SUPPLEMENTAL INFORMATION:

Ces1d deficiency protects against high-sucrose diet-induced hepatic triacylglycerol accumulation

Jihong Lian^{1,2}, Russell Watts^{1,2}, Ariel D. Quiroga³, Megan R. Beggs⁴, R. Todd Alexander^{2,4}, and Richard Lehner^{1,2,5}

¹Group on Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada

²Department of Pediatrics, University of Alberta, Alberta, Canada

³Instituto de Fisiología Experimental (IFISE), Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina.

⁴Department of Physiology, University of Alberta, Alberta, Canada

⁵Department of Cell Biology, University of Alberta, Alberta, Canada

Formula	g/kg diet
Vitamin free casein	211
Alphacel, non-nutritive bulk	164.50
Sucrose	584.50
Salt mixture U.S.P. XIV	40
Vitamin diet fortification mixture	6
Dry vitamin A acetate (500,000U/g)	0.040
Calciferol (850,000U/g)	0.0026
Alpha tocopherol powder 250 I.U.	0.48
Inositol	0.11
Choline chloride	6
Menadione	0.049
Biotin	0.45
P amino benzoic acid	0.11
Ascorbic acid	0.99
Niacin	0.098
Riboflavin	0.022
Pyridoxine HCl	0.022
Thiamine HCl	0.022
Calcium pantothenate	0.066
Folic acid	0.0020
B-12 (trituration 0.1%)	0.030

Supplemental Table S1. Formula of high sucrose diet (HSD)

Gene	Sequence
Acox	F: 5'- CAGCAGGAGAAATGGATGCA -3'
	R: 5'- GGGCGTAGGTGCCAATTATCT -3'
Abcal	F: 5'- AGTTTCTGCCCTCTGTGGTC -3'
	R: 5'- GGGTCGGGAGATGAGATGT -3'
Mlxipl (alpha)	F: 5'- CGACACTCACCCACCTCTTC -3'
	R: 5'- TTGTTCAGCCGGATCTTGTC -3'
Mlxipl (beta)	F: 5'- AAGACTGGGATGAACGAGCCAAGA -3'
	R: 5'- AATTTGACGTGGTTTCCACTCGCC- 3'
Cd68	F: 5'- GCGGCTCCCTGTGTGTCTGAT -3'
	R: 5'- GGGCCTGTGGCTGGTCGTAG -3'
Cidea	F: 5'- GCCTGCAGGAACTTATCAGC -3'
	R: 5'- AGAACTCCTCTGTGTCCACCA -3'
Cideb	F: 5'- CAGCCTCCAAGAACTGCTAGA -3'
	R: 5'- CCTCCAGGACCAGTGTTAGC -3'
Cidec	F: 5'- GGGTCACAGCTTGGAGGA -3'
	R: 5'- CTCCACGATTGTGCCATCT -3'
Cptla	F: 5'-TGAGTGGCGTCCTCTTTGG-3'
	R: 5'-CAGCGAGTAGCGCATAGTCATG-3'
F4/80	F: 5'- CCCTCGGGCTGTGAGATTGTG -3'
	R: 5'- TGGCCAAGGCAAGACATACCAG -3'
Fgf21	F: 5'- AGATGGAGCTCTCTATGGATCG -3'
	R: 5'- GGGCTTCAGACTGGTACACAT -3'
G0s2	F: 5'- TCTCTTCCCACTGCACCCTA -3'
	R: 5'- TCCTGCACACTTTCCATCTG -3'
G6p	F: 5'- GGATTCCGGTGTTTGAACGTC -3'
	R: 5'- CGGAGGCTGGCATTGTAGATG -3'
Pklr	F: 5'- CATTGTGCTGACAAAGACTGG -3'
	R: 5'- TGGGCAGAACGAGTCACA -3'
Ppia	F: 5'- TCCAAAGACAGCAGAAAACTTTCG -3'
	R: 5'- TCTTCTTGCTGGTCTTGCCATTCC -3'
Nr1h3	F: 5'- CAGAAGAACAGATCCGCTTGAAG -3'
	R: 5'- TGCAATGGGCCAAGGCGTGAC -3'
Pck1	F: 5'- GAACTGACAGACTCGCCCTAT -3'
	R: 5'- TTCCCACCATATCCGCTTC -3'
Srebf1 Tnfa	F: 5'- ATGGATTGCACATTTGAAGAC -3'
	R: 5'- CTCTCAGGAGAGTTGGCACC -3'
	F: 5'- GTCTACTGAACTTCGGGGTGA -3'
	R: 5'- CACCACTTGGTGGTTTGCTACGAC -3'
Txnip	F: 5'- ATCCCAGATACCCCAGAAGC -3'
	K: 5'- IGAGAGTCGTCCACATCGTC -3'

Supplemental Table S2. Primers used for quantitative PCR analysis

Supplemental Figure S1. Body weight and body composition. (A) body weight of WT and *Ces1d*^{-/-} mice before HSD study initiation age. (B) Fat and (C) lean mass percentage of WT and *Ces1d*^{-/-} mice before or after HSD feeding. N=5-7, values are mean \pm SEM. **P<0.01, ***P<0.001.

Supplemental Figure S2. Food intake of WT and *Ces1d^{-/-}* mice fed either chow (A-B) or HSD (C-D) in both light and dark phases was measured by metabolic cages. N=6. values are mean \pm SEM. *P<0.05, **P<0.01, ***P<0.001.

Supplemental Figure S3. Liver essential fatty acids (A and B) and their long-chain metabolites (C-E) in WT and *Ces1d*^{-/-} mice fed either chow or HSD. (F) Liver oleic acid concentration in WT and *Ces1d*^{-/-} mice fed either chow or HSD. N=6. values are mean \pm SEM. *P<0.05, **P<0.01, ***P<0.001.

Supplemental Figure S4. Hepatic mRNA expression of inflammatory markers in WT and *Ces1d*^{-/-} mice fed either chow or HSD. N=6. values are mean \pm SEM. *P<0.05, **P<0.01.

Supplemental Figure S5. VLDL-TG secretion rates of WT and *Ces1d*^{-/-} mice fed chow diet or HSD. N=4-6, values are mean ± SEM.

Supplemental Figure S6. Effects of HSD and Ces1d deficiency on lipogenic enzymes and AMPK in white adipose tissue (WAT). Abundance of (A) FAS, SCD-1, (B) p-ACC/ACC, and p-AMPK/AMPK in chow or HSD fed WT and *Ces1d^{-/-}* mice was assessed by immunoblotting. Values of relative band intensities were shown as

mean \pm SEM. (C) Lipogenic rate in the WAT of HSD fed WT and *Ces1d*^{-/-} mice was evaluated by the incorporation of ¹⁴C-acetate precursor into total lipids during refed state. N=6. values are mean \pm SEM.

Supplemental Figure S7. Lipogenic rate in the livers of HSD fed WT and *Ces1d^{-/-}* mice was evaluated by the incorporation of ¹⁴C-acetate precursor into liver (A) TG, (B) CE, and (C) cholesterol during refed state. N=6. values are mean \pm SEM.

Supplemental Figure S8. Protein abundance of liver p-HSL/HSL in chow or HSD fed WT and $Ces1d^{-/-}$ mice was assessed by immunoblotting. Values of relative band intensities were shown as mean \pm SEM.