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Materials and Methods 34 

Study design 35 

A key challenge in the analysis of large biological datasets is to account for the full array 36 

of hypotheses that are tested during the process of data collection, data filtering, 37 

annotation and statistical analysis. Analysis choices that are made throughout the process 38 

are influenced by properties of the data. Thus, correcting for all of the formal statistical 39 

tests that are performed in a study may not fully account for the “garden of forking paths” 40 

that led to the formulation of these hypotheses (31). It is therefore difficult for the reader 41 

to know for certain if the multiple test correction performed accounts for the full 42 

hypothesis space that could potentially be explored.  43 

This is particularly problematic when investigating genetic association in non-coding 44 

regions of the genome. The analyst has almost infinite degrees of freedom in terms of the 45 

selection of functional annotations and gene-sets that could potentially be tested for 46 

association. The solution to this challenge, as proposed by Gelman and Loken (31) is to 47 

pair an initial experiment with a “pre-registered” replication, in which the hypotheses and 48 

all details of analysis are specified in advance. Our study has followed this design, and it 49 

is structured in three stages:  50 

1.  Target functional elements were selected from a larger set of annotations based 51 

on evidence of SV intolerance from this study and from a SV call set from the 52 

1000 genomes project. 53 

2. Target categories were tested for association in a primary sample of 829 ASD 54 

families. One category of non-coding annotation was significant after correction for 55 



 

 

3 

 

multiple testing. This association and all details of the analysis were then posted as a 56 

manuscript to the preprint server bioRxiv (https://www.biorxiv.org/). 57 

3. The primary hypothesis was subsequently replicated in an independent sample of 58 

1,771 families 59 

Stage 1 of this study provides an effective means for reducing the number of tests to a 60 

limited set of functional annotations in which SVs are under strong natural selection. The 61 

prepublication manuscript posted in stage 2 provides a transparent way to state our 62 

primary hypothesis and describe all analysis methods prior to obtaining the replication 63 

dataset. The addition of stage 3, prompted by peer review of the primary study, allows for 64 

confirmation of the primary scientific claim.  65 

Recruitment  66 

Our discovery sample consisted of ASD families derived from two cohorts, which will be 67 

referred to as ‘REACH’ or ‘SSC1’ in the following sections.  68 

REACH cohort individuals were referred from clinical departments at Rady Children’s 69 

Hospital, including the Autism Discovery Institute, Psychiatry, Neurology, Speech and 70 

Occupational Therapy and the Developmental Evaluation Clinic (DEC) as part of the 71 

Relating genes to Adolescent and Child Health (REACH) study. Further referrals came 72 

directly through the REACH project website (http://reachproject.ucsd.edu/). In total 612 73 

individuals from 161 families came from the REACH project. The Autism Center of 74 

Excellence at the University of California San Diego contributed 11 trios. A further 452 75 

samples from 139 families were recruited at Hospital Universitari Mútua de Terrassa in 76 

Barcelona. The REACH families combined consisted of 112 controls and 362 affected 77 

https://www.biorxiv.org/
http://reachproject.ucsd.edu/
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individuals - 285 with ASD, 43 with pervasive developmental disorder – not otherwise 78 

specified (PDD-NOS), 10 with attention deficit hyperactivity disorder (ADHD), and 24 79 

with speech delay, epilepsy, anxiety, or other related developmental disorders that were 80 

therefore classified as ‘cases’ for bioinformatics analyses.  81 

The Simons Simplex Collection Phase 1 (SSC1) Whole Genome Sequencing dataset 82 

(http://bit.ly/2jc34rU) consisted of 518 quad families with sibling pairs discordant for an 83 

