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Detailed Model Description 
  
This model description follows the ODD (Overview, Design concepts, Details) protocol for 
agent-based models [29,30]. Given how complex agent-based models can be, the ODD 
protocol was developed as a way to standardize the description of these models throughout 
ecology and other fields. This model has been implemented as a software program using 
object-oriented code in C++. 
  
Purpose 
The model simulates transmission of dengue virus (DENV) between individual people and 
mosquitoes that occupy a landscape of discrete locations where they encounter each other. The 
model also simulates the impact of a hypothetical dengue vaccine on the occurrence of DENV 
infection and on the occurrence of symptomatic disease associated with DENV infection within 
the simulated human population. 
  
Entities, state variables, and scales 
The model focuses on five primary entities: individual people, individual mosquitoes, infections, 
locations, and vaccines. Individual people have the following state variables: a location that is 
designated as the individual’s home, an activity space, gender, body size, infection status, 
infection history, and immune status. Individual mosquitoes have the following state variables: 
location and infection status. All individual mosquitoes are adult female Aedes aegypti. 
Infections have the following state variables: DENV serotype 1-4, day of infection, and, for 
infections in humans, day of recovery and day of immune acquisition. Locations have the 
following state variables: longitudinal and latitudinal coordinates of the location’s centroid, 
location type (residential, commercial, recreation, education, health care, religion, institutions, or 
others), and daily emergence rates of new adult mosquitoes. Vaccines have the following two 
state variables: efficacy against disease as a function of the age and pre-exposure history of the 
vaccinee, and the proportion of that efficacy attributable to protection against disease 
conditional on infection versus protection against infection conditional on exposure. Each of 
these five entities is defined by its own object class in our code. 
 
For purposes of software implementation, our model is, on one level, iterated on a daily basis. 
On another level and for most processes, however, our model treats time in a continuous 
fashion because it is fundamentally an event-based model, analogous to the Gillespie algorithm 
[77]. We made this decision to minimize inaccuracies associated with lumping and discretizing 
events that occur continuously [78], to avoid being forced to make a fixed decision about the 
order of different types of events, and to allow for maximal precision in describing probabilistic 
distributions of waiting times for various stochastic processes. This precision is important not 
only for realistic modeling of the temporal dynamics of transmission but will be increasingly 
important in the future to realistically account for the sometimes subtle effects that mosquito-
based interventions can have; e.g., reducing mosquito biting rates. The fundamental spatial unit 
in the model is the location, which we model after a city lot that each house or other building sits 
on. Altogether, our model applies to 40,839 lots, comprised primarily of homes but also 
including shops, markets, schools, churches, parks, and other locations. This constitutes the 
entirety of the core of the city of Iquitos, where the majority of relevant data collection has 
occurred over the last 15+ years and where roughly half of the entire metropolitan population 
lives. 
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Process overview and scheduling 
The key processes in the model are 1) movement by individual people, 2) movement by 
mosquitoes, 3) mosquito emergence, 4) mosquito death, 5) mosquito blood-feeding, 6) infection 
of susceptible people by infectious mosquitoes or 7) vice versa, 8) changes in the 
infectiousness of individual people over time, 9) changes in the immune status of individual 
people, 10) demographic changes in the human population, and 11) vaccination. The first of 
these processes is pre-calculated and incorporated into the model as an input. The timing until 
an event of each of the other types occurs is represented as a continuous random variable, 
such that events occur at specific times of day. These random variables are drawn from 
probability distributions described separately for each process in the Submodels section. An 
illustration of the continuous timing of events related to mosquito-host encounters is shown in 
Fig. 1. 
 
On a daily basis, the model iterates through each mosquito in the city and executes the events 
scheduled for that mosquito for that day in the order in which the events are scheduled to occur. 
One example of why this scheduling is important is if a mosquito is scheduled to both die and 
infect someone in the same day, the infection will never occur if death takes place first. Because 
events that apply to one mosquito have no effect on any other mosquitoes on that day, the order 
in which individual mosquitoes are processed is inconsequential. Mosquitoes are also assumed 
to have no effect on a human’s status within a day, and instead rely only on each person’s pre-
scheduled whereabouts when selecting a person upon whom to blood-feed. This decoupling of 
event scheduling within versus across days is possible because the onset of infectiousness in 
both people and mosquitoes always takes longer than a single day [41,79]. 
  
