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Gradient Boosting

Here is the basic procedure of component-wise gradient boosting algorithm:S1

1. Define the loss function L(y, f(x)), the base learner h(x) = ax + b, and the database

(xi, yi) including n samples, where xi is the p-dimensional input variable and yi is the

reference value for the i-th sample.

2. Initialize the prediction model f0(x).

3. For m = 1 to mstop:

(a) Compute the negative gradient of the loss function r =
∂L(y, fm−1(x))

∂fm−1(x)
as the

residue at the m-th step.

(b) Fit the residue r using different one-dimensional base learners h(xj), respectively,

where xj is the component of the p-dimensional input variables, and j varies from

1 to p.

(c) Compare the RMSEs using different base learners and choose the best one as

hm−1(x).

(d) Build the boosting model as fm(x) = fm−1(x) + νhm−1(x).

4. Determine the final prediction model f(x) through early stopping technique.

At step 3, ν ∈ [0, 1] is the shrinkage parameter that reduces the significance of every boosting

step in order to slow down weak learning and avoid early overfitting. It is set as 0.01 in this

work. The early stopping techniqueS2,S3 is applied to select the prediction model with the

best performance on the testing set.
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Gaussian Model

Here is the detailed process to build Gaussian model. The initial values of the parameters

of the k-th Gaussian distribution, including the mean vector µk, the covariance matrix Σk,

and the percentage Pk, are first calculated using k-means clustering. The following process

is then implemented:

1. The probability of a configuration xi in the k-th Gaussian distribution, denoted as

P (xi ∈ k), is

P (xi ∈ k) =
PkNorm(xi|µk,Σk)∑
k PkNorm(xi|µk,Σk)

, (1)

where

Norm(xi|µk,σk) =
exp

[
−1

2
(xi − µk)

TΣ−1k (xi − µk)
]√

|2πΣk|
. (2)

2. The Pk, µk and Σk are updated as

Pk =

∑
i P (xi ∈ k)∑

k

∑
i P (xi ∈ k)

, (3)

µk =

∑
i P (xi ∈ k)xi∑
i P (xi ∈ k)

, (4)

Σk =

∑
i P (xi ∈ k)(xi − µk)(xi − µk)

T∑
i P (xi ∈ k)

. (5)

3. Repeat step 1 and 2 until Pk is unchanged for all Gaussian distributions or the maxi-

mum step is reached.

4. Check the configuration of interest x in MD samplings using

P (x) =
∑
k

PkNorm(x|µk,Σk). (6)

The database will be extended with the configuration if P (x) is smaller than the pre-

determined threshold.
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Simulation Details

To calculate the solvation free energy (SFE), the solute molecule was solvated in a cubic

water box of 64 × 64 × 64 Å3 and treated as QM subsystem. The surrounding water

molecules were treated as MM subsystem. The TIP3P water modelS4 was applied under

periodic boundary condition. The cutoff distance for nonbonded interactions was set as 12

Å. The self-consistent charge density functional tight binding with second-order formulation

and MIO basis (DFTB2/MIO)S5,S6 was employed as the low-level SQM model, and the DFT

method with the B3LYP hybrid functionalS7,S8 and the 6-31G(d) basis set was employed as

the high-level ab initio QM model. The soft-core potential was used to describe the van der

Waals (vdW) interaction between QM and MM subsystems and expressed asS9

Evdw
QM/MM(λvdw) = 4λvdw

∑
i∈QM

∑
j∈MM

εij

[(
σ6
ij

α(1− λvdw)2σ6
ij + r6ij

)2

−
σ6
ij

α(1− λvdw)2σ6
ij + r6ij

]
,

(7)

where rij is the distance between QM atom i and MM atom j, ε and σ are the potential

well depth and vdW radius, which were chosen from the CHARMM22 force fieldS10 in this

work, λvdw is the switching parameter varying from 0 to 1 for thermodynamic integration,

and α is the soft-core parameter as 0.5 in this work. For each system, 21 MD simulations

were performed to calculate the SFE with thermodynamic integration, which includes 11

trajectories with λele = 0.0 and λvdw = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and 10

trajectories with λvdw = 1.0 and λele = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. For the low-

level DFTB2/MIO/MM and high-level B3LYP/6-31G(d)/MM simulations, the total time

of each MD trajectory was 110 ps, which consists of 10 ps of equilibration and 100 ps

of sampling. In the initialization stage of QM/MM ML, 50 configurations were randomly

selected from each trajectory of DFTB2/MIO/MM MD simulations. Then the B3LYP/6-

31G(d)/MM potential energies of all 1050 configurations were calculated in order to build

the initial database. In the subsequent QM/MM ML simulations, the total time of each MD

trajectory was 110 ps, which consists of 50 ps in the update stage and 60 ps in the finalization

S4



stage. For all MD simulations, the integration time step was set as 1 fs, and the system

temperature was maintained at 300 K using a Langevin thermostat.S11 All simulations were

implemented using the in-house QM4D programS12 combined with GAUSSIAN 03 program

for DFT calculations.S13
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Table S1. Hyperparameters η (bohr-2) and ζ of Symmetry Functions for Different
Elements of Six Molecules.

