Appendix

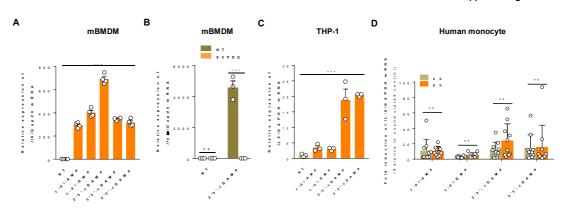

Appendix Figures and Figure Legends Appendix Tables

Table of contents:

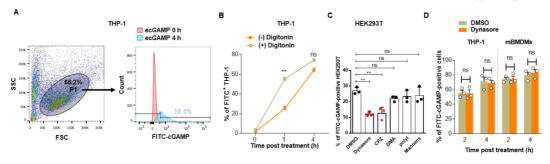
Appendix Figure S1. eCDNs induces IL-6 production in macrophages	2
Appendix Figure S2. Internalization of eCDNs	.3
Appendix Figure S3. eCDNs-induced innate immune activation requires STING	4
Appendix Figure S4. Cellular compartmentalization of eCDNs puncta	5
Appendix Figure S5. Diagram showing involvement of cGAS in sensing of eCDNs	6
Appendix Table S1. SAXS Data collection and derived parameters	.7

Appendix Figures and Figure Legends

Appendix Figure S1

Appendix Figure S1. eCDNs induces IL-6 production in macrophages.

A qRT-PCR detection of IL-6 mRNA in mBMDMs stimulated with indicated eCDNs (5 μ g/ml) for 4 h.

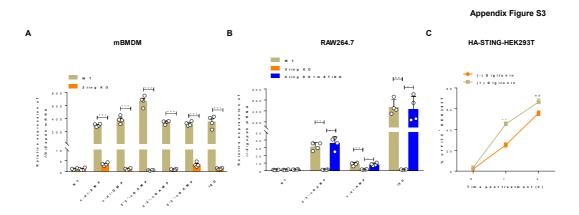

B qRT-PCR detection of IFN β mRNA in mBMDMs stimulated with indicated ecGMAP (5 µg/ml) left pretreated or untreated with snake venom phosphodiesterase (SVPDE) for 4 h.

C qRT-PCR detection of IL-6 mRNA in THP-1 cells stimulated with indicated eCDNs (5 μ g/ml) for 4 h.

D qRT-PCR detection of IL-6 mRNA in human PBMC-derived monocytes stimulated with indicated eCDNs (5 μ g/ml) for 4 h or 8 h, respectively.

Data (A-C) are means+SD averaged from at least 3 independent experiments performed with biological triplicate and each symbol represents the mean of biological triplicates. Data in (D) are means+SD of 10 healthy donors, where each symbol represents one individual donor. One-way ANOVA followed by Dunnett's post hoc test (A, C) and Two-way ANOVA followed by Bonferroni's post hoc test (B, D) were used for statistical analysis, respectively. ***, p<0.001; ns, not significant.

Appendix Figure S2


Appendix Figure S2. Internalization of eCDNs.

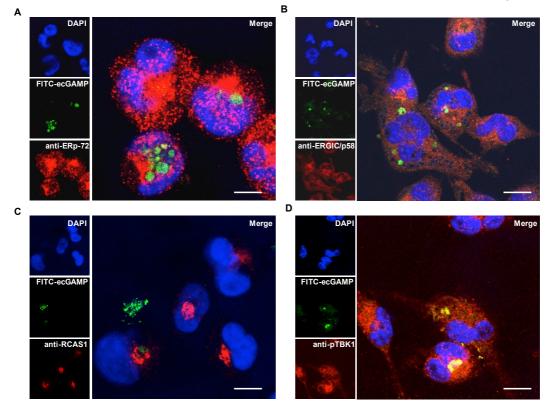
A Gating strategy for the FACS analysis of $FITC^+$ THP-1 cells. The live THP-1 cells were gated as P1. The frequency of $FITC^+$ THP-1 cells were calculated based on the control of unstimulated cells as shown on the right panel.

B Frequencies of FITC⁺THP-1 cells stimulated with FITC-cGAMP (5 μ g/ml) for indicated times in absence (–) or presence (+) of digitonin (10 μ g/ml). Data are means+SD averaged from of 3 independent experiments performed with biological triplicates. Two-way ANOVA followed by Bonferroni's post hoc test was used for statistical analysis. **p<0.01; ns, not significant.

