Supplemental Materials: Is there a dose-response relation of dietary glycemic load to risk of type-2 diabetes? Metaanalysis of prospective cohort studies¹⁻⁵

Geoffrey Livesey¹ Richard Taylor² Helen Livesey¹ and Simin Liu³

¹ From Independent Nutrition Logic, Wymondham, Norfolk NR18 0QX, United Kingdom.

² From Merton College, Oxford, United Kingdom.

³ From the Center for Metabolic Disease Prevention and Departments of Epidemiology,

Medicine, and Obstetrics and Gynecology, University of California, Los Angeles, CA 90095-

1772, USA

⁴ The review was initiated by Independent Nutrition Logic Ltd and funded unconditionally by Beneo-Palatinit Gmbh, Mannheim, Germany, a producer of low glycemic carbohydrates. Acknowledged authors of reviewed publications provided additional data.

⁵ Address correspondences to G. Livesey. Independent Nutrition Logic Ltd, 21 Bellrope Lane, Wymondham, Norfolk NR18 0OX, United Kingdom. Email: glivesey@inlogic.co.uk

SUPPLEMENTAL MATERIALS

Search strategies

Excluded studies

Reasons for exclusion.

Included studies

Table S1. Extracted and calculated data for the included studies.

Table S2. Study identities, region, ethnicities, outcome ascertainment, population sample size, and number of cases accumulated.

 Table S3. Characteristics of the dietary instrument used.

Table S4. Characteristics of the study participants, duration of study, number o

 quantiles, and study baseline exclusions.

Table S5. Assessment of assumptions about accuracy of data used in the two-stage meta-analysis with covariates applied to all 24 studies.

Supplemental analyses

Table S6. Parameter estimates according the two-step meta-analysis approaches used aside a one-step approach, each on the full dataset of 24 studies.

Table S7. Influence of study factors on incremental RR values and β -coefficients for the covariates SEX, CORR, FUY and ETH (n=24 studies).

FIGURE S1. Meta-analysis of change in RR with increase in GL from lowest to highest quantile, by sex group.

FIGURE S2. Funnel plot of residuals for model 5 obtained by the two-step approach to meta-analysis.

FIGURE S3. Factors hypothesized to affecting the size of the relative risk for T2D per 100g glycemic load.

FIGURE S4. Sensitivity of covariates to study deletions.

FIGURE S5. Cumulative meta-regression analysis.

Protocol for study quality assessment

SUPPLEMENTAL MATERIALS REFERENCES

End of contents table

SUPPLEMENTAL MATERIALS

Search strategies

Strategies shown are updates on prior searches conducted in 1999, and March 2012.

*MEDLINE/PROQUEST**/ Royal Society of Medicine, UK; *1997 to week 3 of August 2012* Yield, 907 records. Hits, 18 records. Identified omissions, 1 record Patel et al (15).

- 1. MESH.EXPLODE("Cohort Studies")
- 2. MESH.EXPLODE("Prospective Studies")
- 3. MESH.EXPLODE("risk")
- 4. s1 or s2 or s3
- 5. MESH.EXPLODE("Diabetes Mellitus")
- 6. ti,ab(Glycemic index)
- 7. ti,ab(Glycemic load)
- 8. s6 or s7
- 9. yr(1997-2012)
- 10. s4 and s5 and s8 and s9
- 11. ab(glycemic index OR glycemic load) AND ab(Diabetes)
- 12. ab(risk OR association)
- 13. yr(>2010)
- 14. s11 and s12 and s13
- 15. s10 or s14

where 's' followed by a number abbreviates for search at line number; MESH, medical subject heading, ti, title; ab, abstract; and yr, year.

EMBASE/ PROQUEST (DialogTM, National Health Service, UK) / Royal Society of Medicine,

UK; 1997 to week 3 of August 2012

Yield, 1474 records. Hits, 18 records. Identified omissions, 1 record van Woudenberg et al (30).

- 1. EMB.EXACT("cohort analysis")
- 2. EMB.EXACT("prospective study")
- 3. EMB.EXACT("risk assessment")
- 4. EMB.EXACT("risk reduction")
- 5. EMB.EXACT("risk factor")

- 6. EMB.EXACT("follow up")
- 7. EMB.EXACT("hazard ratio")
- 8. EMB.EXACT("incidence")
- 9. s1 or s2 or s3 or s4 or s5 or s6 or s7 or s8
- 10. EMB.EXPLODE("Diabetes Mellitus")
- 11. EMB("glucose blood")
- 12. s10 or s11
- 13. TI,AB("carbohydrat*")
- 14. TI,AB("glycemic index")
- 15. TI, AB("glycemic load")
- 16. s13 or s14 or s15
- 17. s9 and s12 and s16
- 18. s17 and yr(1997-2012)
- 19. TI, AB("glycemic load")
- 20. TI,AB("glycemic index")
- 21. s19 or s20
- 22. TI, AB (diabetes)
- 23. TI,AB(risk)
- 24. TI, AB (association)
- 25. TI,AB(incidence)
- 26. TI,AB(cohort)
- 27. TI, AB(prospective)
- 28. s23 or s24 or s25 or s26 or 27
- 29. s21 and s22 and s28 and YR(>2010)
- 30. s18 or s29

where 's' followed by a number abbreviates for search at line number; EMB, the EMBASE

equivalent of MESH (both are medical subject headings) in Medline; TI, title, and AB, abstract.

'Glycemic' included the alternative spelling 'Glycaemic'.

WWW/CENTRAL (<u>http://www.thecochranelibrary.com/view/0/index.html)</u> / INLogic Ltd, UK. All dates to week 3 August 2012.

Yield, 66 records. Hits, 0 records. Identified omissions, 19 records, which is consistent with CENTRAL being focused on interventions.

All text (Glyc*emic load and Diabetes)

WWW/INLOGIC, UK 1997 to week 3 of August 2012.

Yield, zero additional records identified via the following online sources:

CDC, UK Centre for Reviews and Dissemination (<u>www.york.ac.uk/inst/crd</u>).

PROSPERO Register of Systematic Reviews

(www.york.ac.uk/inst/crd/projects/register.htm).

The Centers for Disease Control and Prevention (<u>www.cdc.gov</u>).

The National Institute of Health (<u>www.nih.gov</u>).

Google Scholar (<u>http://scholar.google.co.uk</u>).

Excluded studies

Articles identified by title and abstract but on examination of the full article did not meet the inclusion/exclusion criteria for the following reasons:

1) Was not an original study (2 reports):

- Pereira 2008 (1) was a commentary on the original study of Sahyoun et al (2) already included.
- Hu et al 2001(3) reviews data from the Nurses Health Study of Salmeron 1997 (4) amongst other lifestyle data.

2) Was not analyzed as a prospective cohort design (1 reports):

• Mohan et al 2009 (5) was a cross-sectional study.

3) Used an ineligible population (2 reports):

- Schulz et al 2006 (6) used a population that did not exclude T2D patients at baseline.
- Mayer-Davies et al 2006 (7) used a population that did not exclude T2D patients at baseline and summarizes their report noted immediately above (6).

4) Did not address the questions asked (2 reports):

- Fung et al 2002 (8) focused on whole grain and T2D in men of the Health Professionals Follow-up Study. Information on GL was not independent of that report earlier by Salmerón et al 1997 (9).
- Barclay et al 2007 (10) provided data on glycemic index only- no data on glycemic load was presented.

5) Dietary or other details were insufficient (1 report):

• Yu et al 2011 (11) provide limited information on glycemic load and T2D among 690 Honk Kong adults in a prospective cohort study with follow up of 9 to 14y, and report for their most adjusted model a non-significant effect of OR of 1.03 (CI 0.78-1.34) per 1 SD intake of GL unadjusted by the residual method for energy (equivalent to an OR of approx. 1.12 for the range of intakes of about 4SD, with potentially for higher value for energy adjusted GL intake. For this small study, a prior publication reported on validity of the FFQ used (12) but neither glycemic load nor any aspect of carbohydrate intake was addressed (CORR was unknown). 6) Reports of misidentified studies:

• Two publications (13, 14) incorrectly cited information about a mixed-sex population study (15). Information was available for the mixed-sex population only and did not report results for men or women separately. Correspondence with the first author of the original study (15), and with the first author in one citing the original study (13), indicates mistaken data extraction and/or misreporting. These errors are not perpetuated further in the present work.

Included studies

These are listed in Tables S1-4 below and in FIGURE 2 of the main article.

Quantile		RR		Glycemic _ load (g/d	Reference food	Study e inta	energy ke	Cases	Non-case
	Median	L95CI	U95CI	reported, adjusted to energy)	(White bread or glucose)	Median or mean	units	n	n
Salmerón et al 1997	(16) in wom	ien, RR bas	ed on rate	ratios.					
1	1	3	3	111				156	~12879 4
2	1.24	0.99	1.55	131				189	~12846 4
3	1.22	0.97	1.54	144	WB	7424 ⁵	kJ/d	185	~12850 4
4	1.25	0.99	1.59	157				179	~12856 4
5	1.47	1.16	1.86	178				206	~12829 4
Salmerón et al 1997	(9) in men, 1	RR based o	n odds rati	os					
1	1			119				120	~8432 6
2	1.07	0.82	1.41	144				120	~8432 ⁶
3	1.04	0.78	1.39	160	WB	1995 ⁷	kcal/d	103	~8449 ⁶
4	1.13	0.83	1.54	177				93	~8459 ⁶
5	1.25	0.90	1.73	203				87	~8465 ⁶
Meyer et al 2000 (17	7), RR based	on rate rati	ios. ⁸						
1	1			94				247	~6951 ⁹
2	0.96	0.79	1.15	110				236	~6962 ⁹
3	0.86	0.71	1.05	120	WB	7531 ¹⁰	kJ/d	220	~6978 ⁹
4	0.92	0.75	1.12	129				214	~6984 ⁹
5	0.95	0.78	1.16	145				224	~6974 ⁹
									continued.