Design concepts 
 
Basic principles 
The model seeks to leverage years of studies in Iquitos, Peru, quantifying heterogeneities in 
DENV transmission that manifest at individual, household, and neighborhood scales. Priorities 
for the model include realistically modeling individual human movement patterns and biting 
heterogeneity among individuals simultaneously co-located at a single location. We also seek to 
model details of infection dynamics and vaccine effects at an individual level in accordance with 
the best available data from clinical trials. 
  
Emergence 
Patterns of DENV infection in space and time are emergent properties of the model and are not 
predefined. Stochasticity is the major driver of a priori uncertainty about these patterns. 
  
Adaptation 
The mosquito’s decision about whom to bite is influenced by the number of people present at a 
given time and each person’s attractiveness to mosquitoes [32]. 
  
Objectives 
The only entities in the model with any explicit objectives are mosquitoes, which seek to blood-
feed. That said, they suffer no penalty nor reap any reward as a consequence of failing or 
succeeding in their quest to blood-feed. 
  
Learning 
None of the entities in the model have a learning capacity. 
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Prediction 
None of the entities in the model have a predictive capacity. 
  
Sensing 
Each mosquito has the ability to sense the number of people present at its current location at a 
given time of day, as well as the attractiveness for blood-feeding on each person. The latter is a 
human state variable that depends on body surface area [32]. No mosquito is able to sense the 
presence or attractiveness of people at locations at which the mosquito is not currently present. 
As a consequence, their movement decisions are not affected by the presence or attractiveness 
of people at a location to which they might move. 
  
Interaction 
Mosquitoes interact with humans through blood-feeding and through the associated 
transmission of viruses in some cases. The movement trajectories of people are not affected by 
having been blood-fed upon. 

Stochasticity 
Prior to being incorporated into the model as an input, human movement trajectories are 
generated from a continuous-time Markov chain according to the algorithm by Perkins et al. 
[34]. Practically, this means that the duration of a visit to a given location is drawn from an 
exponential distribution and that the next location an individual visits is drawn from a categorical 
distribution over all other locations in an individual’s activity space. The rates associated with 
these exponential distributions are related to the duration of visits to each location, and the 
probabilities of the categorical distributions are related to the frequency of visits to each location. 
Proceeding each day after initialization, one of the individual’s daily trajectories is selected with 
equal probability. 
 
Mosquito lifespan is drawn from an exponential distribution at the time of a mosquito’s 
emergence. Mosquito movement is also highly stochastic, with the decision to stay or leave a 
location on a given day determined by a Bernoulli trial and the mosquito’s destination location 
drawn randomly from the set of all locations within 50 meters with even probability. The elapsed 
time before a mosquito blood-feeds again is drawn from an exponential distribution. 
 
A mosquito blood-feeds on a person at its current location, with the identity of that person 
determined by a random draw from a categorical distribution with probabilities proportional to 
each person’s biting attractiveness [32]. If either a mosquito is infectious and a person 
susceptible or vice versa, an infection results depending on the outcome of a Bernoulli trial. 
Thenceforth, the duration of the incubation period in a given mosquito is drawn randomly from a 
predefined lognormal distribution specified based on empirical studies [41]. Lastly, the duration 
of temporary cross-immunity in a given person is drawn randomly from an exponential 
distribution. Given uncertainty in the literature about the duration of temporary cross-immunity, 
we considered three different values that spanned the majority of variation in values assumed 
by other models: 180, 365, and 686 days [45]. We also examined alternative scenarios about 
whether the duration of temporary cross-immunity among individuals was fixed or exponentially 
distributed. 
 
For the sake of comparability across analyses, we use two distinct random number seeds in 
each simulation. One applies to events that directly involve vaccines or viruses, whereas the 
other applies to other events, most of which have to do with demographic events, movement, 
and human-mosquito contact. This allows for the landscape of human-mosquito encounters to 
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unfold identically across multiple simulations in which aspects of vaccination can be varied 
separately. 
  
Collectives 
Each person is assigned to a home location and as such is part of a household. Membership in 
a household comes with no special properties in the model other than the general tendency to 
spend more time at that common location than they would otherwise. Altogether, we considered 
a population of 200,000 people at the beginning of the simulation living in 38,835 houses within 
a total landscape of 40,839 locations. 
  
