Critical role of formaldehyde during methanol conversion to hydrocarbons

Yue Liu^{1,‡}, Felix M. Kirchberger^{1,‡}, Sebastian Müller¹, Moritz Eder¹, Markus Tonigold², Maricruz Sanchez-Sanchez^{1,*} and Johannes A. Lercher^{1,*}

¹Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany

²Clariant Produkte (Deutschland) GmbH, Waldheimer Straße 13, 83052 Bruckmühl, Germany

* Corresponding authors: m.sanchez@tum.de, johannes.lercher@ch.tum.de

[‡] These authors contributed equally to this work

Supplementary Information

Supplementary Method 1. Analysis of ¹³C incorporation in gas products.

The degree of ¹³C incorporation in gas products in MTO was determined by analyzing the MS spectra of each gas product in GC-MS. The normal procedure of analyzing the shift of the molecular ion towards m/e + 1 and +2 is hardly applicable in this work because the ¹³C incorporation is very low and the molecular ions of a few products are less abundant than fragment ions. Therefore, we used a different approach as follow:

(1) For a certain product, we take its MS spectra and find all the fragment ions that have the same number of carbons as the molecular ion in the MS spectra.

(2) Define and calculate "mean weight (m/e) of fragment ions" as intensity weighted fragment ion weight:

$$W_{\text{frag}} = \frac{\sum_{j=m}^{n} j \cdot I_j}{\sum_{j=m}^{n} I_j}$$
(Eq. 1)

The *m* and *n* are the lowest m/e and highest m/e in the fragment ions mentioned in (1); I_j is the MS peak intensity of the fragment ion with m/e of *j*.

(3) The unlabeled product has the mean weight of fragment ions, $W_{\text{frag,unlabel}}$; the ¹³C incorporated sample has $W_{\text{frag,samp}}$. Then the fraction of ¹³C in the product, X_{13C} , is calculated by:

$$X_{13C} = \frac{W_{\text{frag,samp}} - W_{\text{frag,unlabel}}}{N} + 1.1\%$$
 (Eq. 2)

in which N is the number of carbon atoms in the product molecule; 1.1% is the natural abundance of 13 C.

The derivation of equation (2):

The product sample is a mixture of unlabeled and ¹³C labeled molecules. It contains x_0 mole of unlabeled molecule, x_1 mole of one ¹³C labeled molecule, x_j mole of j (number) ¹³C labeled molecule, till x_N mole of N ¹³C labeled molecule. N is the number of carbon atoms in the product molecule. The unlabeled molecule has the mean weight of fragment ions, $W_{\text{frag,unlabel}}$. The one ¹³C labeled molecule has the mean weight of fragment ions, $W_{\text{frag,unlabel}}$ the mean weight of fragment ions, $W_{\text{frag,unlabel}} + j$. Then the product sample has a mean weight of fragment ions of $W_{\text{frag,samp}}$.

$$W_{\text{frag,samp}} = \frac{\sum_{j=0}^{N} x_j \left(W_{\text{frag,unlabel}} + j \right)}{\sum_{j=0}^{N} x_j} = W_{\text{frag,unlabel}} + \frac{\sum_{j=0}^{N} x_j j}{\sum_{j=0}^{N} x_j}$$
(Eq. 3)

The second term on the right in equation (3) is virtually the number of more ¹³C atoms per product molecule compared to that in unlabeled molecule. Since each product molecule contains N number of carbon atoms, the fraction of ¹³C in the product, X_{13C} , is thus given by equation 4. The natural abundance (1.1% ¹³C) of unlabeled molecule is accounted.

$$X_{13C} = \frac{\sum_{j=0}^{N} x_j j}{\sum_{j=0}^{N} x_j} \cdot \frac{1}{N} + 1.1\% = \frac{W_{\text{frag,samp}} - W_{\text{frag,unlabel}}}{N} + 1.1\%$$
(Eq. 4)

Supplementary Method 2. Analysis of ¹³C incorporation in cokes.

The quantification of ¹³C fraction in cokes was carried by analyzing the generated CO₂ on a mass spectrometer in the temperature programmed oxidation (TPO) of cokes. With the obtained spectra, the intensity ratio of ¹³CO₂ (m/e 45) to the sum of the intensity of ¹²CO₂ (m/e 44) and ¹³CO₂ (m/e 45) was used as the ¹³C fraction in coke.

Supplementary Figure 1 | MS of pentadiene from the reaction of butene with H¹³CHO. Reaction conditions: H¹³CHO 3.8 mbar, butene 1.5 mbar (H¹³CHO/Butene 2.5/1), 35 mL/min N₂ flow, H-ZSM-5 (Si/AI 90 steamed) 35 mg, 475 °C, butene conversion 26%.

Supplementary Figure 2 | Evolution of MeOH conversion during MTO reaction with time on stream under the feeding of MeOH, 1-butene and 2 C% H¹³CHO. Reaction conditions: W/F 0.96 $h \cdot g_{(cat)} \cdot mol_{(MeOH+HCHO)}^{-1}$, MeOH 171 mbar, H¹³CHO 9 mbar, H₂O 60 mbar, butene 60 mbar.