ASD diagnosis that were selected from the full cohort of 2,644 families after excluding 84 

those where offspring carried any plausible contributory de novo or inherited SNVs, 85 

indels, deletion or duplications identified from microarray or exome sequencing data. The 86 

exclusion criteria for exome- or array-‘positive’ individuals are described below and were 87 

applied to both ASD cases and sibling-controls: 88 

1) De novo deletions and duplications (189 families): Any confirmed/published de novo 89 

copy number variant (CNV) (10), Illumina SNP genotyping data, or exome CNV data 90 

that is: Rare (≤0.1 population frequency based on parents and DGV) or genic (≥1 exon). 91 

2) Inherited CNVs (92 families): Any CNV from Illumina genotyping data, or exome 92 

CNV data that is: rare (≤0.1 population frequency based on parents and DGV), or 93 

intersects ≥10 genes. 94 

3) De novo LoF (564 families): Any de novo loss of function from published sequencing 95 

data that is: rare (≤0.1 population frequency based on the exome variant server), 96 

nonsense, canonical splice site, or frameshift (2, 26). 97 

 98 

 99 

http://bit.ly/2jc34rU
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Whole Genome Sequencing 100 

Our combined dataset consisted of WGS data collected for two cohorts and sequenced at 101 

three sites (table S1). All WGS data were generated from whole blood DNA. All 102 

members of individual families were sequenced within the same batch of samples. 103 

REACH cohort 104 

Whole genome sequencing was performed on blood-derived genomic DNA samples of 105 

1,126 individuals from 319 families, including 893 individuals from 260 families. 106 

Sequencing was performed at Human Longevity Inc. (HLI) on an Illumina HiSeq X10 107 

system (150 bp paired ends at mean coverage of 50X) and an additional 204 individuals 108 

from 59 families that were sequenced at the Illumina FastTrack service laboratory on the 109 

Illumina HiSeq 2500 platform as described in our previous publication (9). We 110 

performed initial quality control (QC) steps to ensure relatedness and gender matched the 111 

sample sheets, excluding any mismatches or half-siblings. We also tested for an excess of 112 

Mendelian errors in the children, and an excess of single nucleotide variants called in 113 

either parent (>3 SD from the mean) indicative of low quality DNA. In total 29 samples 114 

were removed, including eight complete families. Therefore, 1,097 individuals from 311 115 

families were taken forward for structural variant calling and analysis. 116 

SSC1 Cohort  117 

Whole genome sequencing of the SSC phase 1 (SSC1) cohort of 540 families was 118 

performed at the New York Genome Center on an Illumina HiSeq X10 (150 bp paired 119 

ends at mean coverage of 40X). Of the 540 SSC families, 518 were complete quad 120 

families. Incomplete families were excluded from the dataset. All 518 met the above QC 121 
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criteria for inclusion in the study. Mean coverage (39-50X) and insert sizes (348-420) and 122 

were similar at all three sequencing sites (table S1). 123 

Sequence alignment and variant calls for REACH samples were generated on families 124 

using our WGS analysis pipeline implemented on the Comet compute cluster at the San 125 

Diego Supercomputer Center (SDSC, https://goo.gl/C4bVoe). For SSC samples the same 126 

pipeline was adapted for use on Amazon Web Services (AWS). In brief, short reads were 127 

mapped to the hg19 reference genome by BWA-mem version 0.7.12. Subsequent 128 

processing was carried out using SAMtools version 1.2, GATK version 3.3, and Picard 129 

tools version 1.129, which consisted of the following steps: sorting and merging of the 130 

BAM files, indel realignment, removal of duplicate reads, base quality score recalibration 131 

for each individual. 132 

Replication Cohorts  133 

Our hypothesis and all analytic details were pre-registered by posting a preprint 134 

describing the results of our primarily analysis (16). We then carried out a replication of 135 

our primary scientific claim in an independent sample. 136 

The replication WGS dataset consists of data from two cohorts, the Autism Speaks' 137 

MSSNG program (Principal investigator: S.S.) (17), and the SSC phase 2 (SSC2) sample. 138 

The MSSNG sample consisted of 30X WGS of 3,769 individuals using Illumina HiSeq 139 