 Table S1. Extracted and calculated data for the included studies ^{1,2}

... continued

Stevens et al 2002 (18), white participants, RR is based on a rate ratio. Other data used are in footnotes¹¹

	(10), white pu	ano punto, i		on a rate ratio	o and autu	used are mir	oomotes		
1	1							nr ¹¹	nr 11
2								nr	nr
3				146 ¹²	WB	1625 ¹³	kcal/d	nr	nr
4								nr	nr
5	1.10	0.90	1.39					nr	nr
Stevens et al 2002	(18), African	Americans,	RR is a rat	e ratios . ¹⁴					
1	1							nr ¹⁴	nr ¹⁴
2								nr	nr
3				154 ¹⁵	WB	1602 ¹⁶	kcal/d	nr	nr
4								nr	nr
5	0.97	0.73	1.35					nr	nr
Schulze et al 2004	(19), RR is ba	used on rate	ratios.						
1	1			139				184	~18066 17
2	1.31	1.05	1.64	159				192	~18058 17
3	1.20	0.92	1.56	172	WB	1811 ¹⁸	kcal/d	141	~18109 17
4	1.14	0.84	1.55	187				115	~18135 17
5	1.33	0.92	1.91	211				109	~18141 17
Hodge et al 2004 (2	20), RR is bas	ed on odds	ratios. 19						
1	1			91.8				82	7828
2	0.86	0.61	1.20	101.2	C	002020	1 7 / 1	70	7840
3	1.17	0.86	1.60	118.9	G	8830	KJ/d	111	7799
4	0.92	0.65	1.30	155.7				102	7809

....continued

Zhang et al 2006 (21), RR is based on rate ratios.

1	1		_	137				210	2045 ²¹
2	0.99	0.76	1.28	157				174	~2404 21
3	0.89	0.65	1.22	171	WB	1813 ²²	kcal/d	128	2621 ²¹
4	1.21	0.84	1.74	186				145	~2660 21
5	1.61	1.02	2.53	212				139	2576 ²¹
Villegas et al 20	007 (22), RR is	based on ra	te ratios. ²³						
1	1		_	164				221	~12624 24
2	1.06	0.88	1.27	181				256	~12589 24
3	0.97	0.81	1.17	190	G	1683 ²⁵	kcal/d	253	~12592 24
4	1.23	1.03	1.46	200				349	~12496 24
5	1.34	1.13	1.58	235				526	~12319 24
Krishnan et al 2	007 (23), RR is	s based on r	ate ratios.						
1	1			82				463	~7553 ²⁶
2	1.00	0.85	1.17	99				368	~7648 ²⁶
3	1.09	0.92	1.31	109	G	1715 ²⁷	kcal/d	369	~7647 ²⁶
4	1.10	0.91	1.33	120				362	~7654 ²⁶
5	1.22	0.98	1.51	142				376	~7640 ²⁶
Mosdol et al 200	07 (24), RR is l	based on rat	te ratios.						
1	1		_	121 ²⁸				119	1721 ²⁹
2	1.05	0.76	1.44	145	G ³⁰	2095 ³¹	kcal/d	117	1755 ²⁹
3	0.8	0.51	1.26	169				93	1793 ²⁹

continued...

Patel et al 2007 (15), data is available for a mixed sex population only, RR is based on rate ratios.

I dioi o	ui 2007 (13)), aata 15 a i			· population o	my, na is ou		u (105.	22	22
	1	1	_	—	93 ³²				nr ³³	nr ³³
	2		_	_					nr	nr
	3				129 ³²	WB	1494 ³⁴	kcal/d	nr	nr
	4								nr	nr
	5	1.15	1.06	1.25	163^{32}				nr	nr
Sahyoun e	et al 2008 (2)	, RR is bas	ed on odds	ratios. 35						
	1	1	_	_	95				17	362 ³⁶
	2	1.50	0.70	3.00	117				22	359 ³⁶
	3	1.00	0.50	2.20	127	G	1835 ³⁵	kcal/d	18	360 ³⁶
	4	1.50	0.70	3.20	138				20	361 ³⁶
	5	1.30	0.60	2.70	162				22	357 ³⁶
Halton et	al 2008 (25)	, RR is bas	sed on rate	ratios.						
	1	1			62 ³⁷				~279 ³⁸	~8227 39
	3	1.23	1.00	1.49	79 ³⁷				~348	~8158 ³⁹
	5	1.56	1.24	1.97	89 ³⁷	G	1560 ⁴⁰	kcal/d	~436	~8070 ³⁹
	7	1.88	1.45	2.45	99 ³⁷				~525	~7981 ³⁹
	10	2.47	1.75	3.47	122 ³⁷				~690	~7816 ³⁹
Hopping e	et al 2010 (26	5), Europea	n Americai	n (Caucasia	n) men, RR is	based on rate	e ratios. ⁴¹			
11 0	1	1		` <u> </u>	84 ⁴¹				257	2766 ⁴²
	2	1.08	0.89	1.31	120				236	2788 ⁴²
	3	1.09	0.87	1.36	150	G	9045	kJ/d	202	2821 ⁴²
	4	1.31	1.01	1.68	186	-			207	2816 ⁴²
	5	1.54	1.12	2.10	256				178	2845 ⁴²
	-	1.6 .							1.0	

... continued

Hopping et al 2010 (26), European American (Caucasian) women, RR is based on rate ratios.

1	1			71				141	2787 ⁴²
2	1.34	1.04	1.73	100				158	2771 ⁴²
3	1.48	1.10	1.99	125	G	7144	kJ/d	152	2777 ⁴²
4	1.47	1.03	2.08	155				131	2798 ⁴²
5	2.13	1.37	3.31	211				133	2795 ⁴²
Hopping et al 2010) (26), Japanes	e America	n men, RR is	s based on rat	e ratios.				
1	1		—	103				369	2945 ⁴²
2	1.06	0.92	1.23	141				527	2788 ⁴²
3	1.08	0.92	1.26	173	G	9052	kJ/d	574	2740 ⁴²
4	1.09	0.91	1.29	213				647	2668 ⁴²
5	1.05	0.85	1.31	281				560	2754 ⁴²
Hopping et al 2010) (26), Japanes	e America	n women, R	R is based on	rate ratios.				
1	1		—	86				284	3450 ⁴²
2	1.17	0.99	1.38	117				475	3260 ⁴²
3	1.24	1.02	1.50	144	G	7150	kJ/d	542	3192 ⁴²
4	1.23	0.98	1.54	175				569	3166 ⁴²
5	1.18	0.88	1.58	235				504	3230 ⁴²
Hopping et al 2010) (26), Native]	Hawaiian n	nen, RR is b	ased on rate r	atios.				
1	1		—	101				119	795 ⁴²
2	0.89	0.67	1.17	147				110	804 ⁴²
3	0.98	0.73	1.32	193	G	10628	kJ/d	122	792 ⁴²
4	0.93	0.68	1.27	247				154	760 ⁴²
5	1.10	0.76	1.61	335				293	620 ⁴²

continued...

Hopping et al 2010 (26), Native Hawaiian women, RR is based on rate ratios.

	1	1	—	—	84				110	1078 ⁴²
	2	0.97	0.73	1.28	126				111	1077 ⁴²
	3	1.13	0.84	1.51	163	G	8625	kJ/d	145	1044 ⁴²
	4	1.32	0.97	1.81	212				204	984 ⁴²
	5	1.44	0.98	2.12	329				373	815 ⁴²
Sluijs et	al 2010 (27), RR is a ra	te ratio, ba	sed on othe	r data in footn	otes 43-45				
	1	1	—						nr ⁴³	nr ⁴³
	2	—	—						nr	nr
	3	—	—		118	G	2053	kcal/d	nr	nr
	4	—							nr	nr
	5	~1.83 ⁴⁴	~1.30 ⁴⁴	~2.53 ⁴⁴	~141 ⁴⁵				nr	nr
Simila e	t al 2011 (2	8), RR is bas	sed on rate	ratios						
	1	1			144				280	~ 4909 ⁴⁶
	2	0.95	0.79	1.14	162				241	~4948 ⁴⁶
	3	0.88	0.71	1.09	175	G	10800 47	kJ/d	203	~4986 ⁴⁶
	4	0.88	0.69	1.11	188				195	~4994 ⁴⁶
	5	0.88	0.65	1.17	208				179	~5010 46
Sakurai e	et al 2012 (2	29), RR is ba	sed on rate	ratios. Pub	lished GL has	units of g/10	000kcal ⁴⁸			
	1	1			62.7				23	377
	2	1.16	0.66	2.06	78.0				26	375
	3	1.56	0.89	2.71	87.2	G	2198 ⁴⁹	kcal/d	34	364
	4	1.07	0.57	1.99	97.1				23	377
	5	1.24	0.65	2.24	114.4				27	369

... continued

Van Woudenbergh	et al 2011 (30	U), RR 18 b	based on rate	e ratio					
1	1		_	107				173	~1282 50
2	0.91	0.71	1.16	126	G^{51}	1981 ⁵²	kcal/d	149	~1306 50
3	1	0.74	1.36	146				134	~1321 50
Mekary et al 2011	(31) (32), RR	R is based or	n rate ratio						
1	1		_	58				1239	14173 ⁵³
2	1.02	0.94	1.11	80 ⁵⁴				1283	~12820 53
3	1.13	1.03	1.23	99	G ⁵⁵	1743 ⁵⁶	kcal/d	1390	14450 ⁵³
4	1.22	1.10	1.35	118 ⁵⁴				1466	~12637 53
5	1.32	1.16	1.51	153				1572	14491 ⁵³

Footnotes:

¹ Values in normal font without superscripts are data published the citation tabulated.

