Range-expansion effects on the belowground plant microbiome

KS Ramirez et al.

Supplementary Data:

- 1. OTU tables (otuTables Ramirez.zip)
- 2. Environmental Factors by sample (SoilFactors Ramirez.txt)

Supplementary Table 1: Collection of belowground plant microbiome samples from 382 plant individuals across Europe (Greece, Montenegro, Slovenia, Austria, Germany and the Netherlands). Summary of 11 plant species and sample number. C. stoebe and R. austriaca originated from Central and Eastern Europe, while all other range-expanders originated from southern Europe.

Plant Type	Plant Species	Life Stage	AMF	Total
			association	Sample #
Native	Centaurea jacea	perennial	yes	27
Native	Geranium molle	annual	yes	53
Native	Rorippa sylvestris	perennial	no	30
Native	Tragopogon pratensis	perennial	yes	60
Related RE	Centaurea stoebe	perennial	yes	24
Related RE	Geranium pyrenaicum	perennial	yes	54
Related RE	Rorippa austriaca	perennial	no	12
Related RE	Tragopogon dubius	annual	yes	45
Unrelated RE	Lactuca serriola	annual/bi-annual	yes	54
Unrelated RE	Dittrichia graveolens	annual	yes	48
Unrelated RE	Rapistrum rugosum	annual	no	24

Supplementary Table 2: Plant species had the strongest effect on community composition, yet no factor was particularly strong in predicting composition, as determined by the PERMANOVA model which included plant species, plant type, pH, Nitrogen, Carbon and Latitude.

	Plant Species	Plant Type	рН	Nitrogen	Carbon	Latitude
Rhizosphere - ITS	$R^2 = 0.14^{***}$	ns	$R^2 = 0.05^{***}$	$R^2 = 0.004 **$	ns	ns
Soil-ITS	$R^2 = 0.07 * * *$	$R^2 = 0.01 * * *$	$R^2 = 0.005 ***$	ns	ns	ns
Rhizosphere – 16S	$R^2 = 0.08 * * *$	$R^2 = 0.02^{***}$	$R^2 = 0.01 * * *$	$R^2 = 0.006^{***}$	ns	ns

Soil-16S $R^2 = 0.07^{***}$ $R^2 = 0.02^{***}$ $R^2 = 0.05^{***}$ ns ns $R^2 = 0.05^{***}$	0.013***
--	----------

Supplementary Table 3: Relationship between community composition and latitude across the
gradient of range-expansion. Presented are the correlations between community dissimilarity and
latitude for each individual species, and for each plant type (shaded rows). ($P < 0.05^*$; $p < 0.01^{**}$;
p<<0.001***)

	Plant Species	Soil Fungi	Rhizosphere Fungi	Soil Bacteria	Rhizosphere Bacteria
Nat	C. jacaea	-0.40 (***)	-0.001 (ns)	-0.17 (*)	-0.39 (***)
Nat	G. molle	-0.44 (***)	-0.16 (ns)	-0.18 (**)	0.01 (ns)
Nat	R. sylvestris	0.19 (**)	0.13 (ns)	-0.11 (ns)	-0.22 (**)
Nat	T. pratensis	-0.18 (ns)	-0.07 (ns)	0.17 (*)	0.26 (**)
	Native	-0.11(**)	-0.4 (ns)	-0.14 (***)	-0.13 (*)
ReRE	C. stobe	-0.15 (ns)	0.12 ns*)	-0.06 (ns)	-0.04 (ns)
ReRE	G. pyrenaicum	0.12 (ns)	0.07 (ns)	-0.14 (ns)	0.00 (ns)
ReRE	R. austriaca	-0.31 (**)	-0.04 (ns)	-0.39 (***)	-0.29 (***)
ReRE	T. dubius	-0.24 (**)	0.41 (ns)	0.00 (ns)	0.39 (***)
	Related RE	-0.13 (**)	0.34 (ns)	-0.08 (*)	0.01 (*)
UnRE	L. serriola	0.01 (ns)	-0.24 (**)	-0.19 (***)	-0.47 (***)
UnRE	D. graveolens	-0.02 (ns)	-0.22 (**)	0.10 (ns)	0.12 (ns)
UnRE	R. rugosum	-0.40 (**)	-0.07 (ns)	-0.54 (***)	-0.33 (**)
	Unrelated RE	-0.12 (*)	-0.05 (ns)	-0.10 (*)	-0.32 (***)