X10 platform, including 1,395 ASD cases from 1,187 families (998 trios, 157 quads, 28 140 

quintets, 3 sextets, and 1 septet concordant for ASD). A complete breakdown and list of 141 

samples is provided in table S1. The SSC2 cohort consisted of 2,336 individuals from 142 

584 quads discordant for ASD, sequenced and processed in the same way as the first 143 

https://goo.gl/C4bVoe
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phase of SSC quads. In total the replication cohorts consisted of 6,105 individuals from 144 

1,771 families, including 1,979 ASD cases and 584 sibling controls. 145 

SV detection, genotyping and filtering – discovery cohort 146 

We utilized four complementary algorithms to detect SVs: ForestSV, Lumpy, Manta, and 147 

Mobster. ForestSV is designed to detect deletions and duplications based on a 148 

combination of signatures including, coverage, discordant paired ends and other metrics 149 

such as mapping quality (http://sebatlab.ucsd.edu/software-data). Lumpy 150 

(https://github.com/arq5x/lumpy-sv) and Manta  (https://github.com/Illumina/manta; 151 

workflow version 0.29.0), the latter being a new addition to the SV analysis pipeline 152 

since our previous publication (9), both utilize a combination of discordant paired ends 153 

and split reads and have greater sensitivity for small (<500 bp) deletions, duplications, 154 

inversions and complex rearrangements. Finally, Mobster 155 

(http://sourceforge.net/projects/mobster) uses discordant paired-end and split-read signal 156 

in combination with consensus sequences of known active transposable elements to 157 

identify mobile element insertions (MEIs). A consensus callset was generated by merging 158 

calls from ForestSV, Lumpy, Manta and Mobster. SV calls from multiple methods were 159 

combined, and overlapping variants detected in the same sample were collapsed as 160 

described in our previous structural variant publication (9). The unfiltered consensus 161 

callset consisted of the union of calls from the four methods. As a preliminary filtering 162 

step, SVs were removed from the consensus callset if they overlapped by more than 66% 163 

with centromeres, segmental duplications, regions with low mappability with 100bp 164 

reads, regions subject to somatic V(D)J recombination (parts of anitbodies and T-cell 165 

receptor genes). SVs called by Manta or Lumpy were filtered if they had one or both 166 

http://sebatlab.ucsd.edu/software-data
https://github.com/arq5x/lumpy-sv
https://github.com/Illumina/manta
http://sourceforge.net/projects/mobster
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breakpoints overlapping one of these regions. Regions used for filtering can be found in 167 

our previous publication (9). 168 

We generated a set of uniformly-called genotypes for the combined set of deletions and 169 

duplications detected by three methods Lumpy, Manta, or ForestSV, using a single 170 

genotyping algorithm SV2 (https://github.com/dantaki/SV2). SV2 (11) provides estimates 171 

of genotype likelihoods for deletions and duplications across a broad size range (10bp-172 

10Mb), and this metric was used as our primary filtering criterion for these. Lumpy and 173 

Manta also provide genotype likelihoods for the subset of calls that were generated by 174 

these methods, which include SVs that are not genotyped by SV2 such as inversions and 175 

non-tandem duplications. These genotype likelihoods were also used as quality metrics 176 

during the filtering of SV callset as described below.  177 

SV2 designates SV calls as “PASS” or “FAIL” at two levels of stringency: “standard” and 178 

“de novo”, which are described in detail in our companion paper (11).  Standard filters 179 

were used to generate the main SV callset and these genotypes were used for family 180 

based association testing. The more stringent “de novo” filters were used for de novo 181 

mutation calling. In addition, we included in the consensus callset SVs, which passed 182 

genotype likelihood thresholds for Lumpy and Manta. Manta and Lumpy genotype-183 

likelihood thresholds for SV filtering were determined based on estimates of FDR, which 184 

were performed from Illumina 2.5M SNP array data on a subset of 205 genomes using 185 

the Intensity Rank Sum test implemented using the Structural Variation Toolkit. 186 