Values in italics were supplied on correspondence with authors of the citation-see corresponding footnotes.

Values in normal font with superscripts are calculated and regard as exact as a published value unless preceded by a tilda (~) when the values are approximate. The approximations were made to enable the meta-analytical procedures where small errors are of little consequence to the assessment of dose response—see corresponding footnotes.

 2 Other extracted data and author supplied information are given in subsequent footnotes.

³ All such in this column in rows for Q1, authors of the original reports provide 95CI values for relative risks from Q_1

to Q_n defining the relative risk at Q1 as one with zero degrees of freedom, hence no 95CI values are given for Q_1 .

⁴ Calculated: Number of participants (65173) divided by the number of quantiles (5), less the number of cases tabulated (16).

⁵ Calculated: Mean of quintile values (7253+7636+7594+7531+7106)÷5 (16).

⁶ Calculated: Number of participants (42759) divided by the number of quantiles (5), then less the number of cases tabulated (9)

⁷ Calculated: Mean of quintile values (1960+2010+2016+2016+1971)÷5 from reference (9).

⁸ Author response confirmed further information was not available or not readily accessible (17).

⁹ Calculated. Number of participants (35988) divided by the number of quantiles (5), then less the number of cases tabulated (17).

¹⁰ Calculated: Mean of ten energy intake values (6879+6879+7297+7945+8577+8368+7075+7046+7226+8021)÷10 (kJ/d) (17).

- ¹¹ Other extracted data for European Americans: incremental RR per 1sd of energy adjusted GL (mean and 95%CI) 1.13 (1.0 to 1.276) meant that case and control data were not needed to obtain rates of change in RR with GL in the first step of two-step analysis. 1SD of energy adjusted GL was calculated at 62g for the mean energy intake shown and is the combined SD values obtained on pooling means and SDs for quantiles of energy adjusted GL in Tables 1 and 2 of the original publication (18).
- ¹² Calculated: The range of GL from quantile 1 to quantile 5 was obtained assuming a normal distribution calculated from study mean and SD for energy adjusted GL intakes in Tables 1 and 2 of the original publication. The study average of glycemic load was derived from the mean of two sets of ten quintiles values (18), thus (144+130+136+148+172+122+141+150+159+160) ÷10. A value for 1SD of energy adjusted GL was calculated at 62g by combining the SD values for each quantile, and accounting for the SD between quantiles. This complex arrangement was used because information on GL intakes by quantile was available not for GL quantiles directly but was available for fiber and glycemic index quantiles, while correspondence with authors was not able to provide answers.

¹³ Calculated: Mean of ten energy intake values (1796+1531+1528+1562+1708+1566+1647+1658+1673+1581)÷10 (18).

- ¹⁴ Hazard ratio for slope (mean and 95%CI) 0.999 (0.966-1.002) for African-Americans (18) was extracted, which meant that case and control data were not needed to obtain rates of change in RR with GL in the first step of two-step analysis.
- ¹⁵ Calculated: Study average of glycemic load was derived from the mean of two sets of 5 quintiles values $(165+135+141+151+177+136+156+164+161+151) \div 10$ (18).
- ¹⁶ Calculated: Mean of ten energy intake values (1606+1654+1674+1587+1483+1780+1456+1485+1551+1740)÷10 (18).
- ¹⁷ Calculated: Total number of participants (91249) divided by the number of quantiles (5), then less the number of cases tabulated.
- ¹⁸ Calculated: Using glycemic load (g/d) and glycemic index to calculate carbohydrate intake (g/d), followed by use of carbohydrate intake per unit energy intake (kcal/100kcal energy) to calculate energy intake (19).
- ¹⁹ Data provided by correspondence with the first author of the original report (20), who kindly re-analyzed their data with GL adjusted for energy intake by the residual method.
- ²⁰ Calculated: Mean of four energy intake values (8803+8038+8559+9919); 4.
- ²¹ Calculated: Total number of participants in the quantile less the number of cases shown. Participant numbers were 2255, 2749, and 2718 in the 1st, 3rd, and 5th quantiles and interpolated for the 2nd and 4th quantiles with adjustments to ensure the correct total number of participants (21).
- ²² Calculated: Mean of six energy intake values reported (1822+1833+1792+1790+1856+1783)÷6 (21).
- ²³ Values for GL were obtained by correspondence with the first author of the original report (22) and were: $Q_1 = 164.4$, $Q_2 = 180.5$, $Q_3 = 190.0$, $Q_4 = 200.2$ and $Q_5 = 234.7$ g GL/d.
- ²⁴ Calculated: Total number of participants (64227) divided by the number of quantiles (5), then less the number of cases

tabulated (22).

- ²⁵ Calculated: Mean of energy intakes by quintile $(1773.2 + 1643.9 + 1609.5 + 1602.6 + 1784.1) \div 5$ (22).
- ²⁶ Calculated: Total number of participants (40078) divided by the number of quantiles (5), then less the number of cases tabulated (23).
- ²⁷ Calculated: Mean for study energy intakes reported for quantiles (1966+1429+1882+1582+1697+1638+1946+1516+1779)÷9 (23).
- ²⁸ Calculated: GL for the mixed population is calculated from the reported GL values for men (127, 152 & 176 g/d for Q₁ to Q₃) and women (108, 129 & 152 g/d for Q₁ to Q₃) and the fraction of the population that were men (0.71) (24).
- ²⁹ Calculated: Number of persons per quantile reported in the original report (24) less the number of cases tabulated.
- ³⁰ Based on very low reported central-quantile GI values of 56 and 54.5 for men and women (24), a glucose reference standard was assumed. This appears corroborated by a value of 86 for the same community at a time when white bread was usually a standard (33). Two corresponding authors were not available to report differently.
- ³¹ Calculated: Based on the reported fat and carbohydrate intakes (24), calorie conversion factors of 9 and 3.75 kcal/g for fat and carbohydrate as monosaccharide respectively, and 14.8% energy as protein average across sexes and tertiles for this population (34).
- ³² Calculated: Based on reported values of GL (g/d) (15) of 145 sd 32 for men, and 114 sd 23 in women, a normal distribution and the fraction of men in the population of 0.46 being applied to all quantiles.
- ³³ Case and control data were not needed when obtaining the rate of change in RR with GL in the first step of two-step analysis because the rate estimate is based on only one quantile versus referent. Case and control data were only needed when there was multiple data within the study when the case and control data help account for non-independence of observations from the same study (27).
- ³⁴ Calculated from values for each quantile in men and women separately and the fraction of the population that were men, $(0.46x(1723+1732+1726+1727+1690)\div 5) + (1-0.46)x(1288+1336+1326+1291+1268)\div 5$
- ³⁵ By correspondence, the first author of the original report (2) indicates that GL was adjusted for energy intake in men and women separately, with means of 2016.7 kcal/d in men and 1608.4 kcal/d in women, with a combined sex mean of 1835 kcal/d. Correspondence confirms GL values were based on the glucose standard, and that all non-European American participants were African-American.
- ³⁶ Calculated: Number of persons per quantile (379, 381, 378, 381, 379) less the number of cases per quantile tabulated (2).
- ³⁷ By analysis, assuming a normal distribution, a mean GL from the original report (25) and a range of 60 given between lowest and highest deciles by Lui & Chou (13).
- ³⁸ Calculated from the total number of cases distributed according to the relative risks in each quantile.
- ³⁹Calculated: Total number of participants (85059) divided by the number of quantiles (10), then less the number of cases

tabulated.

- ⁴⁰ Calculated: Mean of nine reported energy values (1553+1559+1559+1550+1555+1551+1565+1552+1591)÷9 (25).
- ⁴¹ Authors explained by correspondence that the published and author provided values of GL for this study (shown above) had not been energy adjusted. Prior to meta-analysis, a factor of 1.62 was applied to approximate this adjustment, which is the ratio of energy adjusted variance in GL for the similar whole multiethnic cohort in Howarth et al (35) to the variance in GL in the multiethnic cohort in the Hopping et al study (26) after adjustments for differences in energy intakes reported.
- ⁴² Calculated: Number participants less the number of cases, by quantile, data supplied by authors. Values agrees to 1 in 3000 with values calculated as the total number of participants divided by the number of quantiles, then less the number of cases by quantile for the published data (26).
- ⁴³ Case and non-case data was not used because the authors supplied rate information: RR was reported to increase by 1.27 (95%CI: 1.11,1.44) per 1SD rise in reported GL (g/2053kcal) of 21.2 g (27). This information was re-expressed per 100g GL in 2000kcal. Operationally this was via lnRR per 1SD rise in glycemic load
- ⁴⁴ Data not used in the two-step analysis, but approximated for the meta-analysis of rise in lnRR from the lowest to highest quantile (Fig S1 in the Supplemental Materials online). Data was calculated from information in footnotes 43 & 45.
- ⁴⁵The median glycemic load for quantile 5 was approximated using the reported glycemic load of 117.9g and its SD 21.2 g (27). Using these values a normal distribution was simulated for 100000 observations, divided into quintiles, and the median for the fifth quintile obtained. A normal distribution was indicated by the authors reporting an SD value for glycemic load among other data showing interquartile ranges when the normality assumption was not justified.
- ⁴⁶ Calculated: Total number of participants (25943) divided by the number of quantiles (5), then less the number of cases tabulated.
- ⁴⁷ Calculated as the mean of six values expressed in MJ (10.8 + 11 + 10.7 + 10.8 + 11 + 10.5)÷6
- ⁴⁸ Values for GL were reported in g per 1000 kcal (29).
- ⁴⁹ Calculated as the mean of five values $(2394 + 2299 + 2183 + 2104 + 2011) \div 5$
- ⁵⁰ Calculated: Total number of participants (4366) divided by the number of quantiles (3), then less the number of cases tabulated.
- ⁵¹ Correspondence with the first author of the original study confirms.
- ⁵² Calculated as the mean of three quntile values (1967 + 2005 + 1971)÷3
- ⁵³ Calculated approximately: Total number of participants less the number of participants in Q1, Q3 and Q4, this remainder divided between Q2 and Q4, each less the published number of cases in Q2 and Q4 respectively.
- ⁵⁴ Values at Q2 and Q4 were not published. We used mid-range values for these quantiles.
- ⁵⁵ Based on very low reported GI values and published correspondence comparing values in this and the prior study of Halton et al (25), a glucose reference standard was evident, as in the prior study from this group at 20y follow-up.