Observation 
The model is capable of producing a variety of different output files that report infections and 
other events, either individually or aggregated temporally. 
  
Initialization 
The composition of each house (i.e., how many residents plus each person’s age, sex, and 
body size) was obtained by simulating a population with house-level demographic profiles 
consistent with available survey data but conforming to a desired total population size and age 
and gender distribution [80]. 
 
The first step in the population simulation algorithm was to simulate household sizes that 
yielded the correct overall population size. To do so, we weighted the distribution of household 
sizes in the survey data by a geometric probability mass function with a fitted parameter p=0.34. 
Sampling 38,835 houses weighted in this way yielded an appropriately sized overall population 
of 200,000 individuals on average. The second step in the population simulation algorithm was 
to randomly draw demographic profiles for houses of each size from the survey data. We 
populated houses serially, keeping track of the number of simulated individuals of each age and 
sex as the simulation proceeded. Once a given age-sex combination was exhausted in the 
target age and sex distribution, we attempted to replace the individual in question with one of 
the same sex and age class (i.e., children under 18, adults 18+). Near the end of the population 
simulation routine, however, we deviated from the target age class and/or sex of the simulated 
individual in question. For example, this resulted in some of the very last simulated houses 
being inhabited by several adult men, which was a household profile not observed in the survey 
data but one that was necessary to obtain a realistic age and sex distribution for the population 
as a whole. 
 
Once the initial population was simulated, we simulated each person’s serostatus for each of 
the four DENV serotypes as a function of that person’s age and a parameter describing a 
baseline historical force of infection for each serotype prior to the time period of the simulation. 
We informed those parameters based on estimates of serotype-specific population 
seroprevalence at the beginning of the time period of the simulation as estimated by Reiner et 
al. [49]. No active infections were present at the time of initialization but instead accumulated 
over time in response to infections in temporary individuals that seeded transmission. 
 
The number of mosquitoes that emerge in each location on each day of the simulation is 
simulated as a Poisson random variable according to a rate that is specific to each location on 
each day. The model was initialized with the rate for each location on the first day of the 
calibration period, which was January 1, 2000. The derivation of this model is described in the 
“Mosquito emergence” portion of the Submodels section. 
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Input 
Each realization of the model depends on inputs from one master input file and nine additional 
input files. The master input file specifies the other input files and values of parameters that vary 
across simulations, with each row of the file corresponding to a distinct simulation. The first 
input file referred to by the master input file describes attributes of the vaccine and of 
vaccination strategy, such as relative risk of infection or disease among vaccinees, vaccination 
coverage, and the age of routine vaccination. The second file specifies which variables will be 
outputted from the model and how they are to be aggregated with respect to age groups or in 
time. The third input file specifies assumptions about the probability of developing symptomatic 
disease conditional on whether an individual is experiencing a primary, secondary, or post-
secondary DENV infection. The fourth input file contains rows that each describe a location and 
its attributes. The fifth input file contains five sample daily movement trajectories for each 
individual. The sixth input file contains the birth year and death year of each human, all of which 
are calculated prior to running the simulation. The seventh input file specifies the rate at which 
visitors infected with each of the four DENV serotypes appear in the simulation on each day. 
The eighth input file specifies parameters that control initial conditions for serotype-specific 
seroprevalence in the population on the first day of the simulation due to DENV exposure prior 
to the timeframe of the simulation. Finally, the ninth input file specifies several time-varying 
model parameters on a daily basis that are driven by weather conditions and are calculated 
prior to running the simulation. These parameters include the incubation period of DENV in 
mosquitoes (i.e., extrinsic incubation period), two different biting rates for the mosquito’s first 
bite and for subsequent bites, adult mosquito death rate, and the temporal contribution to the 
additive model of mosquito emergence rates. 
 
Submodels 
Movement by individual people 
We adopt a submodel for movement by people described by Perkins et al. [34]. This model 
offers a means to simulate an individual’s activity space, which is defined as both the collection 
of locations that a person visits as a matter of routine and a description of the proportion of time 
that the person spends at each of those locations. The model furthermore specifies that a 
person moves about those locations through time according to a continuous-time Markov 
process, which depends on simulated values of two key attributes of a person’s connection to a 
location: how often they visit the location and how long they stay there during an average visit. 
 