Supplementary Table 4 Plant type had a significant effect on community composition, but there was an interaction with country for soil fungal communities. ($p < 0.05^*$; $p < 0.01^{**}$; $p < 0.001^{***}$)

	Nat	Related	Unrelated	Plant Type	Country
Rhizosphere fungi	а	а	b	F=30.878***	ns
Soil fungi	а	а	b	F=23.322***	F=22.135***
Rhizosphere bacteria	a	а	а	ns	F= 22.09***
Soil bacteria	а	а	b	F = 50.09 * * *	ns

Supplementary Table 5: Relationship between Alpha Diversity and latitude across the gradient of range-expansion. Presented are the correlations between alpha diversity and latitude for each individual species, and for each plant type (shaded rows). ($p < 0.05^*$; $p < 0.01^{**}$; $p < 0.001^{***}$)

	Plant Species	Fungal Soil	Fungal	Bacteria Soil	Bacteria
			Rhizosphere		Rhizosphere
Nat	C. jacaea	0.13 (ns)	-0.35 (*)	-0.05 (ns)	-0.05 (ns)
Nat	G. molle	0.43 (**)	0.21 (ns)	0.18 (ns)	0.18 (ns)
Nat	R. sylvestris	0.36 (**)	0.31 (*)	-0.14 (ns)	-0.15 (ns)
Nat	T. pratensis	0.17 (ns)	0.42 (*)	-0.10 (ns)	-0.10 (ns)
	Native	0.20 (*)	0.23 (*)	-0.06 (ns)	-0.09 (ns)
ReRE	C. stobe	0.11 (ns)	0.06 (ns)	0.72 (***)	0.73 (***)
ReRE	G. pyrenaicum	-0.22 (ns)	-0.19 (ns)	-0.11 (ns)	-0.11 (ns)
ReRE	R. austriaca	0.37 (ns)	-0.24 (ns)	-0.32 (ns)	-0.31 (ns)
ReRE	T. dubius	-0.04 (ns)	-0.58 (*)	0.12 (ns)	0.11 (ns)
	Related RE	-0.04 (ns)	0.12 (ns)	-0.05 (ns)	0.02 (ns)
UnRE	L. serriola	-0.19 (ns)	0.25 (ns)	-0.14 (ns)	-0.14 (ns)
UnRE	D. graveolens	0.42 (**)	0.24 (ns)	-0.02 (ns)	-0.02 (ns)
UnRE	R. rugosum	0.27 (ns)	-0.52 (*)	-0.36 (ns)	-0.36 (ns)
	Unrelated RE	(ns)	0.36 (***)	(ns)	(ns)

Supplementary Table 6 Unrelated range expanders had significantly lower microbial diversity than other plant types. Mean species richness of native, related range-expanding (RE) and unrelated range-expanding (RE) species. Significance of plant type and country determined by ANOVA.

	Unrelated	Related	Native	Significance-	Country
	RE	RE		Plant Type	
Fungal	308 ^b	221 ^a	226 ^a	< 0.00001	< 0.00001
Rhizosphere					
Fungal Soil	468 ^b	552 ^a	578 ^a	< 0.002	< 0.03
Bacterial	2695 ^b	1230 ^a	1527 ^a	< 0.0001	< 0.002
Rhizosphere					
Bacterial soil	4078 ^a	4244 ^a	4228 ^a	ns	ns

Supplementary Table 7. The ratio of potential plant pathogens:symbionts and plant pathogens:AMF significantly increased from the south to the north in the rhizosphere of unrelated range expanders. Presented are the Pearson correlation values ($p < 0.05^*$; $p < 0.01^{**}$; $p < 0.001^{***}$)

	Soil			F	Rhizosphere	
	Unrelated	Related	Native	Unrelated	Related	Native
Plant Pathogen:Sym	-0.07 (ns)	0.06 (ns)	0.11 (ns)	-0.31(***)	-0.5(ns)	0.17(ns)
Plant Pathogen:AMF	-0.05 (ns)	0.04 (ns)	0.13 (ns)	-0.19 (*)	0.06 (ns)	-0.19(*)

Supplementary Figure 1: Phylogenetic relatedness of the 11 plant species collected.

Supplementary Figure 2: Canonical Correspondence Analysis (CCA) of soil edaphic factors.

Supplementary Figure 3: Relative abundance of potential AMF and plant pathogens across the latitudinal gradient of range expansion in the (A) soil and (B) rhizosphere. While no significant trends were observed under either unrelated (red) or related (green) range-expanders, native plants (purple) experienced an increase in plant pathogens.