⁵⁶ Reported in published correspondence (32).

	First authorian and (citat	or, date tion)	Region	Ethnicity	Ascertainment ² of outcome	Number of quantiles	Years of follow-up	Population sample (n)	No. Cases (n)
1	Salmerón	1997 (f) (16)	USA	EA	Clinical report	5	6	65173	915
2	Salmerón	1997 (m)(9)	USA	95% EA	Clinical report	5	6	42759	523
3	Meyer	2000 (17)	USA	EA	Self report	5	6	35988	1141
4	Stevens	2002 (18)	USA	EA	Clinical report	5	9	9529	971
5	Stevens	2002 (18)	USA	AA	Clinical report	5	9	2722	478
6	Schulze	2004 (19)	USA	EA	Clinical report	5	8	91249	741
7	Hodge	2004 (20)	Australia	EAu	Self report	4	4	31641	365
8	Zhang	2006 (21)	USA	EA	Self report GDM	5	8	13110	796
9	Villegas	2007 (22)	China	CH	Mixed reports ³	5	4.6	64227	1605
10	Krishnan	2007 (23)	USA	AA	Self report	5	8	40078	1938
11	Patel	2007 (15)	USA	mixed	Self report	5	9	124907	~2700
12	Mosdol	2007 (24)	Europe	Eu	Clinical report	3	13	5598	329
13	Sahyoun	2008 (2)	USA	67% EA	Clinical report	5	4	1898	99
14	Halton	2008 (25)	USA	EA	Clinical report	10	20	85059	4670
15	Hopping	2010 (26)	Hawaii- men	EA	Clinical report	5	14	15116	1080
16	Hopping	2010 (26)	Hawaii- women	EA	Clinical report	5	14	14643	715
17	Hopping	2010 (26)	Hawaii- men	JA	Clinical report	5	14	16572	2677
18	Hopping	2010 (26)	Hawaii- women	JA	Clinical report	5	14	18672	2364
19	Hopping	2010 (26)	Hawaii- men	NH	Clinical report	5	14	4568	798
20	Hopping	2010 (26)	Hawaii- women	NH	Clinical report	5	14	5941	943
21	Sluijs	2010 (27)	Europe	Eu	Clinical report	5	10.1	37846	915
22	Simila	2011 (28)	Europe	Eu	Clinical report	5	12	25943	1098
23	Sakurai	2011 (29)	Japan	Jp	Clinical report	5	6	1995	133
24	Van Wou	denbergh	Europe	Eu	Clinical report	3	12.4	4366	456

 Table S2 Study identities, region, ethnicities, outcome ascertainment, population sample size, and number of cases accumulated ¹

	2011 (30)							
25	Mekary 2011 (31)	USA	EA	Clinical report	5	26	81827	6950

¹ Abbreviation: USA, United States of America; EA, European-American; AA, African-American; EAu European-Australian; CH, Chinese; mix, mixed ethnicities; JA, Japanese-American; NH, Native Hawiian; Eu, European; Jp, Japanese; T2D, Type 2 diabetes; GDM, gestational diabetes.

² Medical reports include hospital or medical doctor's records or biochemical tests.

³ Of 1608 self-reported cases, 896 were confirmed by medical record.

First auth and (citat	or, date ion)	Instrument used for dietary assessment	Number of food items in the instrument	Instrument correlation with food records ²	Whether correlation was deattenuated	Validity of instrument for cohorts analyzed	No. of assessments made with instrument(s)
1 Salmerón	1997 (f) (16)	FFQ	134	0.64	yes	yes	1
2 Salmerón	1997 (m) (9)	FFQ	131	0.73	yes	yes	1
3 Meyer	2000 (17)	FFQ	127	0.45	yes	yes	1
4 Stevens	2002 (18)	FFQ	66	0.45	yes	no	1
5 Stevens	2002 (18)	FFQ	66	0.45	yes	no	1
6 Schulze	2004 (19)	FFQ	133	0.64	yes	yes	2
7 Hodge	2004 (20)	FFQ	121	$0.41 (0.56)^{3}$	no (~yes) ³	no (~yes) ³	1
8 Zhang	2006 (21)	FFQ	133	0.64	yes	yes	2
9 Villegas	2007 (22)	FFQ	77	0.66 (0.71) ⁴	no (yes) 4	yes	2
10 Krishnan	2007 (23)	FFQ	68	0.43	yes	yes	1
11 Patel	2007 (15)	FFQ	68	0.62^{5}	yes	yes	1
12 Mosdol	2007 (24)	FFQ	127	0.50	yes	yes	1
13 Sahyoun	2008 (2)	FFQ	108	0.65	yes	yes	1
14 Halton	2008 (25)	FFQ	61,116,134 ⁶	0.45,0.61,0.64 7	yes	yes	6
15 Hopping	2010 (26) mEA	FFQ	125	0.68	yes	yes	1
16 Hopping	2010 (26) fEA	FFQ	125	0.80	yes	yes	1
17 Hopping	2010 (26) mJA	FFQ	125	0.56	yes	yes	1
18 Hopping	2010 (26) fJA	FFQ	125	0.54	yes	yes	1
19 Hopping	2010 (26) mNH	FFQ	125	0.62 8	yes	no ⁸	1
20 Hopping	2010 (26) fNH	FFQ	125	0.67 ⁸	yes	no ⁸	1

Table S3. Characteristics of the dietary instrument used 1

21 Sluijs	2010 (27)	FFQ	178	0.75	yes	yes	1
22 Simila	2011 (28)	DHQ	276	0.55 (0.71) ⁹	no (yes) ⁹	yes	1
23 Sakurai	2011 (29)	DHQ	147	0.62	yes	yes	1
24 van Woude	enbergh 2011 (30)	FFQ	170	0.79	yes	yes	1
25 Mekary 20	11 (31)	FFQ	61,116,134 ¹⁰	0.45,0.61,0.64 11	yes	yes	7

¹ Abbreviations: FFQ, food frequency questionnaire; DHQ, diet history questionnaire.

² Correlations were for carbohydrate intake, and are reproduced either from the citation or from its referenced validation study. Values are after adjustment for energy intake (unless specified differently) and de-attenuation (unless also accompanied by bracketed values, when values in brackets indicated approximate deattenduated values obtained as described in the main article. The correlation shown is for validation of one application of the instrument. To aid comparability between studies, correlations obtained by repeated measures were not used.

³ As discussed in the citation (20), a discrepancy appears between the published validation of the instrument, which was on a population external to the population sampled for the cohort study, and the reproducibility of the instrument in a sample of the cohort studied. Within the study the FFQ showed only "fair" to "moderate" agreement—interpretable from tables of kappa as 0.21-0.4 and 0.41 to 0.60 respectively, for which the mid-range of 0.41 was used as a crude estimate. Adjustments to approximate an energy-adjusted deattenuated value suggest a value of approx. 0.56 compared with the questionnaires validation, which gave 0.78 for in a different population.

⁴ Crude value as reported in the validation publication, in which the authors claim an energy adjustment did not change the result appreciably. Value in parenthesis is after approximate adjustment at present for de-attenuation.

⁵ A value for the mixed sex population was the average of values for men (0.73) and women (0.51).

⁶ Mean number of foods for the three FFQ used 116=(61x4/20 + 116x2/20 + 134x14/20) weighted by years of use (4, 2, 20) over the 20 year follow-up.

⁷ Mean correlation for the three FFQ used 0.60=(0.45x4/20 + 0.61x2/20 + 0.64x14/20) weighted by years of use (4, 2, 20) over the 20 year follow-up. Note, for comparison with other studies this corresponds to a single representative FFQ validation weighted by the years of use as opposed to a higher correlation obtainable by repeated measures.

⁸ An average was used for men and another average for women, obtained from among the population of non-native Hawaiians. (26)

⁹Energy adjusted deattenuated value (0.71) from validation paper.

¹⁰ Mean number of foods for the three FFQ used, 119 = (61x4/26 + 116x2/26 + 134x20/26) weighted by years of use (4, 2, 20) over the 26-year follow-up.

¹¹ Mean correlation for the three FFQ used, 0.61 = (0.45x4/26 + 0.61x2/26 + 0.64x20/26) weighted by years of use (4, 2, 20) over the 26-year follow-up. Note that, for comparison with other studies, this corresponds to a single representative FFQ validation weighted by the years of use as opposed to a higher correlation such as obtainable by repeated measures.