This submodel was fitted to data from retrospective, semi-structured interviews of residents of 
Iquitos. These interviews were structured in such a way as to facilitate recall of specific locations 
visited during specific time frames during the two weeks preceding the interview. Fitting this 
model to those data, Perkins et al. [34] found that location type and distance from home 
significantly affect a person’s likelihood of visiting a location and also how often and for how 
long they visit. Furthermore, by accounting for the availability of locations at different distances 
from home depending on where a person lives (e.g., in the city center or on the periphery), the 
model successfully accounted for differences in movement patterns of residents living in two 
different neighborhoods in Iquitos. This finding is significant because it suggests that this 
submodel can be reasonably applied to simulated residents throughout the city and not just 
within the study area. The fitted movement model is also representative in the sense that 
interviews were conducted on a diverse group of individuals of different ages, sexes, and 
occupations [34]. 
 
For application to the model, we use this submodel to simulate five stochastic realizations of a 
daily movement trajectory for each simulated person in our synthetic population. Each trajectory 
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consists of a sequence of locations and what fraction of the day is spent at each location during 
each visit. These movement trajectories are incorporated into the model through an input file. At 
the beginning of each simulated day, one of these trajectories is randomly chosen and followed 
for that day. 
  
Movement by mosquitoes 
Each mosquito has a constant probability of 70% of staying at its current location for a given day 
[37]. If it moves, the location to which it moves is drawn randomly from all locations within a 50 
meter radius of the mosquito’s location. 
 
Mosquito emergence 
Daily emergence of mosquitoes at each location is modeled as a Poisson random variable with 
rate parameter 𝜆",$ for location l on day t. We derived 𝜆",$ by first defining the relationship 
 

𝑑𝑁",$
𝑑𝑡

= 𝜆",$ − 𝜇$										(S1) 
 
between the daily rate of adult mosquito emergence 𝜆",$, the daily rate of adult mosquito 
mortality 𝜇$, and the daily rate of change 𝑑𝑁",$/𝑑𝑡 in the adult female mosquito population at 
location l on day t. For 𝜇$, we used values identical to those used in the simulation model, which 
were specific to each day t as a function of that day’s mean temperature and were identical for 
all locations l. For 𝑑𝑁",$/𝑑𝑡, we computed daily differences in mosquito abundance 𝑁",$ as 
estimated statistically by Reiner et al. [36]. The estimates by Reiner et al. [36] were based on an 
analysis of Ae. aegypti abundance surveys with hand-held aspirators at the level of individual 
residences that yielded 48,015 female Ae. aegypti mosquitoes captured in total between 1999 
and 2011. These estimates of 𝑁",$ were obtained using a distributed lag nonlinear model that 
incorporated nonlinear effects of multiple weather variables—including mean temperature, 
minimum temperature, daily temperature range, precipitation, and relative humidity—at lags 
ranging 0-30 days. In addition to temporal variation in 𝑁",$ driven by these factors, the model by 
Reiner et al. [36] also allowed for spatial variation in 𝑁",$ driven by smooth splines that were 
estimated as part of the fitting process for that model. 
 
An important characteristic of the mosquito abundance estimates is that the capturing method 
was improved in 2009 [36], meaning that the relationship between empirical estimates and 
mosquito densities simulated in the model could differ before and after 2009. Hence, we applied 
two different scaling parameters in our calculations of mosquito emergence: e0 from 1999-2008 
and e1 from 2009-2011. One additional adjustment that we made to the emergence rate 𝜆",$ was 
to multiply it by a factor to account for differences in mosquito emergence by location type as 
estimated through pupal surveys by Morrison et al. [47,48]. This was necessary given that the 
data from Reiner et al. [36] derive from data collected exclusively at residential locations, 
whereas our model pertains to a greater diversity of location types. To account for differences in 
mosquito emergence rates as a function of location type, we multiplied 𝜆",$ by the ratio of pupae 
per hectare for a given location type relative to pupae per hectare for residential locations (141.5 
based on the midpoint of the 122-161 range) reported by [48] and then by the ratio of the area 
of a given location relative to the area of an average residential location (0.0194 hectares per 
residence, on average). For example, for a school that is 0.25 hectares in area, we calculated 
its value of 𝜆",$ as differing by a factor of 1.11 (12.2 pupae per hectare for schools / 141.5 pupae 
per hectare for residences x 0.25 hectares / 0.0194 hectares per residence) relative to what 𝜆",$ 
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would be for a residence of average size in the same location. In general, this resulted in 
residential locations and locations with larger areas having higher 𝜆",$. 
 