Thresholds were selected for SVs across a range of sizes and depending on sequence 187 

context (short tandem repeats, segmental duplications, etc.). FDR estimates for SV calls 188 

https://github.com/dantaki/SV2
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filtered at standard and de novo stringency and genotype likelihood thresholds for Lumpy 189 

and Manta are provided in table S3.  190 

Due to the requirements of this study for high genotyping accuracy, we have applied 191 

additional filtering measures that were not used in a previous publication from our group 192 

(9). The FDR of variants intersecting STRs was an order of magnitude higher than SVs 193 

that did not; therefore more stringent genotype likelihood filters were applied to SVs 194 

overlapping STRs (table S3). Furthermore because STRs were depleted in probes on the 195 

Illumina 2.5M SNP array, only 7.2% of deletions and 12.9% of duplications overlapping 196 

an STR had one or more probes, compared to 28.5% of deletions and 56.3% of 197 

duplications that do not. FDR estimates for these variants could be less accurate. 198 

Therefore, for all analyses in this study, we have excluded SVs with breakpoints 199 

overlapping STRs. We have also annotated these in the callset VCF (which can be 200 

downloaded from NDAR study #434), and we suggest that these SVs be treated with 201 

caution. Hence, the number of deletions and duplications reported in the SV callset here 202 

is lower than in our previous publication (8, 9).  203 

In total we detected 11.87 million alleles from 89,123 distinct loci encompassing 19.4% 204 

of the GRCh37 (hg19) release of the ‘mappable’ reference human genome 205 

(0.497/2.57Gb, excluding SVs larger than 1Mb, which are likely to be pathogenic and 206 

would contribute disproportionately to this estimate, table S2). 12.5% (320Mb) of the 207 

reference genome was deleted and 7.3% (186Mb) duplicated in our cohort of 829 208 

families.  209 

 210 

 211 
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SV detection, genotyping and filtering – replication cohort 212 

MSSNG 213 

Data processing was performed by Scherer laboratory, and functional annotation of SV 214 

calls was performed using an annotation file that we provided.  Briefly, for 2,945 215 

individuals alignment was performed using BWA version 0.7.10. SV calling was 216 

performed on a per family basis using Manta and Lumpy, with genotyping using SV2 217 

following the pre-registered protocol (described above). For a subset of individuals (n = 218 

824) sequence alignment was performed with the ISAAC aligner and SV calling was 219 

performed by Manta on a per individual basis, but with genotyping of each SV call on a 220 

per family basis using SV2. 221 

SSC2 222 

The SSC phase 2 (SSC2) data was processed on the Amazon Web Services cloud in a 223 

manner identical to that for SSC1. SV genotypes from the replication dataset were 224 

intersected with our original SV callset based on the confidence intervals for SV 225 

breakpoints given by Manta / Lumpy. We then identified SVs that had an allele 226 

frequency <0.0003 (the allele frequency for private variants in our original study). 227 

De novo calling and phasing 228 

De novo SVs were called if they occurred in a child and were genotyped reference in both 229 

parents and the parent allele frequency for the variant was less than 1%. We also applied 230 

more stringent SV2 genotype likelihood filters for de novo SVs and TDT analyses, which 231 

are detailed in table S3. The average rate of Mendelian errors for deletions and 232 

duplications in the callset as a whole was 0.99% (95% CI: 0.03) and 4.66% (95% CI: 233 
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0.15) respectively (fig. S4). De novo genotype likelihood filters applied to variants with 234 

parent allele frequencies <1% reduced the rate to 0.21% (95% CI: 0.1) for deletions and 235 

0.5% (95% CI: 0.2) for duplications. 236 

SV validation 237 

We validated large putative de novo deletions and duplications using an in silico SNP-238 

based approach that utilizes read depth from the VCF files from GATK Haplotype Caller. 239 