			* *	• <i>í</i>	14	• /		/ U		
			Sample	Mean BMI	Mean age of sample	Mean	Range of GL intake	Reasons for	Newcastle	
			population	of sample	population	energy	O_1 to O_{max}	excluding	Ottawa	Conflict of
	First auth	or, date	as male	population	at baseline	intake	(g per	participants	quality scale	interest
	and (citat	ion)	(fraction)	(kg/m^2)	(y)	(kcal)	2000kcal) ²	at baseline 1	3	declared
1	Salmerón	1997(f) (16)	0	25	53	1774	88 - 140	dm.ca.cvd.iei.mis	8	nr
2	Salmerón	1997(m)(9)	1	25	58	1995	83 - 142	dm ca cyd iei mis	8	nr
2	Moyor	2000 (17)	0	25	50 62	1800	73 113	dm jej mis	6	nr
5	Stavana	2000 (17)	0.46	27	54	1600	73 - 113 62 180	dm iai mia ina ath	0	111
4	Stevens	2002 EA (18)	0.46	27	54	1625	62 - 189	dm,iei,mis,ipc,eth	8	nr
5	Stevens	2002 AA (18)	0.37	29	53	1602	63 - 206	dm,1e1, m1s,1pc,eth	8	nr
6	Schulze	2004 (19)	0	25	36	1811	107 - 163	dm,ca,cvd,iei,mis	8	nr
7	Hodge	2004 (20)	0.5	26	55	2110	87 - 148	dm,chd,preg,iei,mis	6	none
8	Zhang	2006 (21)	0	23	32	1813	106 - 164	dm,mg,cvd,ca,iei,mis	7	nr
9	Villegas	2007 (22)	0	<30 4	51	1683	195 - 279	dm,cvd,cam	8	nr
10	Krishnan	2007 (23)	0	<31 5	38	1715	96 - 166	dm,ca,iei,igl,mis ⁶	6	none
11	Patel	2007 (15)	0.46	26	63	1494	88 - 154	dm,1yd,ca,iei,mis	7	none
12	Mosdol	2007 (24)	0.71	25	49	2095	116 - 161	dm, em, mis, iei	7	none
13	Sahyoun	2008 (2)	0.45	27	75	1835	104 - 177	dm,iei,mis	8	none
14	Halton	2008 (25)	0	24	46	1560	79 - 156	dm,ca,cvd,iei,mis	8	none
15	Hopping	2010 (26) mEA	1	26	57	2162	101 - 199	dm,oe,mis,sr	8	none
16	Hopping	2010 (26) fEA	0	26	58	1707	108 - 208	dm,oe,mis,sr	8	none
17	Hopping	2010 (26) mJA	1	25	59	2163	120 - 222	dm,oe,mis,sr	8	none
18	Hopping	2010 (26) fJA	0	24	59	1709	126 - 234	dm,oe,mis,sr	8	none
19	Hopping	2010 (26) mNH	1	28	56	2540	107 - 221	dm,oe,mis,sr	8	none
20	Hopping	2010 (26) fNH	0	27	56	2061	111 - 257	dm,oe,mis,sr	8	none

Table S4. Characteristics of the study participants, duration of study, number of quantiles, and study baseline exclusions.¹

21 Sluijs 2010 (27)	0.26	26	51	2053	89 - 141	dm,iei,mis	8	none
22 Simila 2011 (28)	1	26	57	2629	110 - 158	dm,ns	8	none
23 Sakurai 2011 (29)	1	23	46	2000	125 - 229	dm, mis,iei	7	none
24 van Woudenbergh 2011 (30)	0.4	26	67	1981	108 - 147	dm,mis,hcrp,ini	8	nr
25 Mekary 2011 (31)	0	26	46	1743	66-176	dm,cvd,ca,mis,iei,	7	none

Abbreviations: BMI, body mass index (kg/m²); f, female; m, male; nr, not reported; dm, diabetes mellitus; ca, cancer; cvd, cardiovascular disease; chd, coronary heart disease; iei, implausible energy intakes; mis, missing or inadequately compete information; ipc, inadequate number of participants within a field centre; eth, ethnicity; preg, pregnancy; igl, implausible glycemic load; mg, multiple gestations; 1yd, one year deaths to minimize undiagnosed disease at baseline; oe, other ethnicities; ns non-smokers; hcrp, high C-reactive protein; ini, implausible nutrient intakes.

² Calculated values, energy adjusted for glycemic load.

³ The Newcastle-Ottawa observational study quality scale ranges from 0 to 9 representing a minimum to maximum quality (37).

⁴ An approximate estimate made using the percentage persons in categories of BMI was $\sim 26 \text{ kg/m}^2$.

⁵ An approximate estimate made using the percentage persons in categories values of BMI $\sim 26 \text{ kg/m}^2$.

⁶ Other exclusions: pregnancy, age less than 30y.

Table S5. Assessment of assumptions about accuracy of data used in the two-stage meta-analysis with covariates applied to all24 studies (model 5 as reported in Tables 2 & 3 of the main article). Observations and comments apply to the currentapplication and dataset only.

				Approach	Overall outcome for the fully adjusted RR for		
	Potential weakness		A	or new	12D (cf Table 2	Comment 1	C
	in data	Studies affected	Assumption made	assumption	main article)	Comment 1	Comment 2
1	Assumas all data	A 11	Hypothetically	No now	1 45 (1 21 1 61)		
1	colloted in Toble S1		nopo	assumption	1.45 (1.51, 1.01)		
	are accurate		none	assumption			
2	Case numbers in each quantile were not available, and so were approximated when needed.	Halton et al (25)	Approximation of these values based on both the total case numbers and value for RR in each quantile has negligible effect on the overall outcome	Case numbers approximated for all studies, not just the one study affected.	1.45 (1.31, 1.61)	Agrees with line 1	Assumption justified
3	Person-years in each quantile were	Salmeron et al f (16) Schulze et al (19)	Approximation of these values	Person-years by	1.45 (1.31, 1.61)	Agrees with line 1	Assumption
	not available for all	Stevens et al EA (18)	based on the	reported for the			Justinou
	studies, and so	Stevens et al AA (18)	number of	unaffected studies			
	were approximated	Sahyoun et al (2)	participants per	were used, only			
	consistently for all	Hodge et al (20)	quantile and the	approximating			
	studies based on the	Patel et al (15)	number of years	these values when			
	number of	Zhang et al (21)	has negligible	not available.			
	participants per	Hopping et al (both	effect on the	(May introduce			

	quantile and the	sexes and all	overall outcome	hias between			
	number of follow	othnicition) (26)		those that remark			
		$\frac{\text{cumicules}}{\text{Holton at al}} (20)$					
	up years. In some	Halton et al (25)		person-years and			
	studies also the no	Sluijs et al (27)		those that don't)			
	of participants in	Simila et al (28)					
	each quantile was						
	assumed to equal						
	the total number of						
	participants in the						
	study divided by						
	the number of						
	quantiles.						
4	Study average	Mosdol et al (24)	Errors in	Energy assumed	1.45 (1.31,1.61)	Agrees with	Assumption
	energy intake was	Schulze et al (19)	calculations are	10% too low for		line 1	justified
	calculated from		$\leq 10\%$ so have	Mosdol et al (24)			
	reported diet		negligible effects	Energy assumed	1.45 (1.31,1.61)	Agrees with	
	compositions and		the outcome	10% too high for		line 1	
	food energy			Mosdol et al (24)			
	conversion factors			Energy assumed	1.45 (1.31,1.61)	Agrees with	
				10% too low for		line 1	
				Schultz et al (19)			
				Energy assumed	1.46 (1.31,1.61)	Assumption	
				10% too high for		used is	
				Schultz et al		conservative	
5	Glycemic load	Stevens et al (18) EA	Errors in	GL assumed 10%	1.45 (1.31.1.61)	Agrees with	Assumption
	values were not	Stevens et al (18) AA	calculations are	too high for		line 1	iustified
	reported directly	Patel et al (15)	<10% so have	Stevens et al (18)			J
	but were	Halton et al (25)	negligible effects	EA.			
	approximated		the outcome	GL assumed 10%	1.45 (1.31.1.61)	Agrees with	
	assuming a normal			too low for		line 1	
	distribution from			Stevens et al (18)			
	values for mean			EA			
	and SD of GL in			GL assumed 10%	1 45 (1 31 1 61)	Agrees with	
	the nonulation			too high for	1.15 (1.51,1.01)	line 1	
	population			Stevens et al (18)			
				nn.		1	

				GL assumed 10% too low for Stevens et al (18) AA. GL assumed 10% too high for Patel et al (15) GL assumed 10% too low for Patel et al (15) GL assumed 10% too high for Halton et al (26) GL 10% too low for Halton et al	1.45 (1.31,1.61) 1.45 (1.31,1.60) 1.45 (1.31,1.62) 1.45 (1.31,1.61) 1.45 (1.31,1.61)	Agrees with line 1 Agrees with line 1 Agrees with line 1 Agrees with line 1 Agrees with line 1	
6	Standard for GI as bread or as glucose was clearly rational assumption, but unconfirmed via correspondence.	Mosdol et al (24)	Standard used was glucose	Standard used was bread	1.45 (1.31-1.61)	Agrees with line 1	Assumption leads to no appreciable error overall
7	Analytical values for all glycemic load values are imprecise for foods and diets.	Potentially, all studies reviewed	Errors are random leading to random errors among studies, and if excessive would both underestimate the outcome for RR and elevate I ²	Effect of additional random error in GL causing deviation in RR per unit GL was examined (error of mean 0 and SD 10% of the study range of GL was applied)	1.42 (1.28, 1.58)	RR was significantly lower (t= - 9.5 for 10 reps) indicating random error among GL intakes leads to a conservative estimate	Assumption reasonable and conservative

		I ² was elevated	Confirms	
		from 2% to	that this	
		13%	random error	
		(average of 10	elevates I^2 ,	
		reps)	so that the I^2	
		1 /	of 2%	
			indicates	
			random error	
			in analytical	
			values for	
			GL appear of	
			limited	
			concern	continued