Mosquito death 
Mosquitoes are subject to a daily mortality rate 𝜇$ that varies from day to day as a function of 
mean daily temperature. To inform the relationship between temperature and 𝜇$, we used an 
adaptation of the temperature-mortality relationship estimated by Brady et al. [35]. We simplified 
the relatively complex functional form of the age-dependent mortality function of temperature 
estimated by Brady et al. using an age-independent mortality function of temperature. Following 
Perkins et al. [81], we calculated expected lifespan under the temperature-mortality relationship 
of Brady et al. across a range of temperatures and then took the reciprocal to obtain an age-
independent estimate of daily adult Ae. aegypti mortality. Based on the temperature on the day 
when a simulated mosquito emerged, we used the corresponding mortality rate on that day to 
simulate a time of death some days later consistent with an exponentially distributed lifespan. 
  
Mosquito blood-feeding 
Upon emergence, a mosquito refrains from attempting to bite for an exponentially distributed 
period of time, with the average duration of that period set to a function of temperature 
described by Focks et al. [38]. Following the first and all subsequent blood-meals, a mosquito 
refrains from attempting to bite for another exponentially distributed period of time but with an 
average duration set to a different function of temperature described by Otero et al. [39]. In 
general, this captures the tendency for a longer period of time between emergence and the first 
blood-meal than between subsequent blood-meals. With the time of the attempted bite 
determined, the mosquito selects a particular person on whom to blood-feed by taking a random 
draw from a categorical distribution informed by a function of the body size of all people present 
at the location at that time [32]. If no people are present, the mosquito is assumed to either find 
another source of blood or wait until its next scheduled blood meal. 
  
Infection of susceptible people by infectious mosquitoes 
After a bite by an infectious mosquito, a susceptible human becomes infected with probability 
0.9 (following the assumption of another modeling study [43]). Although this probability may in 
fact be less than 0.9, we fixed its value given that it was assumed to likely be unidentifiable 
through our model fitting process given an expected trade-off between values of this probability 
and the multiplier on mosquito densities estimated by Reiner et al. [36]. Infected people develop 
symptomatic disease with probabilities dependent on the number of previous exposures to 
DENV that they have experienced: 0.18 for those with no previous exposures, 0.24 for those 
with one previous exposure, and 0.14 for those with two or three previous exposures [20,42]. 
  
Infection of susceptible mosquitoes by infectious people 
When blood-feeding on an infectious person, a susceptible mosquito is infected with a 
probability determined by the person’s infectiousness. A person’s infectiousness on a given day 
since infection was derived from an analysis by Nishiura and Halstead [44] of data on human 
infectiousness originally published by Sabin [79]. We approximated the infectiousness data as 
presented by Nishiura and Halstead with the function 
 

1.01	𝑒45.678	($	4	(99:	4	5.688))	; ,										(S2) 
 
where t is the number of days since the human was infected by a mosquito and IIP is the length 
of the incubation period in the human (intrinsic incubation period). Each person is assigned an 



 

 9 

IIP by taking a random draw from a lognormal distribution fitted by Chan and Johansson [41]. To 
model whether successful infection occurred, a Bernoulli trial is performed with a probability of 
infection equal to that person’s infectiousness on that day. Upon infection, mosquitoes enter a 
period of latent infection for a period of time drawn from an empirically estimated lognormal 
distribution with a mean that depends on mean daily temperature and results in an average 
incubation period of 6.5 days at 30 °C [41]. Upon completion of the latent period, a mosquito 
becomes infectious and remains so for the remainder of its life. If a mosquito is exposed a 
second time after becoming infected once, the latter exposure has no impact on the outcome of 
the initial infection (e.g., an individual mosquito can only ever be infected by a single DENV 
serotype). 
 
