
1 Notation

1.1 Loci and Cells

We will generate reads for a set L of loci in a set C of cells. A locus in L is defined as
comprising two sites S and G, close enough to be covered by a (paired-end) read. The cells
in C are assumed to form a related population.

1.2 States of G

For a locus l ∈ L, the genome states of G are referred to as g1/g2, where g1 is the nucleotide
state on allele 1 and g2 is the state on allele 2. G will always be heterozygotic and, moreover,
the assignment of g1 and g2 to maternal and paternal alleles are made such that g1 = R and
g2 = A, where R is the reference allele, and A is the alternative allele. This assignment is
consistent within l and over C.

1.3 States of S

The genome states of S are similarly referred to as s1/s2, where s1 and s2 are located on
alleles 1 and 2, respectively, as determined by the states of G above. The states of S are
determined by the simulation: If S is a generated as a sSNV in the population, the state
of S can be homozygotic or heterozygotic for individual cells, while if S is not an sSNV, all
cells will be homozygotic for S. In the former case, all heterozygotic cells will will have the
same of two mutually exclusive possible genotypes, (i) s1 = R and s2 = A or (ii) s1 = A
and s2 = R, where R is the reference allele found in bulk and A is a specified alternative
state. For simplicity of explanation, we will w.l.o.g. in the following text assume case (i)
when discussing a sSNV locus. For all homozygotic loci, we always have s1 = s2 = R. The
described setup is consistent within l, but may, as indicated, vary over C.

1.4 Haplotypes and genotypes

The haplotype for each allele, with respect to S and G will be referred to as a tuple comprising
the state of S and the state of G, in order, e.g., the haplotype AR for allele i means that
si = A and gi = R.

Under our assumptions above, there are only two possible genotypes, i.e., pairs of hap-
lotypes for a locus, either with a homozygote S: {RR,RA}, or with a heterozygote S:
{RR,AA}.

For a cell c and a locus l, we will let l(c) refer to the genotype of l in c and let li(c) refer
to the haplotype of allele i och l in c.

1.5 Population structure

To consistently model the distribution of mutated sSNVs among cells for all loci, we need
to describe a population structure of the cells. A nice, general way to do this, allowing for
any scenario we might want to use, is to define the relationship between cells as a tree, T ,
with internal nodes indexed, e.g., by numbers, and cells at the leaves. The tree needs not
be perfectly binary, but will typically have polytomies – in a very simple scenario, this could
be a tree with two internal nodes (clades) representing two clones of cells (plus a root node).
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The internal node numbers can be viewed as indexing sets of related cells (clades). Let V be
the set of numbers indexing internal vertices, excluding the root of T .

When we, for a given sSNV locus, want to simulate which cells should be heterozygotic
for S, we simply draw a internal node number randomly from V and set all cells in the
corresponding set/clade to be heterozygotic; all remaining cells are set to be homozygotic.
In our simple two-clone tree example, this would correspond to making all cells in one clone
heterozygotic and all cells in the other clone homozygotic.

Since we use the same tree for all loci, all sSNVs will be consistent with the population
structure.

Notice that, by using a tree with a minimum clade size (e.g., no clade with less than m
cells will have a number), we can avoid generating cases where the mutated state occurs only
in a single (or few) cell(s), while retaining some biological realism.

1.6 Empirical Reads sets

For each locus, l, we will work with four sets of reads covering a locus with S and G; The
reads are derived from bulk-DNAseq of two different cell populations, one of which one is
heterozygous for S and the other is homozygous for S; both are heterozygous for G. The
reads sets derived from each allele of the heterozygous population are called hetRef and
hetMut, respectively. Similarly, the reads sets from the homozygous population are called
homRef and homMut. We will, w.l.o.g., assume that the allele assignments and the G and
S states are defined such that hetRef = homMut = RR.

1.7 Empirical Coverage distribution

We will make use of a empirically determined frequency distribution, dCOV , over reads cover-
age, i.e., the number of reads from each allele in a locus. The distribution dCOV is estimated
over the reads for all loci and cells from a single-cell DNAseq experiment. This distribution
is used i.i.d for all generated cells and loci.

2 Generation

The locus-specific read sets will be used to generate cell population scenarios comprising
a locus l, which either is homozygotic for S in all cells or is a sSNV, i.e., some cells are
homozygotic for S and other are heterozygotic, and a potential locus l′, which either is
homozygotic or heterozygotic for all cells; whether S is a sSNV is determined by a variable
SNV . The locus l′ will be used to simulate possible alignments errors (EAL) when predicting
the genotype of l. In addition, we will simulate dropout of reads (DO) in l and l′, while
empirical distributions are used for allele-specific reads counts (C).