8	Glycemic load	Hopping et al for both	The adjustment is	Error from this	I^2 decreased to a	I^2 behaved as	Assumption
	values were	sexes and all three	imputable from	assumption would	minimum and	expected.	made (Column
	reported without	ethnicities (26). This	the ratio of	contribute towards	increased again		4) was
	adjustment for	although the	variance for the	elevation of I^2 .	as the	With the	reasonable, and
	energy intake	corresponding	multiethnic study		adjustment was	imputation I ²	on balance
		validation study for the	of Hopping et al		raised from	was already	conservative.
		dietary instrument	(26) and the		below to above	low at 2%	
		used energy-adjusted	related		that indicated by	implying the	
		carbohydrate intakes	multiethnic study		the imputation	assumption	
			of Howarth et al		from the study	was	
			(35), who report		of Howarth et al	reasonable.	
			GL with energy		(35).		
			adjustments .			The imputed	
						information	
						indicated a	
						conservative	
						estimate for	
						RR was	
						reached at	
						line 1	
				The alternative	At the minimum		
				assumption was to	$(I^2 = 0.14\%)$		
				apply an energy	RR was:		
				adjustment than	1.49 (1.33,1.67)		
				minimized I ² ,			
				which is made			
				viable because of			
				the multiple			
				observations by			
				sex and ethnicity.	2		
9	Values for CORR	Potentially, all studies	Values for CORR	Effect of	I ² was raised	There was	Assumption
	are imprecise	reviewed	are accurate other	additional random	trom 2 to 8%	no evidence	made (column
			than for random	error in CORR		ot significant	4) was
			error	was simulated to	RR per unit GL	error in RR	reasonable
				examine deviation	was marginally	per unit GL	
				in RR and the β -	higher, but not	due to this	

				coefficient for CORR. (Error of mean 0 and SD 10% of the study range of CORR was applied.)	significantly so (t=0.66 for 10 repeats) to: 1.47 (1.30, 1.65) The β - coefficient for CORR fell from 2.05 to 1.89 (P=0.05, t-test, 10 repeats)	level of random error in CORR	
10	Adjustments were made towards deattenuated values for CORR when non- deattenuated values were	Villegas et al (22) reported CORR of 0.66, which became 0.71 following our adjustment towards a deattenuated value	An energy adjusted and deattenuated value for CORR is preferred.	No adjustment is made, and the non-deattenuated value 0.66 would have been preferred.	1.47 (1.30,1.67)	Little different from line 1	Assumption (Column 4) was reasonable, and on balance conservative.
	reported, or a deattenuated CORR within a study was estimable only approximately.	Simila et al (28) reported CORR of 0.55. However, the validation study (36) reports a value of 0.71 after adjustment for energy and deattenuation (Table S3 footnote 9).	An energy adjusted and deattenuated value for CORR is preferred.	The non-adjusted value 0.55 (28) should have been used rather than the deattenuated energy adjusted value reported in the validation study	1.48 (1.31,1.67)	Little different from line 1	Assumption (Column 4) was reasonable, and on balance conservative.
		Hodge et al (20) describe agreement categorically between repeated FFQs, consistent with a CORR unadjusted for energy and deattenuation of 0.41,	An energy adjusted and deattenuated value for CORR is preferred and that estimated is reasonable	No adjustment is made, and the non-adjusted value of 0.41 would have been preferred	1.46 (1.31,1.61)	Little different from line 1	Assumption (Column 4) was reasonable, and on balance conservative.

	Assumption	and which became 0.57 following our adjustment towards a deattenuated and energy adjusted value (see Table S3 footnote 3).	variates (cf Table 3 i	n the main article)		Comments
	investigated		(,		
		SEX	CORR	FUY (per 10 y)	ETH	
1 *	Model 5	0.22 (0.02,0.46)	2.05 (0.6,4.7)	0.00 (-0.19.0.20)	0.22(0.05,0.41)	
2-6	Highest value	0.24 (0.03,0.50)	2.21 (0.7,5.0)	0.04 (-0.16,0.24)	0.22(0.05,0.41)	
26	T (1		1.07 (0.6.4.2)	0.02(0.01.0.16)		Alternative assumptions lead to
2-6	Lowest value	0.19 (0.01, 0.41)	1.87 (0.6, 4.3)	-0.03(-0.21,0.16)	0.20 (0.04,0.39)	relatively small differences
	Added random error to GL (see above at 7)	0.22 (0.01,0.47)	1.78 (0.5, 4.3)	-0.01(-0.18,0.16)	0.20 (0.06,0.38)	immediately left)
8	Alternative energy adjustment for obs. from Hopping et al (26)	0.28 (0.04,0.56)	2.42 (0.8,5.5)	0.01(-0.13,0.30)	0.23(0.05,0.44)	Adjustments based on imputations from Howarth et al (35) appear conservative compared with a best fitting solution.
9	Added random error to CORR (see above at 9)	0.22 (0.06, 0.62)	1.89 (0.50, 4.59)	-0.01(-0.14, 0.59)	0.21 (0.03, 0.42)	Random error in CORR leads to an underestimation of the β coefficient for CORR
10	Adjustments to CORR. Highest values	0.26 (0.04,0.53)	2.29 (0.52,0.61)	-0.02(-0.22,0.29)	0.21(0.04,0.41)	Alternative assumptions lead to relatively small differences compared with our preferred
10	Adjustments to CORR. Lowest values	0.21(0.01,0.45)	2.02 (0.052, 6.14)	-0.07(-0.28,0.15)	0.18(0.01,0.39)	assumptions leading to coefficients at line 1 immediately left

Abbreviations: CORR, the energy adjusted and deattenuated dietary instrument correlation for carbohydrate; FUY, the duration of follow-up in years; ETH, European American ethnicity versus all other ethnicities examined combined; f, female; I², percentage of total variance due to among-

studies variance. SEX, the proportion of study participants that are male (reported as RR for females > RR for males); RR, relative risk for T2D of 100g GL increment in 2000kcal diets.

* The number and all such below in this column refer to the corresponding assumptions and simulations noted in rows for corresponding numbers in this column above.

Table S6. Parameter estimates according the two-step meta-analysis approaches used aside a one-step approach, each on the full dataset of 24 studies

Parameter		Steps	Method ¹	RR or ΔRR^2	95%CI ²	Р
Adjuste	d RR	Two-step One-step	GLST then metareg Pooled GLST ³	1.45 1.46	(1.31, 1.61) (1.31, 1.61)	<0.001 <0.001
SEX	(ΔRR per 100g GL; F>M)	Two-step One-step	GLST then metareg Pooled GLST	0.22 0.22	(0.02,0.46) (0.03,0.45)	0.031 0.024
CORR	(ΔRR per 100g GL; over CORR to 1)	Two-step One-step	GLST then metareg Pooled GLST	2.05 1.98	(0.6, 4.7) (0.5, 4.8)	<0.001 0.001
FUY	(ΔRR per 100g GL; over 10y)	Two-step One-step	GLST then metareg Pooled GLST	0.00 0.01	(-0.19,0.20) (-0.18,0.19)	0.96 0.94
ETH	(ΔRR per 100g GL; EA>Other)	Two-step One-step	GLST then metareg Pooled GLST	0.22 0.22	(0.05,0.41) (0.03,0.43)	0.011 0.018
					\mathbf{R}^2 \mathbf{I}^2	P for I^{24}
Statistic	S	Two-step One-step	GLST then metareg Pooled GLST		97 2 100 0	0.43 0.78

^{*I.*} All models here assume relationships are linear.

^{2.} Analyses conducted in log form and displayed here in unlogged form.

^{3.} One step analysis of lnRR in pooled GLST meta-regression was versus 5 determinants: increment in GL dose (GL from Q_1 to $Q_{>1}$); and increments in four dose-covariate interactions (dose-x-SEX, dose-x-CORR, dose-x-FUY, dose-x-ETH, where SEX, CORR, FUY and ETH were centered).

⁴. The P-values: Two-step, Q-test for among-studies variance or model deviance from linearity; One step, chi² test for goodness-of-fit.

					Hypothesiz	zed covaria	ate
_	Units or subjective	Z-score					
Characteristic or influence factor ²	score	3	IRR	SEX	CORR	FUY	ETH
			Perc	entage c	hange in IF	R or β co	efficient
			due to	o additio	n of the po	tentially in	nfluențial
Dietary factor			stu	dy chara	cteristic as	s a 5 th cova	ariate ¹
Study mean glycemic load	(g/2000 kcal)	-0.11	< 0.1	4	2	_ 4	-2*
Study mean energy intake	(kcal/d)	-0.03	0.4	-15*	6	-	-1
Glucose or bread reference	(Glucose=1, bread=0)	0.38	-0.5	1	-5	-	5*
No. of dietary assessments	(n)	0.08	-0.8	1	-1	-	0
No. foods in the dietary instruments	(n)	-1.40	-3.7	-10	19*	-	9
Dietary instrument (CORR) ⁵	(Fractional)		((Included	d in model	5)	
" applicability within population	(Yes=1, doubtful=0)	0.45	-3.0	5	-10	-	8
" used energy-adjusted intakes	(Yes=1, no=0)	1.75	-4.0	-23	4	-	-9
Fibre excluded as confounder	(Yes=1, no=0)	0.08	0.1	3	1	-	-1
Population factor							
T2D excluded at baseline 6	(Yes=1, no=0)	0.00	0	0	0	-	0
Population sample analysed (n)	(n)	0.47	-3.1	2	-5	-	4
European American versus other (ETH) ⁵	(ETH=1, others = 0)			(Include	d in model	5)	
Gender (SEX) ⁵	(Male=1, Female=0)		(Include	d in model	5)	
Body mass index	(kg/m^2)	-0.40	-1.0	2	-5	-	-1
Age at baseline	(y)	-1.44	9.7	-23	11	-	-9
Progress factor							
Person-years	(ny)	0.51	-2.3	3	-4	-	4
Total incidents (cases) in study	(n)	0.86	-2.4	1	-1	-	12
Follow-up years (FUY) ⁵	(years)		((Included	d in model	5)	
Outcome ascertainment (method of	· · · ·						
diagnosis)	(Clinical =1, self =0)	-0.37	-0.1	2	1	-	3

Table S7. Influence of study factors on incremental RR values and β -coefficients for the covariates SEX, CORR, FUY and ETH (n=24 studies)¹.