For each SNP we normalized allelic read depth relative to the genome average for 240 

reference / alternate alleles, and calculated a z-score for each SNP. We also calculated the 241 

B allele frequency (BAF) by taking the average of the allele (reference or alternate) with 242 

the fewest number of supporting reads across the locus. Since deletions are hemizygous, 243 

the expected BAF is 0. For duplications we calculated the BAF only for heterozygote 244 

SNPs, which have an expected BAF of 0.33 for autosomal variants. If the child showed 245 

an average elevated or depleted SNP read depth more than one standard deviation from 246 

both parents, and a BAF consistent with the SV type, and/or the variant could be phased, 247 

then the SV was designated as valid. Furthermore this SNP data was used to determine 248 

the parent of origin, by performing a paired t-test on phased SNP allelic depth within the 249 

locus. We plotted the validation results for each member of the trio using the R package 250 

CNVplot, which was developed in house (https://github.com/dantaki/CNVplot). This 251 

approach is orthogonal to the SV calling steps above, which do not phase variants, 252 

calculate their BAF, or estimate coverage using SNP data.  253 

Small deletions, duplications, inversions, complex SVs, and MEIs were validated using 254 

PCR. Both de novo inversion calls were validated. We attempted PCR validation on 13 255 

de novo Alu elements, all of which validated as de novo. Alu insertions have poly-A tails; 256 

https://github.com/dantaki/CNVplot
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we therefore used a lower extension temperature (65ºC), because A/T rich sequences 257 

have a low melting temperature. We also used longer extension times (90 seconds) to an 258 

otherwise standard PCR protocol. 259 

Validation and FDR estimation by Nanopore sequencing 260 

We validated deletions and duplications predicted in Illumina short read paired-end 261 

genomes in three unrelated individuals with Oxford Nanopore (ONP) long read 262 

sequencing. ONP reads were aligned to the human hg19 reference with bwa-mem 263 

(version 0.7.10-r789) and ngmlr (https://github.com/philres/ngmlr, version 0.2.3) with the 264 

“-x ont2d” and “-x ont” options.  The average coverage was 7.4X and average read length 265 

was 2,574bp for bwa-mem alignments and 7.3X and 2,525bp for ngmlr alignments. We 266 

restricted validation to variants with less than 50% overlap to elements in our genome 267 

mask. Additionally, we ensured that the median base-pair depth of coverage was greater 268 

than 0X in 1000bp regions flanking the breakpoints, totaling 3,252 deletion and 62 269 

duplication candidates for validation. We then searched for supporting reads in bwa-mem 270 

and ngmlr alignments, defined as supplementary alignments or CIGAR string deletions 271 

and insertions with breakpoints that overlap at least 50% reciprocally to the SV in 272 

question. Short-read SV predictions were considered validated if at least 1 supporting 273 

read was detected in either bwa-mem or ngmlr alignments. We then calculated the false 274 

discovery rate (FDR) specifying false positives as SVs without supporting reads while 275 

binning on allele frequency and SV length. The overall FDR was 10.4% for deletions and 276 

30.6% for duplications; for private variants of SV length 100bp-1000bp the FDR was 0% 277 

for deletions. 278 

 279 

https://github.com/philres/ngmlr
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Oxford Nanopore Targeted Validation of LEO1 280 

Recurrent deletions of the LEO1 locus were validated and fine mapped by single 281 

molecule sequencing. Deletion and reference haplotype sequences were amplified by 282 

long range PCR (LongAmp® Taq 2X Master Mix, New England BioLabs, M0287L) in 283 

carriers of LEO1 deletions from three families (14-59, F0182, and F0208). Target 284 

sequences were amplified from each sample using one set of primers that span the 285 

deletion breakpoint and another set that specifically amplifies the reference (non-286 

deletion) haplotype, and PCR amplicons were gel purified. Samples were barcoded using 287 

