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ESM Methods 
 
Candidate covariates 
302 variables were identified in the data warehouse derived from the photographic 
screening (OptoMize, Digital Healthcare Ltd.), primary care (EMISweb, EMIS 
Healthcare Ltd.) and secondary care integrated patient management systems in the 
following domains: demography, national diabetic retinopathy grading classification, 
feature specific grading, visual acuity, clinical risk factors, drug treatment, hospital 
attendance, hospital treatment episodes. Covariates were reviewed by a patient 
expert panel and review of the literature and extracted in a RCE Development 
Dataset (listed in ESM Table 1). 
  Some covariates were unsuitable for inclusion. In the Markov model structure that 
we selected the model is built upon the histories of the patients. Attendance was 
therefore implicit in the history of each patient and could not function as an 
independent covariate. Social deprivation was based on GP postcode and was 
therefore unsuitable at in individual level. 
 
Continuous-time Markov process [16] 

The process considers a set of individuals independently moving among k states 

(example in Figure 1), denoted by 1,…,k. If 1n nt t  then, if we denote by X(t) the state 

occupied at time t by an individual is: 
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and more generally, if 1 2 nt t t  L  then:  

 (2) 

Let P be the transition probability matrix with entries: 

( , ) Pr{ ( ) | ( ) }ijp s t X t j X s i    (3) 

for i, j=1,…,k. The model is specified in terms of transition intensities (or hazards or 
risks) [18,19]: 
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We also defined: 

 

so we could define a k k  transition intensity matrix Q(t) with entries l
ij
(t)

 
(see 

Equation 2 in main manuscript). The simplest model assumes that ( )ij ijt   is 

independent of t, which implies transition intensities from an exponential distribution. 

In this case the process is stationary [16], that is given two time points, s and t, the 

process will only depend on the difference t-s.  
  We can consider a simple nonhomogeneous Markov model [17] with a time-
dependent intensity matrix of the form 𝑄(𝑡) = 𝑄0𝑔(𝑡, 𝛼) where 𝑄0 is a fixed transition 

intensity matrix. In this case, 𝑔(𝑡, 𝛼) defines an operational time such that the 

process is time-homogeneous Markov. For a given 𝛼, let 𝑠 = ∫ 𝑔(𝑢, 𝛼)𝑑𝑢
𝑡

0
 and define 

𝑌(𝑠) = 𝑋(𝑡), then 𝑌(𝑠) is a homogeneous Markov process with intensity matrix 𝑄0. 

  In our model we consider Weibull transition intensities with shape parameter 𝛼, 

given by 𝑔(𝑡, 𝛼) = 𝛼𝑡𝛼−1. The operational time in this case is 𝑠 = 𝑡𝛼, which is a 
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simple power transformation of the observed times (note that we recover the time-
homogeneous model when 𝛼 = 1). Following Kalbfleisch and Lawless [18], we 
estimate 𝛼 from the data, by maximising the maximised model log-likelihood with 

respect to it by a simple line-search. Introduction of the 𝛼 parameter in the model 
increases the overall likelihood, even considering the increased model complexity, so 
it improves the overall quality of the fit. 
  A relationship between transition intensities and transition probabilities is given by 
the following relationship and expressed as a matrix [18,19]: 

( ) exp( )P t Qt  (5) 

which is the solution of the Kolmogorov equation dP(t) = P(t)Qdt . 

  The equality provides estimates of the state transition probabilities. Note that the 
exponential operation is to be intended as a matrix operation, which is in general 

computationally complex. We assumed the entries of the matrix Q to be dependent 

on b functionally independent parameters, which might represent the baseline 

transitions of the model, and/or regression parameters relating the instantaneous 
transition intensities to a set of covariates. If each individual under study has 

associated a covariates vector of r risk factors z, we assume the following form for 

the transition intensities of the Markov process: 
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where 
0

ij  is the log of the baseline transition intensity (we assume the baseline 

corresponds to the mean of the covariates). The covariates vector can be time-
dependent, representing the history of the risk factors in a time interval, or a suitable 
summary statistic of the history, or fixed at baseline. 