The strategy for generating reads is to use predefined probabilities of SNV , EAL, DO and
the empirical distribution of C for l to step-by-step determine a count distribution fR of num-
ber of reads to sample for cell c ∈ C, over the possible reads sets R = {l1(c), l2(c), l′1(c), l′2(c)} ⊆
{hetRef, hetMut, homRef, homMut} for l in each cell c; notice that setting fR(h) = 0 for a
reads set h is equivalent to excluding sampling from h. We then sample reads following fR
to simulate sequencing reads mapping to l.
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2.1 Generating SNV and determining R , or equivalently, assigning geno-
type to alleles of l and l′

We first determine SNV for a locus l, i.e., whether l will have an sSNV in S (SNV = 1) or
not (SNV = 0). This can be done using either of two strategies:

1. The locus l will have a sSNV at S (SNV = 1) with a pre-defined probability pSNV ,
which is i.i.d. over all loci. This strategy is biologically more realistic.

2. We use a pre-defined fSNV , the frequency of sSNV loci in L, and then sample random
subset of size k = fSNV |L| loci from L and set SNV = 1 for these loci only. This allows
more precise control of the observed frequency of sSNV in the generated data.

• If l has SNV = 1 , then

1. For all cells c ∈ C initialize li(c) and l′i(c) to homozygotic

l1(c) = homRef

l2(c) = homMut

l′1(c) = homRef

l′2(c) = homMut

2. Sample a cell subset V from the population tree

3. For all cells c ∈ V , change l(c) to heterozygotic

l1(c) = hetRef

l2(c) = hetMut

• Otherwise (SNV = 0), for all cells c ∈ C, set l(c) to homozygotic and L′(c) to het-
erozygotic

l1(c) = homRef

l2(c) = homMut

l′1(c) = hetRef

l′2(c) = hetMut

Notice that we have chosen to let the value of SNV also controls the read set assignment
to l′ in such a way as to create problems for variant calling.

2.2 Generating EAL

Similar to the case of SNV can determine whether a locus l will have an alignment error
event (EAL) using two different strategies,

1. The locus l will have an EAL with a pre-defined probability pEAL, which is i.i.d. over
all loci.
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2. We set fEAL, the frequency of EAL loci in L, and then sample a random subset of size
k = fEAL|L| loci from L and set EAL = 1 for these loci, only.

• If EAL = 1 the initial values of fR for each c ∈ C are set to:

fR(l1(c)) = 1 (1)

fR(l2(c)) = 1 (2)

fR(l′1(c)) = 1 (3)

fR(l′2(c)) = 1. (4)

• Otherwise (EAL = 0), the initial values of fR for each c ∈ C are set to (i.e., excluding
sampling from l′):

fR(l1(c)) = 1 (5)

fR(l2(c)) = 1 (6)

fR(l′1(c)) = 0 (7)

fR(l′2(c)) = 0. (8)

Notice that presence of alignment errors is done on the population level.

2.3 Read dropouts

Presence of DO in a locus is modeled on a per-cell basis. RDO = {l1, l2, l′1, l′2}.
Also, the presence of DO in c can be modeled in two ways:

1. For each cell c ∈ C and for each allele i ∈ RDO = {l1, l2, l′1, l′2}, set fR(i) = 0 with a
pre-defined probability pDO, which is i.i.d. over all cells and alleles.

2. Using a pre-defined frequency of DO in CfDO, we sample a random subset, CDO, of
k = fDO|C| cells from C. For each c ∈ CDO, we randomly sample an allele lDO from
RDO = {l1, l2} and set fR(lDO) = 0.

Notice that we in this case model DO only on l; the reasoning for this is to simplify
siulation while focusing on the problematic cases for variant calling.

2.4 Generating COV, the number of reads per allele

We sample the number of reads COV (i) for each allele i ∈ R i.i.d. from an empirical allele-
specific coverage distribution dCOV . Typically, we set a minimum value for COV (e.g., 10) to
avoid generating loci that will be filtered due to low coverage.

We then set

fR(l1(c)) = COV (l1)fR(l1(c))

fR(l2(c)) = COV (l2)fR(l2(c))

fR(l′1(c)) = COV (l′1)fR(l′1(c))

fR(l′2(c)) = COV (l′2)fR(l′2(c)).

Notice that, if the ’input’ fR(i) = 0 (to right of the equal sign), then it is guaranteed that
also the ’output’ fR(i) = 0 (to the left of the equal sign).
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2.5 Sample reads from fR

For cell c and locus l, we will now create rl,c, the set of reads mapping to l in c.

1. Initiate rl,c = ∅.

2. for i ∈ {l1(c), l2(c), l′1(c), l′2(c)}

(a) Repeat the following fR(i) times

i. Draw a read, r, from i and add it to rl,c, i.e., rl,c = rl,c ∪ {r}.

For each c ∈ C, the set of reads, {r∗,c, is saved to a separate bam-file.
This concludes the description of the generative model and algorithm.
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