Molecules η ζ

C H O N C H O N

Acetic acid 0.20 0.60 0.10 1.00 1.00 0.05
Acetamide 0.30 0.60 0.05 0.05 0.40 0.05 1.00 0.05
Acetone 0.70 0.20 0.20 0.05 0.05 0.05
Benzene 0.70 0.05 0.90 0.05
Ethanol 0.20 0.60 0.05 1.00 0.05 0.05

Methylamine 0.05 0.40 0.30 0.05 0.05 0.05

Table S2. Hyperparameters nmax, lmax, Rn (Å) and α (Å-2) of Power Spectrum for Six
Molecules.

Molecules QM MM
α

nmax lmax Rn/n nmax lmax Rn/n

Acetic acid 4 4 0.5 4 2 2.0 0.3
Acetamide 4 4 0.5 4 2 2.0 0.5
Acetone 4 4 0.5 4 2 2.0 0.2
Benzene 4 4 0.5 4 4 2.0 0.5
Ethanol 4 4 0.5 4 2 2.0 0.8

Methylamine 4 4 0.5 4 2 2.0 0.3
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Table S3. Solvation Free Energies with Standard Deviations (kcal/mol) from MD Sim-
ulations Using DFTB2/MIO/MM, B3LYP/6-31G(d)/MM and QM/MM ML Models
(Symmetry Functions and Power Spectrum) Updated Using Output-Check (Model 1),
k-Means Clustering (Model 2) or Gaussian Model (Model 3) to Detect New Configu-
rations.

Molecules DFTB/MM B3LYP/MM Symmetry Functions Power Spectrum

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Acetic acid −5.0± 0.2 −7.5± 0.3 −6.8± 0.2 −6.7± 0.5 −7.0± 0.4 −6.9± 0.3 −6.8± 0.2 −7.3± 0.5
Acetamide −9.0± 0.2 −12.1± 0.3 −11.4± 0.2 −11.3± 0.2 −11.6± 0.2 −10.9± 0.3 −10.9± 0.3 −11.7± 0.4
Acetone −2.3± 0.2 −4.3± 0.2 −3.6± 0.3 −3.9± 0.4 −3.8± 0.3 −3.9± 0.2 −3.8± 0.3 −3.9± 0.3
Benzene 1.0± 0.3 −0.6± 0.2 −0.3± 0.4 −0.2± 0.3 −0.3± 0.5 −0.2± 0.4 −0.5± 0.4 −0.6± 0.4
Ethanol −1.0± 0.3 −4.8± 0.3 −4.6± 0.5 −4.6± 0.2 −4.3± 0.3 −4.0± 0.3 −4.0± 0.3 −4.6± 0.7

Methylamine 0.9± 0.1 −5.2± 0.2 −3.8± 0.1 −4.0± 0.5 −4.5± 0.5 −2.4± 0.2 −2.2± 0.2 −2.5± 0.4

Table S4. Solvation Free Energies (kcal/mol) and Percentages of New Configurations
Sampled during MD Simulations (in Parentheses) from MD Simulations with QM/MM
ML Models (Symmetry Functions and Power Spectrum) Updated Using Boundary of
Input Variables to Detect New Configurations.

Molecules Symmetry Functions Power Spectrum

Acetic acid −6.8 (3.0%) −6.5 (59.4%)
Acetamide −11.4 (2.7%) −11.3 (61.3%)
Acetone −3.9 (1.6%) −3.8 (59.0%)
Benzene −0.2 (1.2%) −0.2 (56.8%)
Ethanol −4.1 (3.1%) −4.3 (61.1%)

Methylamine −4.2 (1.6%) −2.9 (57.6%)
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Acetic acid Acetamide Acetone

Benzene Ethanol Methylamine

(a) Symmetry Functions

Acetic acid Acetamide Acetone

Benzene Ethanol Methylamine

(b) Power Spectrum

Figure S1. Comparison of the ML-predicted potential energies (Epred) using different ML models
(symmetry functions and power spectrum) with the reference values at the B3LYP/6-31G(d)/MM
level (Eref) for six molecules.
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