Introduction of dengue virus into the simulated population 
To seed DENV infections into the population, we introduced individual humans into the 
population infected with a given serotype of DENV as temporary inhabitants for the duration of 
their infection. We chose to seed infections with temporary inhabitants, rather than residents, to 
minimize the impact of DENV introduction on population susceptibility among residents. The 
number of temporary inhabitants infected with a given serotype introduced on a given day was 
determined in any given simulation by drawing a number of such individuals from a Poisson 
distribution with rate parameter described by a cubic B-spline function. Because these 
calculations occurred in R and were later fed into the C++ model with input files, we represented 
the spline function using the fda package [82] in R. This function was described by parameters 
xi,j (modal timing of importation in a year) and yi,j (constant for scaling the magnitude of 
importation in a year), where i refers to the serotype and j refers to the year. 
 
Changes in the immune status of individual people 
Following infection with DENV, it is generally accepted that there is a temporary period of 
heterologous immunity. We implement the best-fit parameterization of a published model [45] 
whereby individuals are completely protected following an infection, but the duration of this 
protection for each individual is drawn independently from an exponential distribution with a 
mean of 686 days. Because Reich et al. indicated that the support for that particular 
parameterization is only moderately strong, we also explored the sensitivity of the model’s 
behavior to alternative assumptions about how the duration of heterologous immunity is 
distributed across different people (exponential distribution or fixed duration) and the average 
duration of heterologous immunity (180, 360, or 686 days). Under all of these scenarios, 
individuals resume their susceptibility to serotypes to which they have no prior exposure at the 
end of their period of heterologous immunity. Although there is emerging evidence that 
homologous immunity (i.e., immunity to a DENV serotype to which a person has been exposed) 
may not be complete and lifelong in all instances [83], we followed the prevailing assumption in 
DENV biology that homologous immunity is fully protective against subsequent infection with a 
DENV serotype to which a person has been exposed for the remainder of that person’s life. 
 
Demographic changes in the human population 
We simulated demographic changes in the human population consistent with past estimates 
and future projections of demography for Peru from the United Nations [31]. We applied 
numbers appropriate for the period of 2000-2010 for simulated demographic processes during 
the period of model calibration and for 2011-2031 for the period of vaccine impact projections. 
On any given day of the simulation, death was simulated for each individual according to a 
Bernoulli trial with a probability informed by age- and year-specific survival probabilities reported 
by the UN in five-year increments for both time and age, with the exception of one-year 
increments for ages 0 and 1. Births were simulated based on UN estimates of births per 1,000 
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population in five-year increments extrapolated to a daily rate of birth appropriate for the size of 
the simulated population on a given day to obtain the expected number of births on that day. 
The realized number of births on that day was then drawn as a random number from a Poisson 
distribution with rate parameter equal to the expected number of births. Newborn children were 
assigned to mothers of ages ranging 15-49, with the probability of a given woman being the 
mother proportional to age-specific fertility rates reported by the UN in five-year increments of 
age and time. Children are born with a normally distributed body surface area that grows linearly 
to a normally distributed adult body surface area that is attained at a threshold age. We fitted 
sex-specific parameters for these body growth parameters using biometric data collected during 
a study of heterogeneous biting in Iquitos [32]. These parameters include body size at birth for 
males (normal with mean 0.31 and s.d. 0.30) and females (normal with mean 0.31 and s.d. 
0.18), final adult body sizes for males (normal with mean 1.71 and s.d. 0.30) and females 
(normal with mean 1.51 and s.d. 0.24), and the ages at which adult body sizes were obtained 
for males (18.65 years) and females (16.52 years). These parameters were sufficient to linearly 
interpolate the body size for a given individual between its body sizes at birth and in adulthood. 
  
Vaccination 
We distribute a vaccine—either resembling CYD-TDV or a more generic vaccine—to 80% of 
children on their ninth birthday, and we assume that 100% of vaccinees comply with the full 
vaccination schedule of three doses over 12 months. We assume 80% initial compliance and 
100% follow-up compliance in accordance with a previous modeling assessment of the public 
health impact and cost effectiveness of CYD-TDV [14], and we apply the vaccine at age nine 
consistent with recommendations for CYD-TDV [84]. For the CYD-TDV vaccine, we assume 
that the efficacy of the vaccine tracks the relationship in eqn. (2) as an individual ages and in the 
event of a change in serostatus from negative to positive. For both vaccine types, we specify the 
portion of overall efficacy in VEdis that derives from protection against infection versus protection 
against disease conditional on infection using a free parameter p to specify the relative 
reduction in infection as RRinf|exp = (1 - VEdis)p and relative reduction in disease conditional on 
infection as RRdis|inf = (1 - VEdis)1-p. 


