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Supplementary Text 

Model simulations. 

The model used in this study is the Geophysical Fluid Dynamics Laboratory (GFDL) land model 

LM3 (20, 21), coupled with a newly developed and evaluated urban canopy model (UCM) (22, 

23). Within each grid cell, LM3 represents different land-use/land-cover types as a collection of 

tiles (20, 21). Each tile has its own energy and water balances throughout the vegetation-soil 

column and its own exchange coefficients with the atmosphere, but the atmosphere only receives 

the area-averaged fluxes of the grid cell. The land-use/land-cover types in LM3 include natural 

and secondary vegetation, grassland, pasture, and urban.   

The UCM is built on the urban canyon concept and separates the urban land into roof and 

canyon (22). It considers important radiation processes in the urban canyon including sky-view 

factors, shadow effects, and multiple reflections between walls and ground surfaces. It 

parameterizes turbulent exchanges between the atmosphere, the canopy air, walls and ground 

surfaces through a resistance approach. It also incorporates radiative, hydrological and biological 

processes associated with vegetation within the urban canyon. It solves the surface energy balance 

equations for different urban facets, including roof, wall, impervious ground, and pervious 

ground. Evaluation of the UCM using observational eddy-covariance data sets can be found in 

Ref. 22. 

In this study, the LM3 coupled with the UCM is driven by atmospheric forcing from 

GFDL earth system model outputs (the GFDL forcing) or gridded datasets based on observations 

and reanalysis fields (the Sheffield forcing). The GFDL forcing refers to outputs from coupled 

land-atmosphere-ocean earth system model simulations for the Coupled Model Intercomparison 

Project Phase 5 (CMIP5) (28, 29), which did not use any UCM in the land component. 

Specifically, the 3-hourly, 2 by 2.5 degrees ESM2Mb model outputs in the historical period and 



under the representative concentration pathway 8.5 are used (30). The Sheffield forcing (31) 

refers to the 50-yr (1949-2000), 3-hourly, 1-degree data set, which is based on a combination of 

observational and reanalysis data. The forcing variables for all experiments include downward 

shortwave radiation, downward longwave radiation, air temperature, specific humidity, pressure, 

wind speed, and precipitation.  

Using the GFDL forcing, we conduct long-term simulations (from 1700 to 2100) over 

North America (20°N – 55°N, 130°W – 60°W). Using the Sheffield forcing, we also conduct the 

simulations from 1700 to 2000 and we apply the first 30-yr forcing to the period of 1700-1948 in 

order to spin-up the model. Given the difference between the resolutions of the two forcing data 

sets, we use a grid resolution of 50 km for a consistent comparison. We focus on the UHIs in 

1981 to 2000 for historical simulations and 2081 to 2100 for future simulations. 

 

Attribution methods. 

We attribute the UHI intensity to contributions from different biophysical factors based on two 

attribution methods: the intrinsic biophysical mechanism (IBM) method (17) and the two-

resistance mechanism (TRM) method (18, 19). Both methods are based on surface energy 

balance equation 
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where 
nR  is the net surface radiation, 

inS  is the incoming shortwave radiation, 
inL  is the incoming 

longwave radiation,   is the surface albedo,   is the surface emissivity,   is the Stephan-

Boltzmann constant, 
sT  is the land surface temperature, H  is the sensible heat flux, LE  is the 

latent heat flux, and G  is the heat storage. The effect of anthropogenic heat flux is implicitly 



considered in G . Sensible heat flux is parameterized using the aerodynamic resistance concept, 

as follows 
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where   is the air density, 
pc  is the specific heat of air at constant pressure, 

ar  is the 

aerodynamic resistance, and 
aT  is the air temperature. 

 

a. The IBM method 

In the IBM method, the latent heat flux is parameterized using the Bowen ratio (  ) as 
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Linearizing the outgoing longwave radiation term in Equation (S1) and making use of Equations 

(S2) and (S3), the surface energy balance equation becomes 
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With the above expression for 
s aT T  and assuming that the urban and rural lands share the same 

atmospheric properties (this assumption is consistent with the assumption made by LM3), one can 

express the urban-rural land surface temperature difference as 
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The terms on the right-hand side of Equation (S7) represent contributions from net radiation, 

aerodynamic resistance, the Bowen ratio, and heat storage, respectively.  

