Supplementary figure 1

Supplementary data

Supplemental material and methods

Cell culture

EA.hy926 human umbilical vein cells were cultured in Basal Iscove, SK-N-BE(2) human neuroblastoma cells in RPMI, and Cos-7 african green monkey fibroblasts, HEK-293 human embryonic kidney cells and LN-18 human glioblastoma cells were cultured in DMEM. All media contained 10 % FCS, 2 mM L-glutamine (Biochrom) and 100 U/ml penicillin and 100 μ g/ml streptomycin (Pan-Biotech). All cells were kept at 37 °C and 5 % CO₂ in a humidified atmosphere.

For RT-PCR, the primers against XBP-1 were as follows; forward CCTTGTAGTTGAGAACCAGG and reverse GGGGCTTGGTATATATGTGG.

Supplementary figure 1: Proteasome inhibition with epoxomicin leads to accumulation of polyubiquitylated proteins, protein carbonyls, and reduces cell viability. (A) Cultured SH-SY5Y cells were treated for 18 hrs with epoxomicin (epox) or 0.1 % DMSO (D) and analysed by immunoblotting against ubiquitylated proteins and β -actin. (B) Relative cell viability of cells exposed to the indicated concentrations of epoxomicin or 0.1 % DMSO for 20 hrs was determined by XTT assay. To act as a control, cells were treated for 30 min before the assay procedure with 0.5 % NP-40-containing culture media. The mean values of the relative viability \pm S.D. from three independent experiments are shown. (C) Cultured SH-SY5Y cells were exposed to 10 nM epoxomicin (E) or 0.1 % DMSO (D) for 24 hr. Levels of carbonylated proteins and β -actin in cell lysates was analysed by immunoblotting.

Supplementary figure 2: Proteasome impairment leads to activation of TCF11/Nrf1 and its transactivation of proteasome gene expression.

Several cell types including undifferentiated (undiff.) and differentiated (diff.) SH-SY5Y were incubated with 10 nM epoxomicin (E) or 0.1 % DMSO (D) for 18 hr. The TCF11/Nrf1 protein amount was examined by immunoblotting. PSMB8/B5i/LMP7 expression is shown for immunoproteasome expression. GAPDH is shown as a loading control. (B) Cultured SH-SY5Y cells were exposed to the indicated concentrations of epoxomicin or the vehicle control 0.1 % DMSO (D) for 3 hr and afterwards separated in cytosolic, membrane, soluble nuclear and chromatin-bound fraction. Levels of TCF11/Nrf1 and loading controls Lamin B1, Histon H3, Calnexin and GAPDH were analysed by immunoblotting. (C) Immunocytochemistry of cells treated for 18 hrs with epoxomicin or 0.1 % DMSO. Cells were stained for calnexin (red) and TCF11/Nrf1 (green). Nuclei were stained by DAPI (blue). (D) SH-SY5Y cells were transfected with the PSMB6/B1 promoter containing the CAT reporter gene construct and cotransfected with pcDNA3.1-lacZ. For the last 18 hrs of transfection, cells were exposed to 10 nM epoxomicin (epox). The CAT concentration of cell lysates was determined by ELISA and normalized to β-galactosidase activity. Shown are the mean values of the relative CAT concentration \pm S.D. from 12 replicates of six independent experiments. (E) For the last 16-18 hrs of a 48 hrs TCF11 knockdown, SH-SY5Y cells were exposed to 10 nM epoxomicin. The relative mRNA level of *PSMC4*/Rpt3, *PSMA2/*α2, *PSMB6*/β1 and TCF11/Nrf1 was analyzed by quantitative real time PCR. Shown are the mean values normalised to the DMSO control \pm S.D. from four independent experiments. (*/#: p<0.05; **/##:p< 0.005). (F) Knock-down control for TCF11/Nrf1 gene expression by quantitative real time PCR revealed a mean depletion of 70% TCF11/Nrf1 gene expression. Shown are the mean values normalised to the DMSO control \pm S.D. from four independent experiments. (G) Human primary keratinocytes from healthy control subjects, two PRAAS patients with mutations in PSMB4/B7, and one healthy heterozygous carrier (pt1F) were examined for TCF11/Nrf1 expression in immunoblots. Only the patients show significant activation of TCF11/Nrf1. Actin served as loading control. (H) Cultured SH-SY5Y cells were exposed to 20 nM epoxomicin for 16 hrs (E) or not (DMSO solvent control, D). Transcription factor DNA complexes were chromatin immunoprecipitated by an antibody against TCF11/Nrf1 or an unspecific IgG antibody used as the control. The binding of TCF11/ Nrf1 to the *PSMB6*/β1 promoter was analysed by PCR. The samples were used in parallel for immunoblot analysis of TCF11/Nrf1 in the precipitates as an antibody specificity control.

Supplementary figure 3: Rotenone exposure induces cell death and activates the unfolded protein response. (A) Caspase-3/7 activity was determined from SH-SY5Y cells treated with the indicated concentrations of rotenone, 10 μ M MG132 or 0.1 % DMSO for 24 hr. The mean value of the relative activity \pm S.D. from 11 replicates of five independent experiments is shown. (B) Relative cell viability of SH-SY5Y cells exposed to rotenone (20 hrs; 0.001-10 μ M) was determined by XTT assay. As a control, cells were treated 30 min before the assay with 0.5 % NP-40-containing culture media. The mean values of the relative viability \pm S.D. from three independent experiments are shown. (C) SH-SY5Y cells were treated with 100 or 500 nM rotenone (R) or 0.1 % DMSO (D) for 48 hr. The XBP-1 mRNA

Supplementary figure 3

was analysed by PCR using specific primers targeting the unspliced as well as spliced version. A PCR using specific primers against GAPDH was performed as control. **(D)** SH-SY5Y cells were treated with 100 nM rotenone (R) or 0.1 % DMSO (D) for 48 hrs. The protein amount was examined by immunoblotting against eIF2 α and P-eIF2 α . GAPDH is shown as a loading control. **(E)** Cultured SH-SY5Y cells were treated with 200 μ M ascorbic acid (AA) for 20 hrs. For the last 10 hrs cells were treated or co-treated with 100 nM rotenone or 0.1 % DMSO. The relative mRNA levels of PSMB6/ β 1 were analysed by quantitative real time PCR. Shown are the mean values normalised to the corresponding DMSO control \pm S.D. from three independent experiments.

Supplementary figure 4

Supplementary figure 4: Proteasome complexes in SH-SY5Y cells contain the PA28 regulator. Cultured SH-SY5Y cells were exposed to 100 nM rotenone (R) or 0.1 % DMSO (D) for 8 hrs. Proteasome complexes were separated in native gels and immunoblotted against *PSME2*/PA28β.

Supplementary figure 5: TCF11/Nrf1 translocates into the nucleus upon arsenic exposure. (A) For immunocytochemistry, EA.hy926 cells were incubated with $10 \,\mu\text{M As}^{3+}$ for 6 hr and then stained for TCF11/Nrf1 (red) and nuclei by DAPI (blue). (B) EA.hy926 cells were exposed to the indicated concentrations of As³⁺ for 6 hrs, fractionated into nuclear and non-nuclear fraction and then stained for TCF11/Nrf1 in immunoblots. (C) EA.hy926 cells were exposed to $10\mu\text{M As}^{3+}$ for 6 hrs and analysed in immunoblots for proteasome subunit induction (exemplified by α 2) and tubulin (Tub) as loading control.