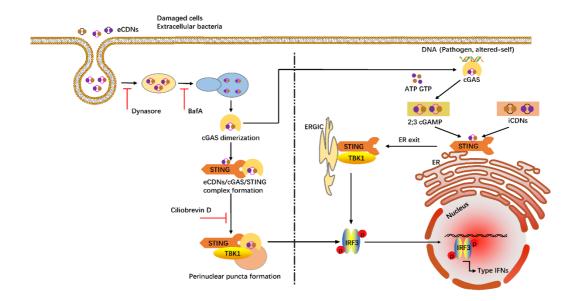
C Frequencies of FITC⁺ HEK293T cells stimulated with FITC-cGAMP for 1 h in presence of DMSO or indicated inhibitors including Dynasore (10 μ M), chlorpromazine (CPZ, 10 μ M), dimethylamiloride (DMA, 100 μ M), polyinosinic acid (Poly I, 50 μ g/ml) or mannans from *Sacharomyces cerevesiae* (Mannans, 1 mg/ml). Data are mean+SD and averaged from of 3 independent experiments performed with biological triplicates and each symbol represents the mean of biological triplicates. One-way ANOVA followed by Dunnett's post hoc test was used for statistical analysis, ***p*<0.01; ns, not significant.

D Frequencies of FITC⁺THP-1 cells or mBMDMs stimulated with FITC-icGAMP (0.1 μ g/ml) for 4 h in the presence of DMSO or dynasore (10 μ M). Data are means+SD averaged from of 3 independent experiments performed with biological triplicates. Two-way ANOVA followed by Bonferroni's post hoc test was used for statistical analysis. ns, not significant.

Appendix Figure S3. eCDNs-induced innate immune activation requires STING.


A qRT-PCR detection of IL-6 mRNA in WT and $sting^{-/-}$ mBMDMs stimulated with indicated eCDNs (5 µg/ml).

B qRT-PCR detection of IL-6 mRNA in WT, STING KO or STING KO complemented with mSTING (STING KO+mSTING) RAW264.7 cells stimulated with indicated eCDNs (5 μg/ml) or transfected with IFN stimulatory DNA (ISD).


C Frequencies of $FITC^+$ HA-STING-HEK293T cells stimulated with FITC-cGAMP (5 µg/ml) for indicated times in the absence (–) or presence (+) of digitonin.

Data (A-B) are means+SD averaged from 4 independent experiments performed with biological triplicates, where each symbol represents the mean of biological triplicates. Data (C) are means±SD averaged from 3 independent experiments performed with biological triplicates. Two-way ANOVA followed by Bonferroni's post hoc test was used for statistical analysis. *, p < 0.05; **p < 0.01; ***, p < 0.001.

Appendix Figure S4

Appendix Figure S4. Cellular compartmentalization of eCDNs puncta. Immunostaining of ER (anti-ERp-72, red) (A), ERGIC (anti-ERGIC/p58, red) (B), Golgi (anti-RCAS1, red) (C) and phospho-TBK1 (anti-phospho-TBK1, red) (D) in THP-1 cells stimulated with FITC-ecGAMP (5 μ g/ml, green) for 2 h, nucleus in blue (DAPI). Data are representative of at least 3 independent experiments. Scale bar, 10 μ m.

Appendix Figure S5. Diagram showing involvement of cGAS in sensing of eCDNs. The right panel depicts the DNA recognition by cGAS and the downstream events leading to type I IFN release. The left panel summarizes mechanisms governing eCDN sensing as indicated by current data. Clathrin-dependent endocytosis and endosome maturation are critical for sensing of eCDNs. Internalized CDNs bind cGAS directly, leading to its dimerization and promoting the formation of cGAS/STING complex. cGAS thus serves as a scaffolding protein and nucleates the formation of perinuclear signalosomes encompassing eCDNs/cGAS/STING which enables STING activation. Interestingly, eCDNs-induced dimerization of cGAS facilitates DNA sensing by cGAS.

Data collection parameters	cGAS	cGAS with 2'3'-cGAMP
Instrument	P12 at EMBL/DESY, ste	orage ring PETRA III,
	Germany	
Beam geometry	$0.2 \times 0.12 \text{ mm2}$	
Wavelength (Å)	1.24	
s-range (Å–1)	0.002 - 0.47	
Exposure time (s)	3600 × 1	
Temperature (K)	283	
Structural parameters		
I(0) (arbitrary units)	2237.0 ± 22.4	2559.0 ± 25.6
(from P(r))		
Rg (from $P(r)$) (Å)	33.8 ± 1.7	41.2 ± 2.1
I(0) (arbitrary units) (from Guinier)	2166.9 ± 18.2	2543.39 ± 10.14
Rg (Å) (from Guinier)	31.4 ± 1.4	39.4 ± 0.9
Dmax (Å)	127.0 ± 6.0	141.1 ± 7.1
Porod volume (103 Å) 3	110.13	126.9
Ab initio model resolution (Å)	29 ± 2	25 ± 2

Appendix Table S1. SAXS Data collection and derived parameters

Molecular mass determination

MMPOROD	64.7 ± 6.5	74.7 ± 13
(from Porod volume) (kDa)		
MMDAM	77 ± 10	98 ± 15
(from bead model, kDa)		
Calculated monomeric MM	58.8	58.8
from sequence (kDa)	00.0	00.0
Software employed		
Drimory data raduation	Automated radial averagin	~
Primary data reduction	Automated radial averagin	9
Data processing	PRIMUS	
Ab initio analysis	DAMMIF	DAMMIF
Validation and averaging	SASRES, DAMAVER	SASRES,
		DAMAVER
Modelling and flexibility	EOM	EOM
analysis		