 

b. The TRM method 

Different from the IBM method, the latent heat flux in the TRM method is parameterized using 

the aerodynamic and surface resistances (i.e., the big-leaf model) 
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where 
vL  is the latent heat of vaporization, 

sr  is the surface resistance, *

sq  is the saturated 

specific humidity, and 
aq  is the atmosphere specific humidity. Linearizing the outgoing longwave 

radiation and saturated specific humidity terms yields 
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Again, with the above expression for 
s aT T  and not considering changes in atmospheric 

properties, one arrives at 
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The terms on the right-hand side of Equation (S17) represent contributions from net radiation, 

aerodynamic resistance, surface resistance, and heat storage, respectively.  

 

c. Application of the two attribution methods 

In our study, the IBM and TRM methods are applied to attributing the UHI intensity of 60 cities 

across North America (Table S1). The required inputs of the IBM and TRM methods include 

sensible and latent heat fluxes, net radiation, land surface temperature, and air temperature for 

each land cover type. The TRM method also requires atmosphere specific humidity and air 

pressure. These variables are taken from the GFDL LM3 model outputs. The urban variables are 

the area-weighted averages of simulated results over the roof and canyon by the UCM. Hence the 

urban surface temperature is similar to that proposed by Ref. 32. The rural variables are area-

averages of simulated results over the natural and secondary vegetation, grassland, and pasture.  



The application of the two attribution methods follows closely our recent study (19), 

which applied these two attribution methods to studying local surface temperature response to 

deforestation. First of all, we exclude days with precipitation and focus on the results on clear 

days. It should be pointed out that excluding the data on precipitating days does not mean that the 

resulting surface UHI will not be affected by the long-term mean precipitation. The long-term 

mean precipitation characterizes the local background climate and will still affect the surface 

temperatures (and thus the surface UHI) on clear days. We separate analyses into day and night 

according to the incoming shortwave radiation. When the incoming shortwave radiation is larger 

than 25 W m-2, it is considered as daytime, otherwise it is considered as nighttime.  

Acceptable agreement between the calculated T and the modeled T is the prerequisite 

for the models to correctly attribute the UHI intensity. To assess the performance of the 

attribution models (Equations S7 and S17) in capturing the T directly inverted from the 

simulated outgoing longwave radiation, the root-mean-square error (RMSE) between the 

calculated T from Equations S7 and S17 and those inverted from the simulated outgoing 

longwave radiation are computed. As discussed in Ref. 19, with the availability of 3-hourly data, 

an immediate question that needs to be addressed is whether we should apply the two attribution 

methods at the 3-hourly scale and then aggregate the results to a longer time scale (in our case the 

monthly scale), or apply the methods at the monthly scale by first aggregating the input variables. 

We find that by aggregating the input variables to the monthly scale first and then performing the 

attribution, the agreement between the calculated T and the modeled T is better compared to 

performing the attribution at the 3-hourly scale and then aggregating the results to the monthly 

scale, which is consistent with the findings of Ref. 19. However, the attribution results (e.g., Fig. 

1) are not sensitive to this choice. As a result, we choose to aggregate the 3-hourly variables to the 

monthly scale where the attribution methods are applied. We exclude months if the inferred 



aerodynamic and surface resistances are negative, which are about 5% and 20% of the total 

months for daytime and nighttime, respectively.  

Despite that the attribution is performed at monthly scales, several inferred variables such 

as the aerodynamic and surface resistances have large uncertainties especially when the sensible 

or latent heat flux is very small. Additionally, neglecting higher-order terms in the Taylor series 

expansion (Equations S7 and S17) can also introduce large errors when the perturbations are large 

(19). To further improve the accuracy of the models, we adopt two strategies to reduce the RMSE 

of the IBM and TRM methods (19). First, we exclude months if the absolute values of monthly 

sensible and latent heat fluxes are less than 15 W m-2 in the daytime and 5 W m-2 at night. The 

criterion is reduced at night in order to retain as many data points as possible for attribution. 

Second, we introduce a weighted approach to calculate the partial derivatives in the equations S7 

and S17 based on urban and rural variables, as follows 
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where Y  is the final partial derivative used in the model, m  is average weight, 
ruralY  and 

urbanY  

are the partial derivatives calculated only using rural or urban variables, respectively.  

