Supplementary Materials Legends

S1 Fig. Neither *rpc128-1007*, nor *maf1*∆ are auxotrophic for glutamate.

Yeast strains MB159-4D (WT), maf1 Δ and rpc128-1007 were grown overnight in rich medium supplemented with 2% glucose. The cells were washed twice with minimal medium supplemented with 2% glucose without glutamate or glutamine and diluted to appropriate D₆₀₀. Cells dilutions were spotted on solid synthetic minimal medium supplemented with 2% glucose and basics amino acids either without (A) or with addition of 100 mg/L glutamate and incubated at 30°C for 2 days. Growth curves (C) for tested strains were measured in the same media (minimal medium supplemented with 2% glucose and basics amino acids amino acids without or with the addition of glutamate) at 30°C for several hours. Experiments were carried out for two independent biological replicates.

S2 Fig. Real-time quantitative PCR analyses of LEU3 gene transcript.

Slight increase in *LEU3* transcript levels was observed in *rpc128-1007* in glucose medium. Opposite effect was observed on glycerol-based rich medium. Maf1 deficiency cause 2-fold decrease in *LEU3* mRNA levels, when grown non-fermentative carbon source and reduced in glucose-based rich medium. Yeast cells were grown in 2% glucose (YPD) or 2% glycerol (YPGly) rich medium at 30°C until an $D_{600} \approx 1.0$. SYBER-Green based Real-Time PCR was performed. The expression level of each target PCR product was normalized to reference genes transcript levels: *U2* spliceosomal RNA (*U2*) and small cytosolic RNA (*SCR1*). The means + standard deviations of the relative expression levels from three independent biological replicates are shown. The value of basal gene expression level of WT strain was assumed as 1.0. Asterisks (*) indicate *P*-values ≤ 0.05 determined by t-student test.

S1 Table. Mean value for triplicate experiments of fermentative capacity assay of WT and *maf1* Δ cells. Results are expressed in mM / g dry weight. 'C-limited' stands for 'carbon-limited conditions'.

S2 Table. The list of 8 proteins involved in oxidative stress with higher abundance in $maf1\Delta$ and lowered quantity in *rpc128-1007* mutant in comparison to wild-type reference strain under high glucose conditions according to global proteomics.

S3 Table. The list of 18 proteins regulated by RPN4 that are part of 26S proteasome and its core complex, 20S proteasome, with lowered abundance in *rpc128-1007* mutant in comparison to wild-type reference strain under high glucose conditions according to global proteomics.

S4 Table. The list of 73 proteins involved in ribosome biogenesis with lowered abundance in *rpc128-1007* mutant in comparison to wild-type reference strain under high glucose conditions according to global proteomics.

S1 Table

Ethanol [mM / g dry weight]		
WT	15.52365	
$mafl\Delta$	16.20646	
WT C-limited	72.9832	
$mafl\Delta$ C-limited	84.02746	

S2 Table

ORF	Protein function
CTT1	Cytosolic catalase.
GAD1	Glutamate decarboxylase.
YPR1	NADPH-dependent aldo-keto reductase.
GRX2	Cytoplasmic glutaredoxin.
RCK2	Protein kinase involved in response to

	oxidative stress.
AHP1	Thiol specific peroxiredoxin.
TRR1	Cytoplasmic thioredoxin reductase.
TSA1	Cytoplasmic thioredoxin peroxidase.

S3 Table

ORF	Protein function
RPN5	Subunit of the 26S proteasome lid complexes.
RPN6	
RPN9	- 26S proteasome non-ATPase regulatory subunit.
RPN10	Non-ATPase base subunit of the 19S RP of the 26S proteasome.
RPN11	Metalloprotease subunit of 19S regulatory particle and part of 26S proteasome lid that couples the deubiquitination and degradation of proteasome substrates.
CIC1	Protein that interacts with proteasome components and has a potential role in proteasome substrate specificity.
UBP6	Ubiquitin-specific protease that is situated in the base subcomplex of the 26S proteasome.
SCL1	Alpha 1 subunit of the 20S proteasome that is involved in the degradation of ubiquitinated substrates.
RPT1	ATPase of the 19S regulatory particle of the 26S
RPT3	proteasome.
PUP1	Beta 2 subunit of the 20S proteasome that is endopeptidase with trypsin-like activity that cleaves after basic residues.
RPN2	Subunit of the 26S proteasome and a substrate of the N- acetyltransferase Nat1p.
PRE3	Beta 1 subunit of the 20S proteasome.
PRE4	Beta 7 subunit of the 20S proteasome.
PRE7	Beta 6 subunit of the 20S proteasome.

PRE9	Alpha 3 subunit of the 20S proteasome.
PRE10	Alpha 7 subunit of the 20S proteasome.
PUP2	Alpha 5 subunit of the 20S proteasome.

S4 Table

ORF	Protein function
RPS1, RPS2, RPS3, RPS4B, RPS5, RPS6B, RPS7B, RPS9A, RPS9B, RPS11B, RPS12, RPS13, RPS14B, RPS17B, RPS18B, RPS19B, RPS24B, RPS25A, RPS26A, RPS27B, RPS29B, RPS31	Protein component of the small (40S) ribosomal subunit.
RPL1B, RPL2B, RPL3, RPL4A, RPL4B, RPL6A, RPL6B, RPL7A, RPL7B, RPL8B, RPL10, RPL11B, RPL12B, RPL13A, RPL13B, RPL14B, RPL15A, RPL16B, RPL17B, RPL18B, RPL19B, RPL20B, RPL21A, RPL23B, RPL24A, RPL24B, RPL26B,RPL27A, RPL28, RPL31A, RPL32, RPL33A, RPL33B, RPL34A, RPL35B, RPL36A, RPL37B, RPL38, RPL39, RPL42B, RPL43B	Ribosomal 60S subunit protein.
<i>RPP0</i>	Ribosomal protein involved in interaction between translational elongation factors and the ribosome.

MRT4	Protein involved in mRNA turnover and
	ribosome assembly.
	Component of the small subunit
NOP1	processome complex, which is required
	for processing of pre-18S rRNA.
	Nucleolar protein involved in pre-25S
NOP12	rRNA processing, involved in biogenesis
	of large 60S ribosomal subunit.
	rDNA-binding component that regulates
HMO1	transcription from RNA polymerase I
	promoters.
	Required for pre-rRNA processing and
NSR1	ribosome biogenesis.
	ATPase of the ATP-binding cassette
ARB1	(ABC) family; involved in 40S and 60S
	ribosome biogenesis.
	Involved in production of 18S rRNA and
SAS10	assembly of small ribosomal subunit.
	Ribosomal protein P2 beta; a component
RPP2B	of the ribosomal stalk.
ASC1	Core component of the small (40S)
	ribosomal subunit required to prevent
	ribosoniai subunit, required to prevent
	frameshifting at ribosomes stalled at
	repeated CGA codons.

A. Synthetic minimal medium supplemented with 2% glucose and amino acids without glutamate or glutamine

D₆₀₀ 10^{-2} 10^{-3} 10-4

B. Synthetic minimal medium supplemented with 2% glucose and 100 mg/L glutamate

LEU3

maf1∆