Study quality factors							
Selection criteria:							
Truly or somewhat representative of							
population	(Yes=1, no=0)	-0.45	3.5	0	1	-	-5
Cohorts selected from the same population							
0	(Yes=1, no=0)	0.00	0.0	0	0	-	0
Ascertainment of exposure (CORR >0.5)	(Yes=1, no=0)	_7	_7	_7	_7	_7	_7
Outcome of interest not present at start of							
study ⁶	(Yes=1, no=0)	0.00	0.0	0	0	-	0
Total score for selection criteria	(Calc. range 0 to 4)	-0.23	-3.0	0	6	-	-5
Outcome criteria:							
Secure assessment (clinical or self-report)	(Yes=1, no=0)	-0.37	-0.1	2	1	-	3
Follow-up period sufficient long (>4 y) 6	(Yes=1, no=0)	0.00	0	0	0	-	0
Few subjects lost or lost explained ⁶	(Yes=1, no=0)	0.00	0	0	0	-	0
Total score for outcome criteria	(Calc. range 0 to 3)	-0.37	-0.1	2	1	-	3
Comparability criteria:							
Study control for non-nutrient risk factors	(Yes=1, no=0)	1.01	3.5	1	5	-	-2
Study control for nutrient risk factors	(Yes=1, no=0)	-0.04	-0.9	2	-1	-	0
Total score for comparability criteria	(Calc. range 0 to 2)	0.24	2.7	0	6	-	-6
Sum for all quality criteria	(Calc. range 0 to 9)	-0.33	1.1	1	3	-	2

Abbreviations: IRR, incremental relative risk for energy-adjusted GL increment of 100g after adjustment for centred covariates; SEX, of adult males or females ; CORR, dietary instrument correlation with food intake record for carbohydrate; FUY, number of followup years; EA, European American ethnicity versus other ethnicities; Calc., calculated as sum of the immediate above. * Indicates factors that correlate or potentially correlate (monovariate P<0.05) with the covariate as found in Table 1 in the main article.

- ¹ Influence values are shown as positive when the influence is to increase the absolute value of a coefficient and negative when lowering the absolute value. Thus the influence of each jth coefficient by each vth factor in the studies was expressed as $100^{*}(\Delta\beta)/\beta$ were β is the coefficient in meta-regression model 5 and $\Delta\beta$ is the change in β due to addition to the model of the vth among-study variable.
- 2 Influence factors were centered before assessing influence on model 5 coefficients.
- ³ Z-score for the β -coefficient accompanying this factor alongside the hypothesized covariates SEX, CORR, FUY and ETH.
- ⁴ Over all studies the β -coefficient for FUY was non-significant and near zero.
- ⁵ Factor included in the model.
- ⁶ These factors scored equally for all studies, so that zero effects on the β coefficients shown have zero degrees of freedom.
- ⁷ The full range of CORR is accounted in fully adjusted model 5.

FIGURE S1 (right). Meta-analysis of incremented RR with increase in GL from lowest to highest quantile, by sex group. Data points (■) for each study vary in size larger points for studies of greatest weight in the metaanalysis. The associated horizontal lines indicate the corresponding 95% confidence interval for a study-arrow heads indicating truncations. Diamond show the combined study means (upper and lower tips) and the corresponding 95% confidence intervals (left and right tips). Note that the scale for ΔRR is logarithmic with values showing the means for studies and untransformed combined means for subtotals and overall total. Abbreviations: Correlation, 100 x the correlation for carbohydrate intake (dietary instrument versus objective measure); RR, relative risk; LCI and UCI, lower and upper 95% confidence intervals; %WT, percentage weight based on random effects; P, level of statistical significance (z-test for RR, Q-test for I^2); I^2 , heterogeneity = $100 \cdot \tau^2 / (\tau^2 + se^2)$ where τ^2 is the among-studies variance; HaltMeka 08-11, data from Halton et al 2008 (25) and Mekary et al 2011 (31) are from the same study differing in the duration of follow-up (20 and 26y) and so were combined prior to the meta-analysis.

First author,	No.					
year and ethnicity	subjects	Correlation	RR	LCI	UCI	%WT
Famala						
Krishnan 2007 (23)	40078	43	1 22	0.08	1 5 1	6.03
Mover 2000 (17)	35088	45	0.05	0.30	1.01	6.47
Hopping 2010 (26) JA	18672	54	1 18	0.70	1.10	4 42
HalfMoka (08-(11 (25 31)	83443	60.5	→ 1 70	0.00	3.63	1 15
Zhang 2006 (21)	13110	64	1.61	1.02	2.53	2 42
Schulze 2004 (19)	91249	64	1.33	0.92	1.91	3 34
Salmeron 1997 (16)	65173	64	1.47	1.16	1.86	5.56
Hopping 2010 (26) NH	5941	67	1 44	0.98	2 12	3 09
Villegas 2007 (22)	64227	71	1.34	1.13	1.58	7.30
Hopping 2010 (26) EA	14643	80	→ 2.13	1.37	3.31	2.54
Subtotal $(l^2 = 50.3\%)$	P = 0.03	4)	1.32	1.50	1.51	
	0.00					
Male						
Hopping 2010 (26) JA	16572	56	1.05	0.85	1.31	6.03
Sakurai 2011 (29)	1995	62	1.24	0.65	2.24	1.46
Hopping 2010 (26) NH	4568	62	1.10	0.76	1.61	3.21
Hopping 2010 (26) EA	15116	68	1.54	1.12	2.10	4.06
Simila 2011 (28)	25943		0.88	0.65	1.17	4.40
Salmeron 1997 (9)	42759	73	1.25	0.90	1.73	3.87
Subtotal (l ² = 32.6%,	P = 0.19	1)	1.14	0.97	1.34	
Mixed sexes						
Stevens 2002 (18) AA	2722	45 <	0.97	0.73	1.35	4.17
Stevens 2002 (18) EA	9529	45 •	1.10	0.90	1.39	6.00
Mosdol 2007 (24)	5598	49.5	0.80	0.51	1.26	2.44
Hodge 2004 (20)	31641	56	0.92	0.65	1.30	3.58
Patel 2007 (15)	124907	62	1.15	1.06	1.25	9.60
Sahyoun 2008 (2)	1898	65 <	1.30	0.60	2.70	1.03
Sluijs 2010 (27)	37846	75 •	1.83	1.27	2.53	3.61
van Woudenbergh 2011 (30)) 4366	79 🔶 🔸	1.00	0.74	1.36	4.22
Subtotal (l² = 46.3%,	P = 0.07	1)	1.11	0.97	1.28	
Overall (l² = 48.0%, F	e = 0.005)	1.20	1.11	1.30	100
Random effects analysis						
			20			
		U./5 1 1.5 Worse Better	3.0			
Relative	risk of	diabetes Q ₁ to Q	bv	sex		
			ax, ~J			

FIGURE S2 (right). Funnel plot of residuals (B) for model 5 obtained by the two-step approach to meta-analysis (cf Tables 2 and 3 in the main article). Points (•) represent individual studies. Triangular sides represent 95% CIs which ideally bound 95% of studies. Trim-and-fill analysis indicated no hypothetical points were required to eliminate bias if it were present.

FIGURE S3 (right). Factors hypothesized to affecting the size of the relative risk for T2D per 100g glycemic load. Panels A, the proportion of males in the sampled population (SEX). Panel; B, the validity of the dietary instrument (CORR). Panel; C, the number of followup y (FUY). Panel; D, European American participation (EA) versus all other ethnicities. Study means (O) with larger bubbles have greater weight. Lines are combined trends or means and their 95% CIs for 24 studies summarized in Table 3 of the min article by the fully adjusted model 5.

FIGURE S4 (right). Sensitivity of covariates to study deletions. With the 24 studies no more than 2-3 studies were expected to fall outside the box shown. To ± 1 study this was evident for each β -coefficient. Another feature, except for FUY, each box height was small relative to the z-score for the corresponding β coefficient (indicated by positive and negative values on the y-scale).

FIGURE S5 (below). **Cumulative meta-regression analysis**. Data show relative risk for type-2 diabetes associated with an increase in energy-adjusted glycemic load of 100g/2000kcal and the adjustment coefficients of covariance as they occur with each additional study (n=24) or update (n=25). *Note the number for updates exceeds number of studies by one as information from Mekary et al 2011 (31) for 26y follow-up updates that from Halton et al 2008 (25) at 20y follow-up in the present analysis. Points (**■**) show values reached after study inclusion based on the multivariate model 5 (Tables 2 and 3 in the main article). Horizontals are 95%CIs. Arrow heads truncate. Shaded areas represent the size of relation finally reached. Natural log scales are used and labels are unlogged. P-vales are shown right of points (z-test for RR and covariates). Units are as described in Tables 2 & 3 in the main article. Studies are identified by first author, date and other marks. *Abbreviations*: RR, relative risk; F or f, females; M or m, males; CORR, correlation for dietary instrument validity; FUY, follow-up y; AA, African-American; EA, European-American; ETH, European-American ethnicities versus other ethnicities combined; JA, Japanese-American; NH, Native Hawaiian.

Newcastle-Ottawa score of study quality (NOS) as used in the present study

While generally accepted that individual study quality should be assessed and reported when conducting systematic reviews, no method has been validated for non-randomized studies such as prospective cohort studies. The value of study quantity assessment remains for the present primarily in providing a measure to which a study has been conducted and reported according to generally recognized practices for studies deemed of high quality. Individual quality items and groups of quality items are generally recognized as potential determinants of a successful study and may correlate with study outcomes, but this should not be expected automatically and there is increasing recognition that study quality score should not be used as if a determinant of a study outcome.

