Ingradiant	- CH (#105789, Altromin; Lage, Germany)		
Ingredient	%, w/w		
Crude protein	32.1		
Crude fat	30.6		
Crude fibre	20.2		
Crude ash	5.6		
Moisture	4.2		
N-free extract	7.3		
Ingredient	+ CH (self-made)		
	%, w/w	Manufacturer	
Casein	20	Bayerische Milchindustrie eG; Landshut, Germany	
Palm fat	13.5	Ostthüringer Nahrungsmittelwerk; Gera, Germany	
Margarine	13.5	Ostthüringer Nahrungsmittelwerk; Gera, Germany	
Safflower oil	0.5	Kunella Feinkost; Cottbus, Germany	
Linseed oil	0.5	Kunella Feinkost; Cottbus, Germany	
Microcellulose	5	J. Rettenmaier und Söhne; Ellwangen-Holzmühle, Germany	
Mineral mixture	5	Altromin; Lage, Germany	
Vitamin mixture	2	Altromin; Lage, Germany	
Sucrose	10	Pfeifer & Langen KG; Cologne, Germany	
Starch	30	Kröner Stärke; Ibbenbüren, Germany	

ESM Table 1: Composition of diets

Macronutrient content	- CH	+ CH
Energy density (kJ/g)	16.8	21.9
Protein (% of total energy)	31	16.2
Carbohydrates (% of total energy)	0	32.4
Fat (% of total energy)	68	51.4

ESM Figure 1. FGF21 stimulates phosphorylation of ERK1/2 in liver and fat of NZO mice. At the age of 5 weeks, NZO mice were placed on a carbohydrate-free high-fat diet (-CH) for 13 weeks, at which point a random subgroup of animals was transferred to a carbohydrate-containing high-fat diet (+CH) for 2 weeks. (a) Random plasma FGF21 concentrations 3 days before the diet switch and (b) plasma human FGF21 one hour after sc injection at day 0. Gene expression of (c) *Fgf21* and (d) *Klb* in liver, gWAT, sWAT, and BAT of NZO mice 14 days after the diet switch.14 days after the diet switch, 4-hour fasted animals were treated subcutaneously with PBS or rhFGF21 (1 µg/BW g) 30 min before sacrifice. (e) Western blot of ERK1/2 phosphorylation in liver, gWAT, sWAT, and BAT. White bars, -CH: PBS; black bars, +CH: PBS; grey bars, +CH: FGF21. Data are presented as mean \pm SEM (*n* = 6-7/group). Differences compared with +CH:PBS group were calculated by one-way ANOVA (a, b, e) and two-tailed *t*-test (c, d), respectively. **p* < 0.05; ***p* < 0.01.

ESM Figure 2. FGF21 modifies changes in organ mass induced by carbohydrate feeding in NZO mice. At the age of 5 weeks, NZO mice were placed on a carbohydrate-free high-fat diet (-CH) for 13 weeks, at which point a random subgroup of animals was transferred to a carbohydrate-containing high-fat diet (+CH) for 2 weeks. Animals were treated subcutaneously with PBS or rhFGF21 (1 µg/BW g) starting 3 days before the diet switch and ending 7 days after the diet switch. 14 days after the diet switch, 4-hour fasted animals were sacrificed. Weight of (a) liver, gWAT, and BAT. (b) Liver triacylglycerol and (c) glycogen content. Data are presented as mean \pm SEM (n = 6-7/group). Differences compared with +CH:PBS group were calculated by one-way ANOVA. [†]0.1 > p > 0.05; *p < 0.05.

ESM Figure 3. FGF21 transiently increases food intake in NZO mice. At the age of 5 weeks, NZO mice were placed on a carbohydrate-free high-fat diet (-CH) for 13 weeks, at which point a random subgroup of animals was transferred to a carbohydrate-containing high-fat diet (+CH) for 2 days. Animals were treated subcutaneously with PBS or rhFGF21 (1 µg/BW g) starting 3 days before the diet switch and ending 2 days after the diet switch. (a) Food intake over different periods of time. White bars, -CH: PBS; black bars, +CH: PBS; grey bars, +CH: FGF21. Data are presented as mean \pm SEM (n = 4/group). Differences compared with +CH:PBS group were calculated by one-way ANOVA. **p < 0.01.