The introduction of m is to account for the effects of neglected higher-order terms in the 

Taylor series expansion, which can be important when the urban-rural differences (represented by 

Δ) are not sufficiently small. The value of m is optimized by minimizing the RMSE (Table S2). 

We find that while the m value strongly affects the RMSE, it does not affect our findings about 

the attribution qualitatively. For example, when m = 1 which gives equal weights to urban and 

rural sensitivities is used, the daytime attribution indicates that the surface resistance contributes 

mostly to the surface UHI, which is similar to the finding from Fig. 1b. 



Because of the criteria imposed for the attribution, some cities do not pass the criteria, 

especially during nighttime (see fig. S2 where 51 cities remain). This is acceptable given our 

focus on the daytime UHI intensity. In addition, we make sure that the cities in the attributions 

using the Sheffield forcing and GFDL forcing are the same so that the attribution results can be 

directly compared (fig. S2 and Fig. 1).   

 

d. Explanation of the T-precipitation covariance 

Given that T can be attributed to contributions from different biophysical factors, the covariance 

(cov) between T and precipitation (P) can be also explained by the covariance between different 

contributions and P, which for the IBM and TRM methods are as follows 
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Each term on the right-hand side can be further expressed as a fraction of the left-hand side, as 

shown in Fig. 2 and fig. S4. 

  



 

Fig. S1. Distribution and attribution of summer daytime surface UHIs across North 

America. Similar to Fig. 1 but the attribution is conducted for three climate zones 

separately (B: continental; C: arid; D: temperate). 

 



 

Fig. S2. Distribution and attribution of summer nighttime surface UHIs across North 

America. A, the distribution of simulated surface UHIs using the Sheffield forcing in 

1981-2000: blue, continental region; yellow, arid region; and green, temperate region. B, 

attribution of surface UHIs in current and future climates to different biophysical factors 

using the TRM method. *

nR , ar , sr , and G  represent the contributions from net radiation, 

aerodynamic resistance, surface resistance, and heat storage, respectively. ‘Total’ 

represents the sum of four contributions. 



 

Fig. S3. Relationship between precipitation and daytime T among 60 cities in 

winter. 



 

Fig. S4. Relationship between precipitation and daytime T among cities in summer. 

Similar to Fig. 2 except using the GFDL forcing. The top panels are results in the 

historical period (1981-2000); the bottom panels are results in the period of 2081-2100 

under the RCP 8.5 scenario. A, D, The correlation between daytime T and summer-mean 

precipitation. Dash lines are linear regression fits to T from the climate model (black), 

T from the IBM method (blue), and T from the TRM method (red). Parameter bounds 

for the regression slope are the 95% confidence interval. B, C, E, F, T-precipitation 

covariance explained by contributions from radiation ( *

nR ), aerodynamic resistance (
ar ), 

the Bowen ratio (  , for the IBM method) or surface resistance (
sr , for the TRM method), 

and heat storage G . 



Table S1. The selected cities in North America and the effective urban and rural albedo 

values for each city.  