Oxford Nanopore Technologies’ (ONT) Native Barcoding Kit 1D (EXP-NBD103) and 288 

sequencing adapters were added using Ligation Sequencing Kit 1D (SQK-LSK108). 289 

Libraries were sequenced for 48 hours on ONT’s MinION Mk1B, using the SpotON 290 

Flow Cell Mk I (R9.4, FLO-SPOTR9) and MinKNOW software (v.1.3.30). In total 291 

approximately 2.3 Gb of fasta data was generated.  292 

Quality and length filters were applied to the unaligned reads. Reads with a mean quality 293 

score of 8.5 or less or which differed from the expected amplicon length by 2kb or more 294 

were removed. Reads were aligned to the human genome (hg19) using BWA-mem 295 

(v.0.7.15-r1140) with the '-x ont2d -M' flags and filtered to keep only those that 296 

overlapped 95% of the target region. Consensus sequences were generated from the 297 

alignment of multiple reads using Mummer (http://mummer.sourceforge.net/), and 298 

deletion breakpoints were identified by aligning the consensus sequence to the reference 299 

genome using BLAT. The consensus fasta sequences can be downloaded from NDAR. 300 

 301 

 302 

http://mummer.sourceforge.net/
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Evaluation of SV calling across data from multiple sequencing centers 303 

The average SV numbers for each class of SV were similar between cohorts sequenced at 304 

different sequencing centers (table S1). Modest differences in SV calling were observed 305 

between sequencing centers. We compared SV calls for one individual (REACH000236) 306 

who was sequenced twice, on the Illumina HiSeq 2500 with 100bp reads (at 43X 307 

coverage) and on the Illumina HiSeq X with 150bp reads (also at 43X coverage). Since 308 

the coverage is the same between the two samples but the read length is 50% longer on 309 

the HiSeq X, this sample has only 2/3 as many reads when sequenced on the HiSeq X. 310 

This affects SV calling for two reasons, there will be on average more split reads 311 

supporting each call on the HiSeq X, but fewer discordant paired-end reads. The overlap 312 

between the SVs called on each platform in this sample ranged from 66-96% for each SV 313 

type (fig. S12). 314 

Selection of target functional elements based on SV intolerance 315 

We investigated the enrichment/depletion of private deletions, duplications, and mobile 316 

element insertions within specific genomic features compared to a random distribution of 317 

SVs. Random distributions of SVs were simulated using two different models of random 318 

mutation: (1) a uniform random model (UM) in which we shuffled the position of sites 319 

that were private to families (i.e. observed in only one parent) across the genome using 320 

BedTools  and (2) a non-uniform random model (NUM) based on a concept used 321 

previously (15), in which the correlation of SVs to genome features was modeled by 322 

fitting a linear regression to the observed rate of SV breakpoints to GC content, coverage, 323 

low-complexity repetitive elements, and segmental duplications. A probability density 324 

function derived from the linear model was then used to simulate random SVs. In both 325 
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cases we excluded regions of the genome that cannot be sequenced with short reads. We 326 

counted the number of times a shuffled SV overlapped (at least 1bp) the following 327 

genomic features: protein coding exons, transcription start sites (TSS), 5’UTRs, 3’UTRs, 328 

promoters, noncoding RNAs, enhancers, conserved noncoding regions, human 329 

accelerated regions, CTCF binding sites, exon flanking (one breakpoint within 100bp of 330 

an exon), 1kb upstream, 1kb downstream, and introns. Events that overlapped multiple 331 

features were prioritized in the order above, so for example if a variant overlapped a 332 

protein coding exon, a 3’UTR and an intron, it is counted as protein coding but not 333 

3’UTR or intronic. Each feature is explained in detail below and we’ve summarized each 334 

in a table included as part of table S5. We performed 10,000 permutations and compared 335 

the observed overlap to the expected overlap. P values were corrected using a Benjamini–336 

Hochberg false-discovery rate adjustment, and Q values are reported in table S5. 337 