  If we observe a random sample of n individuals at times 0 1, , , mt t tK , and denote by  

ijln the number of individuals in state i at 1lt   and j at lt , then it can be shown that 

conditional on the distribution of individuals among states at 0t , the likelihood 

function for the parameters  can be written as: 
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Note that the transition probabilities in the likelihood depend (typically nonlinearly) on 
the parameters through the Kolmogorov equation [18]. Maximisation of the above 
likelihood function with respect to the parameters provides estimates of the entries of 
the transition intensity matrix.  
  It should be noted that, in general, information on an individual’s passage through 
the disease states usually would not be complete, in the sense that we will only know 
an individual’s status at several points in time as illustrated in Figure 1 [19].  
  The model was fitted using the msm library of the R package, with additional code 
written by AE to interface the library with the multiple imputation functions and the 
covariate selection procedures (see next sections). 

 
Imputation in the model fitting 
Imputing missing values and then doing an ordinary analysis as if the imputed values 
were real measurements is usually better than excluding subjects with incomplete 
data. Problems with case-wise deletion of subjects with missing values include a 
reduction of the sample size, an increase in the real standard error of parameter 
estimates, and biased parameter estimates if data is not missing completely at 
random. Multiple imputation doesn’t incur any of the above problems; however, 
methods for properly accounting for having incomplete data can be complex. 
  Multiple imputation uses random draws from the conditional distribution of the target 
variable, given the other variables (e.g., we draw a value of HbA1c, conditional on 
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cholesterol, age at diagnosis, sex etc.). Note that causal chains are not relevant, so 
we can use variables measured “in the future” (both for the same or a different 
subject’s history). Conditioning on outcomes is also possible in multiple imputation 
procedures, and it helps reduce the bias in parameter estimates; in our model, we 
conditioned on both screening times and states. 
  To properly account for variability due to unknown values, the imputation is 

repeated M times, where M ≥ 3 (for our model we have M =10.) Each repetition 

results in a “completed” dataset that is analysed using the standard method. 
Parameter estimates are averaged over these multiple imputations to obtain better 
estimates than those from single imputation. The variance-covariance matrix of the 
averaged parameter estimates, adjusted for variability due to imputation, is estimated 
using the following [21,22]: 
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where iV  is the ordinary complete data estimate of the variance-covariance matrix for 

the model parameters from the ith imputation, and B is the between-imputation 

sample covariance matrix, the diagonal entries of which are the ordinary sample 

variances of the M parameter estimates. 

  We used the aregImpute multiple imputation algorithm, implemented in the 
aregImpute function, part of the rms library of the R package. In the following we give 
a necessarily brief description of the algorithm; for further details, see the 
documentation of the function, and the previously referenced sources. 
aregImpute takes all aspects of uncertainty into account using the bootstrap to 
approximate the drawing of predicted values and using different bootstrap samples 
for each multiple imputation. aregImpute applies weighted predictive mean matching 
so that no distributional assumptions are required. We used van Buuren’s “Type 1” 
matching [21] to capture the right amount of uncertainty: here one computes 
predicted values for missing values using a regression fit on the bootstrap sample, 
and finds donor observations by matching those predictions to predictions from 
potential donors using the regression fit from the original sample of complete 
observations. 
  When a predictor of the target variable is missing, it is first imputed from its last 
imputation when it was a target variable. A donor is defined as a complete 
observation whose predicted target is closest to the predicted value of the target from 
all complete observations. 
 

Covariate selection 
Estimation and model selection were combined under a unified framework achieved 
by minimisation of: 

ˆAIC 2log Likelihood( | data) 2K    (9) 

where K is a measure of the complexity of the model and for a linear model, is the 

number of parameters that enter the model. Because n/K<40 (where n=388 is the 

number of screen positive events, and K=37, including the 𝛼 parameter to model 

nonhomogeneity) the expression was revised (after Harrell [22]) giving the 
“corrected” second-order AIC [16,20,31]: 
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Because individual AIC values are not interpretable due to containing arbitrary 
constants and being much affected by sample size, AICc was rescaled to: 

min=AIC AICi i   (11) 
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where minAIC is the minimum of the different AICc values. D
i
was then interpreted as 

the information loss experienced if we used fitted model g
i
 rather than the best fitting 

model. The covariates retained in the model were the ones that achieved a total 
rescaled AICc=0. 
 

Model checking  
Note that due to the multiple imputation process, both bootstrapping and 4-fold cross 
validation were applied to the “median” dataset (i.e. the data set obtained by 
replacing all missing covariates with the medians over the ten imputation sets). 
 

