a</i>) Indicate the study's design with a commonly used term in the title abstract
		3	(b) Provide in the abstract an informative and balanced summary of wh
			was done and what was found
		In	troduction
Background/rationale	2	4-5	Explain the scientific background and rationale for the investigation be
			reported
Objectives	3	5	State specific objectives, including any prespecified hypotheses
		M	ethods
Study design	4	6	Present key elements of study design early in the paper
Setting	5	5-6	Describe the setting, locations, and relevant dates, including periods of
			recruitment, exposure, follow-up, and data collection
Participants	6	6-7	(a) Cohort study—Give the eligibility criteria, and the sources and met
			of selection of participants. Describe methods of follow-up
			Case-control study—Give the eligibility criteria, and the sources and
			methods of case ascertainment and control selection. Give the rationale
			the choice of cases and controls
			Cross-sectional study—Give the eligibility criteria, and the sources and
			methods of selection of participants
		6-7	(b) Cohort study—For matched studies, give matching criteria and nun
			of exposed and unexposed
			<i>Case-control study</i> —For matched studies, give matching criteria and the
			number of controls per case
Variables	7	7-8	Clearly define all outcomes, exposures, predictors, potential confounde
			and effect modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	5-8	For each variable of interest, give sources of data and details of metho
measurement			assessment (measurement). Describe comparability of assessment meth
			there is more than one group
Bias	9	6-8	Describe any efforts to address potential sources of bias
Study size	10	5-6	Explain how the study size was arrived at
Ouantitative variables	11	7-8	Explain how quantitative variables were handled in the analyses. If
(applicable, describe which groupings were chosen and why
Statistical methods	12	8-9	(<i>a</i>) Describe all statistical methods including those used to control for
Statistical methods	12	0)	(a) Deserve an statistical methods, metalling close used to control for confounding
		8-9	(b) Describe any methods used to examine subgroups and interactions
			(c) Explain how missing data were addressed
			(d) Cohort study If applicable, explain how loss to follow up was
		-	addressed
			Case-control study_If applicable, explain how metabing of access and
			cuse-control study—11 appricable, explain now matching of cases and
			Current sectional study. If applicable describe applying wether to take
			cross-sectional study—11 applicable, describe analytical methods takin
			account of sampling strategy
		-	(e) Describe any sensitivity analyses

3
4
5
6
7
, 0
0
9
10
11
12
13
14
15
16
17
18
10
17 20
20
21
22
23
24
25
26
27
28
29
30
21
21
32
33
34
35
36
37
38
39
40
41
42
42
ΔΛ
44
45
40
47
48
49
50
51
52
53
54
55
56
57
50
20
59

1 2

Results						
Participants	13*	5-7	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed			
		_	(b) Give reasons for non-participation at each stage			
		_	(c) Consider use of a flow diagram			
Descriptive	14*	10	(a) Give characteristics of study participants (eg demographic, clinical, social) and			
data			information on exposures and potential confounders			
		21-	(b) Indicate number of participants with missing data for each variable of interest			
		22				
		10	(c) Cohort study—Summarise follow-up time (eg, average and total amount)			
Outcome data	15*	10-	Cohort study—Report numbers of outcome events or summary measures over time			
		12				
		-	Case-control study—Report numbers in each exposure category, or summary measures			
			of exposure			
		-	Cross-sectional study-Report numbers of outcome events or summary measures			
Main results	16	10-	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and			
		12	their precision (eg, 95% confidence interval). Make clear which confounders were			
			adjusted for and why they were included			
		10-	(b) Report category boundaries when continuous variables were categorized			
		12				
		10-	(c) If relevant, consider translating estimates of relative risk into absolute risk for a			
		12	meaningful time period			
Other analyses	17	10-	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity			
		12	analyses			
		D	iscussion			
Key results	18	12-	Summarise key results with reference to study objectives			
		13				
Limitations	19	15-	Discuss limitations of the study, taking into account sources of potential bias or			
		16	imprecision. Discuss both direction and magnitude of any potential bias			
Interpretation 20 12-		12-	Give a cautious overall interpretation of results considering objectives, limitations,			
<u> </u>	~ 1	16	multiplicity of analyses, results from similar studies, and other relevant evidence			
Generalisability	21	12-	Discuss the generalisability (external validity) of the study results			
		16				
	Other information					
Funding	22	17	Give the source of funding and the role of the funders for the present study and, if			
			applicable, for the original study on which the present article is based			

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.