No. 
City, 

State/Province 
Lon Lat 

Albedo 

Urban Rural Difference 

1 Albany, NY -73.75 42.65 0.237 0.196 0.042 

2 Albuquerque, NM -106.6 35.1 0.269 0.213 0.056 

3 Atlanta, GA -84.39 33.75 0.242 0.198 0.044 

4 Austin, TX -97.74 30.27 0.196 0.203 -0.007 

5 Baton Rouge, LA -91.14 30.46 0.242 0.189 0.053 

6 Billings, MT -108.54 45.77 0.256 0.195 0.061 

7 Bismarck, ND -100.78 46.81 0.249 0.208 0.041 

8 Boise, ID -116.21 43.62 0.256 0.193 0.063 

9 Boston, MA -71.06 42.35 0.237 0.192 0.046 

10 Calgary, AB -114.1 51.05 0.242 0.201 0.041 

11 Casper, WY -106.31 42.85 0.253 0.184 0.070 

12 Cheyenne, WY -104.82 41.14 0.253 0.183 0.069 

13 
Colorado Springs, 

CO 
-104.82 38.83 0.269 0.188 0.082 

14 Columbia, SC -81.05 34.03 0.242 0.170 0.072 

15 Columbus, OH -82.98 39.95 0.235 0.205 0.031 

16 Dallas, TX -96.8 32.78 0.197 0.194 0.003 

17 Denver, CO -104.97 39.74 0.270 0.190 0.080 

18 Des Moines, IA -93.61 41.6 0.245 0.212 0.033 

19 Dover, DE -75.52 39.16 0.234 0.199 0.035 

20 Hartford, CT -72.68 41.76 0.237 0.191 0.047 

21 Henderson, NV -115.04 36.05 0.274 0.288 -0.013 

22 Houston, TX -95.37 29.76 0.196 0.205 -0.010 

23 Indianapolis, IN -86.16 39.77 0.236 0.207 0.029 

24 Jackson, MS -90.18 32.3 0.242 0.192 0.050 

25 Jefferson City, MO -92.17 38.57 0.199 0.200 -0.001 

26 Lansing, MI -84.55 42.73 0.237 0.199 0.039 

27 Las Vegas, NV -115.14 36.17 0.274 0.288 -0.013 

28 Lincoln, NE -96.68 40.83 0.246 0.212 0.033 



29 Little Rock, AR -92.29 34.75 0.197 0.203 -0.006 

30 Los Angeles, CA -118.24 34.05 0.270 0.217 0.053 

31 Louisville, KY -85.76 38.25 0.244 0.202 0.042 

32 Madison, WI -89.4 43.07 0.245 0.202 0.042 

33 Minneapolis, MN -93.26 44.97 0.246 0.207 0.039 

34 Montgomery, AL -86.3 32.36 0.241 0.188 0.053 

35 Montreal, QC -73.58 45.55 0.237 0.195 0.043 

36 Nampa, ID -116.57 43.54 0.257 0.215 0.042 

37 Nashville, TN -86.78 36.16 0.243 0.201 0.042 

38 
Oklahoma City, 

OK 
-97.52 35.46 0.198 0.197 0.001 

39 Olympia, WA -122.9 47.04 0.261 0.198 0.063 

40 Philadelphia, PA -75.17 39.95 0.235 0.196 0.039 

41 Phoenix, AZ -112.07 33.44 0.270 0.238 0.032 

42 Pierre, SD -100.35 44.37 0.247 0.187 0.060 

43 Portland, OR -122.67 45.53 0.260 0.212 0.048 

44 Providence, RI -71.41 41.82 0.237 0.198 0.039 

45 Raleigh, NC -78.64 35.78 0.243 0.197 0.045 

46 Richmond, VA -77.43 37.54 0.244 0.192 0.052 

47 Sacramento, CA -121.48 38.6 0.273 0.216 0.056 

48 Saint John, NB -66.06 45.27 0.237 0.184 0.053 

49 Salem, OR -123.05 44.94 0.259 0.221 0.039 

50 Salt Lake City, UT -111.89 40.76 0.271 0.189 0.081 

51 Saskatoon, SK -106.67 52.13 0.242 0.207 0.035 

52 Seattle, WA -122.33 47.6 0.261 0.203 0.058 

53 Springfield, IL -89.65 39.78 0.244 0.209 0.034 

54 Tallahassee, FL -84.28 30.44 0.241 0.186 0.055 

55 Topeka, KS -95.68 39.06 0.200 0.211 -0.011 

56 Toronto, ON -79.38 43.65 0.236 0.200 0.036 

57 Trenton, NJ -74.74 40.22 0.236 0.196 0.040 

58 Tucson, AZ -110.92 32.22 0.268 0.215 0.053 

59 Vancouver, BC -123.12 49.28 0.242 0.193 0.049 

60 Winnipeg, MB -97.14 49.89 0.240 0.208 0.032 



Table S2. The root mean square errors between T from the climate model and those 

computed using the TRM method. ‘Threshold’ denotes the limit for the minimum absolute 

value of sensible and latent heat fluxes. mopt is the optimal value for m. n denotes the number of 

valid points used to attribution. 

Period 

Threshold 

(W m-2) 

mopt n 

RMSE 

(oC) 

Daytime 

Sheffield (1981-2000) 

15 

4 2714 0.72 

GFDL (1981-2000) 6 660 1.04 

GFDL (2081-2100) 6 719 1.29 

Nighttime 

Sheffield (1981-2000) 

5 

1 630 0.46 

GFDL (1981-2000) 2 166 0.31 

GFDL (2081-2100) 2 186 0.41 
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