 
ESM Results 
 
Covariate selection and risk model 
Covariates were centered at their means, so the baseline transitions refer to a 
hypothetical subject with mean covariate values: age at diagnosis: 61 years; time 
since diagnosis of diabetic disease: 6 years; HbA1c: 7.2% (55.5 mmol/mol); total 
cholesterol: 4.3 mmol/l; systolic blood pressure: 132 mmHg. 
  As described above missing entries were imputed using multiple imputation 
techniques. All covariates (including those that didn’t enter the final model) and the 
outcomes (screening times and associated states) were used in the imputation 
process. Missing entries for the covariates used in the model fitting (see Table 1) for 
which multiple imputation was required were: disease duration 994; HbA1c 6311; 
systolic BP 4651; total cholesterol, 7615; diastolic BP 4643; eGFR 8271; HDL 
cholesterol 8303 
  The two baseline transition intensities to the screen positive state in the rightmost 

column of Q equation (2)) are shown in ESM Figure 3. 

 
ESM Table 1 Candidate covariates developed by the patient expert panel and 
literature review. 
 

Data type Name 

Retinopathy RxMxa baseline 

Demographic  Age (years) 

Gender 

Ethnicity 

Systemic risk 
factors 

Type of diabetes 

Known duration of diabetes 
(years) 

HbA1c (mmol/mol) 

Smoking 

BMI (kg/m2) 

Total cholesterol (mmol/l) 

HDL cholesterol (mmol/l) 

LDL cholesterol (mmol/l) 

Systolic blood pressure (mmHg) 

Diastolic blood pressure (mmHg) 

eGFR (ml min-1 1.73m2 -1) 

Albumen creatinine ratio (mmol/l) 

Triglycerides (mmol/l) 

Insulin use 

Medications 
 
a National Diabetic Eye Screening Programme grading classification 
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ESM Fig. 1 Example of panel or interval censored data as applied to screening data 
in ISDR dataset. The process in this example is observed on three occasions, at 
times 1.5, 3.5 and 5 years, in the states 2, 2 and 1, respectively. No transition is 
observed exactly (and state 3 is not observed at all). 
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* ISDR RCE Development Dataset contains: 11806 participants (46525 screening episodes) 
who have at least 2 screening episodes from 20th Feb 2009 - 4th Feb 2014 and whose 1st 
screening episode was negative in both eyes (i.e. not R2, R3 or M1) 

 
 
ESM Fig 2 
 
Consort style diagram showing the distribution of subjects forming the ISDR RCE 
Development Dataset 

ISDR RCE Development Dataset* 
n = 11806  

 (46525 screening episodes)  

  

  

  

  

  

  

Number of participants in Data Warehouse  
n = 18045  

 (approx. 72,000 episodes) 

Number of participants who have both 
EMIS web and OptoMize data n=18034 

Number of people with at least one 
screening episode n=16757 

Data sent from ISDR data warehouse 
n=16230 (69258 screening episodes) 

Number of people with valid photo dates 
n=15353 (67766 episodes) 

Number of people with selecting screening 
episodes from  

20th Feb 2009 - 4th Feb 2014  
n=14253  

Number of participants who have 
missing data in either EMIS web or 

OptoMize n=11 

Number of people who have no 
screening episode dates n=1277  

Number of people with no photo 
dates n=877 

Number of people with screening 
episode dates only prior to 20th Feb 

2009 n=1100  

Number of people with only one 
screening episode between 20th Feb 

2009 - 4th Feb 2014 
n=2447  

Number of people with at least one 
screening episode but no 

corresponding covariate data n=527  
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ESM Fig. 3: Transition intensity baselines to the screen positive state from the non-
deferable retinopathy, one eye (top) and from the non-deferable retinopathy, two 
eyes (bottom) states. 
 
 

 
ESM Fig. 4: Smoothed summary residual (y axis) vs. follow up time (x axis, units in 
years) with 95% confidence interval used to check time homogeneity in the Liverpool 
Risk Calculation Engine. 
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ESM Fig. 5. Cox-Snell residuals for the Liverpool RCE model. The black line shows 
the Turnbull estimate of the calibration curve; the blue line is a smoothing of the black 
line, and the red line represents the theoretical calibration. The calibration curve is 
close to the theoretical optimal calibration, and it shows the model tends to give 
slightly pessimistic predictions of failure. 
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