The following reproduces the protocol as encountered (36) with insert in bold italics to adapt it to the present study.

Note: A study can be awarded a maximum of one star (*point*) for each numbered item within the Selection and Outcome categories. A maximum of two stars (*points*) can be given for Comparability

Selection for healthy persons representative of a community aiming for national (and eventually global) representation.

1) Representativeness of the exposed cohort

a) truly representative of the average *__adult mixed gender or male or female __* in the community ? *

b) somewhat representative of the average <u>adult mixed gender or male</u> or female_ in the community ?* For example not full age range of the community for which type-2 diabetes is incident.

c) selected group of users eg nurses, volunteers

d) no description of the derivation of the cohort

2) Selection of the non exposed cohort

a) drawn from the same community as the exposed cohort ? *

b) drawn from a different source

c) no description of the derivation of the non exposed cohort

3) Ascertainment of exposure

a) secure record (e.g. surgical records) ?* Dietary instrument used and

reported to be validated

b) structured interview ?*

c) written self report

d) no description

4) <u>Demonstration that outcome of interest</u> (*type-2 diabetes*) was not present at start of study

a) yes ?*

b) no

Comparability

1) Comparability of cohorts on the basis of the design or analysis

a) study controls for <u>exposure to known non-nutrient risk factors</u> <u>age, BMI, smoking, physical activity.</u> *

b) study controls for any additional factor ? *Exposure to suspected macronutritional risk factors, at least two from intakes of dietary fiber* (or cereal fiber) intake, energy intake, fat intake, and alcohol intake.*

Outcome

- 1) Assessment of outcome *
 - a) independent blind assessment ?
 - b) record linkage ? *Clinical report* *
 - c) self report
 - d) no description

2) Was follow-up long enough for outcomes to occur.

a) yes? Select yes if four or more years of follow-up (low to allow duration of follow up to be assessed as a covariate) *
b) no

3) Adequacy of follow up of cohorts

a) complete follow up - all subjects accounted for ? *

b) subjects lost to follow up unlikely to introduce bias - small number lost

- _<20%____ or description provided of those lost ?*

c) follow up rate _>20%_lost and no description of those lost.

d) no statement.

Registration of protocol.

Date of registration: 6 Dec 2011

Registration no. CRD42011001810 at http://www.crd.york.ac.uk/PROSPERO.

SUPPLEMENTAL MATERIALS REFERENCES

- Pereira MA. Dietary glycemic index and glycemic load in diabetes prevention--what can we learn from observational studies? Nat Clin Pract Endocrinol Metab 2008;4:430-1.
- Sahyoun NR, Anderson AL, Tylavsky FA, Lee JS, Sellmeyer DE, Harris TB, ; Health A, and Body Composition Study. Dietary glycemic index and glycemic load and the risk of type 2 diabetes in older adults. Am J Clin Nutr 2008;87:126-31.
- Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001;345:790-7.
- Salmeron J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WC. Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr 2001;73:1019-26.
- Mohan V, Radhika G, Sathya RM, Tamil SR, Ganesan A, Sudha V. Dietary carbohydrates, glycaemic load, food groups and newly detected type 2 diabetes among urban Asian Indian population in Chennai, India (Chennai Urban Rural Epidemiology Study 59). Br J Nutr 2009;102:1498-506.
- Schulz M, Liese AD, Fang F, Gilliard TS, Karter AJ. Is the association between dietary glycemic index and type 2 diabetes modified by waist circumference? Diabetes Care 2006;29:1102-4.
- Mayer-Davis EJ, Dhawan A, Liese AD, Teff K, Schulz M. Towards understanding of glycaemic index and glycaemic load in habitual diet: associations with measures of glycaemia in the Insulin Resistance Atherosclerosis Study. Br J Nutr 2006;95:397-405.
- Fung TT, Hu FB, Pereira MA, Liu S, Stampfer MJ, Colditz GA, Willett WC. Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. Am J Clin Nutr 2002;76:535-40.

- Salmerón J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ, Stampfer MJ, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997;20:545-50.
- Barclay AW, Flood VM, Rochtchina E, Mitchell P, Brand-Miller JC. Glycemic index, dietary fiber, and risk of type 2 diabetes in a cohort of older Australians. Diabetes Care 2007;30:2811-3.
- Yu R, Woo J, Chan R, Sham A, Ho S, Tso A, Cheung B, Lam TH, Lam K. Relationship between dietary intake and the development of type 2 diabetes in a Chinese population: the Hong Kong Dietary Survey. Public Health Nutr 2011;14:1133-41.
- Woo J, Leung SSF, Ho SC, Lam TH, Janus ED. A food frequency questionnaire for use in the Chinese population in Hong Kong : description and examination of validity. Nutrition Research 1977;17:1633-41.
- Liu S, Chou EL. Dietary glycemic load and type 2 diabetes: modeling the glucose-raising potential of carbohydrates for prevention. Am J Clin Nutr 2010;92:675-7.
- Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P, Brand-Miller JC. Glycemic index, glycemic load, and chronic disease risk--a metaanalysis of observational studies. Am J Clin Nutr 2008;87:627-37.
- Patel AV, McCullough ML, Pavluck AL, Jacobs EJ, Thun MJ, Calle EE.
 Glycemic load, glycemic index, and carbohydrate intake in relation to pancreatic cancer risk in a large US cohort. Cancer Causes Control 2007;18:287-94.
- Salmerón J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997;277:472-7.
- Meyer KA, Kushi LH, Jacobs DRJ, Slavin J, Sellers TA, Folsom AR.
 Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 2000;71:921-30.
- Stevens J, Ahn K, Juhaeri, Houston D, Steffan L, Couper D. Dietary fiber intake and glycemic index and incidence of diabetes in African-American and white adults: the ARIC study. Diabetes Care 2002;25:1715-21.

- Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 2004;80:348-56.
- 20. Hodge AM, English DR, O'Dea K, Giles GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004;27:2701-6.
- 21. Zhang C, Liu S, Solomon CG, Hu FB. Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 2006;29:2223-30.
- 22. Villegas R, Liu S, Gao YT, Yang G, Li H, Zheng W, Shu XO. Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch Intern Med 2007;167:2310-6.
- 23. Krishnan S, Rosenberg L, Singer M, Hu FB, Djousse L, Cupples LA, Palmer JR. Glycemic index, glycemic load, and cereal fiber intake and risk of type 2 diabetes in US black women. Arch Intern Med 2007;167:2304-9.
- 24. Mosdol A, Witte DR, Frost G, Marmot MG, Brunner EJ. Dietary glycemic index and glycemic load are associated with high-density-lipoprotein cholesterol at baseline but not with increased risk of diabetes in the Whitehall II study. Am J Clin Nutr 2007;86:988-94.
- 25. Halton TL, Liu S, Manson JE, Hu FB. Low-carbohydrate-diet score and risk of type 2 diabetes in women. Am J Clin Nutr 2008;87:339-46.
- 26. Hopping BN, Erber E, Grandinetti A, Verheus M, Kolonel LN, Maskarinec G. Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii. J Nutr 2010;140:68-74.
- 27. Sluijs I, van der Schouw YT, van der AD, Spijkerman AM, Hu FB, Grobbee DE, Beulens JW. Carbohydrate quantity and quality and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) study. Am J Clin Nutr 2010;92:905-11.
- Simila ME, Valsta LM, Kontto JP, Albanes D, Virtamo J. Low-, medium- and high-glycaemic index carbohydrates and risk of type 2 diabetes in men. Br J Nutr 2011;105:1258-64.

- 29. Sakurai M, Nakamura K, Miura K, Takamura T, Yoshita K, Morikawa Y, Ishizaki M, Kido T, Naruse Y, Suwazono Y, et al. Dietary glycemic index and risk of type
 2 diabetes mellitus in middle-aged Japanese men. Metabolism 2011.
- 30. van Woudenbergh GJ, Kuijsten A, Sijbrands EJ, Hofman A, Witteman JC, Feskens EJ. Glycemic index and glycemic load and their association with Creactive protein and incident type 2 diabetes. J Nutr Metab 2011;2011:623076.
- Mekary RA, Rimm EB, Giovannucci E, Stampfer MJ, Willett WC, Ludwig DS, Hu FB. Joint association of glycemic load and alcohol intake with type 2 diabetes incidence in women. Am J Clin Nutr 2011;94:1525-32.
- Livesey G. Joint association of glycemic load and alcohol intake with type 2 diabetes incidence in women. Am J Clin Nutr 2012;95:983.
- Frost G, Leeds AA, Dore CJ, Madeiros S, Brading S, Dornhorst A. Glycaemic index as a determinant of serum HDL-cholesterol concentration. Lancet 1999;353:1045-8.
- 34. Brunner E, Stallone D, Juneja M, Bingham S, Marmot M. Dietary assessment in Whitehall II: comparison of 7 d diet diary and food-frequency questionnaire and validity against biomarkers. Br J Nutr 2001;86:405-14.
- 35. Howarth NC, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN. The association of glycemic load and carbohydrate intake with colorectal cancer risk in the Multiethnic Cohort Study. Am J Clin Nutr 2008;88:1074-82.
- 36. Pietinen P, Hartman AM, Haapa E, Rasanen L, Haapakoski J, Palmgren J, Albanes D, Virtamo J, Huttunen JK. Reproducibility and validity of dietary assessment instruments. I. A self-administered food use questionnaire with a portion size picture booklet. Am J Epidemiol 1988;128:655-66.
- 37. Wells G, Shea S, O'Connell D, Robertson J, Peterson P, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. URL http://www.evidencebasedpublichealth.de/download/Newcastle_Ottowa_Scale_P ope_Bruce.pdf. Accessed 28th August 2009.