Categories that were depleted among variant-intolerant genes (ExAC pLI>90th percentile) 338 

were selected as targets in our primary analysis. Significant depletion was defined as 339 

OR<1 and FDR adjusted Q<0.01. 340 

Generating a random distribution of SVs using a linear regression model 341 

Structural mutation rates vary across the genome, and regional differences in the rate of 342 

SVs introduce biases in the distribution of SVs that could confound our estimates of SV 343 

intolerance. To address this concern, we adapted a model from Ruderfer et al. (15) to 344 

estimate SV mutation rate and to simulate variants according to a non-uniform, 345 

empirically-derived random distribution that is more reflective of true genomic 346 

background than assuming uniform random mutation. Our NUM model fits a linear 347 

regression for the observed rate of SV breakpoints (in 1000 bp windows) in relation to 348 
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GC content, coverage, overlap with low complexity repetitive elements, and intersection 349 

with segmental duplication regions. 350 

Coverage tracks were generated from SSC, 1000 genomes, and REACH samples. At least 351 

30 samples were used to generate each track. Fine-grain GC content, repetitive element, 352 

and segmental duplication overlap tracks were generated from raw data available on 353 

UCSC genome browser. These tracks were then used to fit three linear regression models 354 

to predict the empirical density of SV breakpoints in each data set for benign variants. 355 

These linear regression models were then converted into probability density functions 356 

(pdfs) that could be used to simulate new background variants. 357 

10,000 simulations were performed to shuffle the variants in each data set. Our empirical 358 

pathogenic predictions were compared against the generated null distributions. The 359 

results did not differ significantly after correcting for SV background mutation rates 360 

according to the Ruderfer model. 361 

Definitions of gene disrupting SVs versus noncoding 362 

Gene disrupting deletions were defined as those that directly disrupted at least one 363 

protein coding exon from one transcript of a gene (transcripts were extracted from hg19 364 

RefSeq). Noncoding deletions could delete UTRs, introns, enhancers, or promoters of 365 

genes, but not protein coding exonic sequence or the start position of the first exon of a 366 

transcript. Protein coding duplications were divided into four categories. Whole gene 367 

duplications encompassed at least one full-length transcript of a gene. Internal exon 368 

duplications intersected at least one protein coding exon internal to a transcript, but not 369 

the UTRs. Duplications that intersected at least one exon and with one breakpoint outside 370 

of the gene and the other internal to the gene were divided into two categories, those that 371 
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encompassed the 5’UTR (and promoter), and those that encompassed the 3’UTR. Gene 372 

disrupting inversions were classified as variants that either had one or both breakpoints 373 

inside a protein coding exon of a gene, or that had one breakpoint in an intron of a gene 374 

and the other breakpoint either outside of that gene or in another intron. Inversions that 375 

inverted an entire gene or genes but had intergenic breakpoints were considered 376 

noncoding. 377 

Definition and selection of noncoding elements 378 

Transcription start sites, 3’UTRs, and 5’UTRs were defined using full-length protein-379 

coding transcripts from RefSeq. Two types of noncoding RNAs, micro-RNAs and natural 380 

antisense transcripts were defined. Human micro-RNAs were downloaded from miRBase 381 

(mirbase.org, v21), lifted over to hg19 annotated to genes if they were intronic in a sense 382 

orientation and therefore transcribed with the gene itself. Exons of natural antisense 383 

transcripts (NATs) were assigned to genes if they were transcribed in an antisense 384 

direction and overlapped with a gene. NAT data was downloaded from GENCODE v25 385 

(only including transcripts with support level of 1, 2 or 3). 386 

Conserved noncoding regions were defined from two studies; one that defined 387 

ultraconserved elements > 100bp conserved in human, mouse and rat genomes (32), and 388 

the other that defined ultrasensitive noncoding regions with almost as much selective 389 

constraint as coding genes (33). 390 

Promoters and enhancers were defined using fetal brain data Epigenomics Roadmap 391 

Project and data from ENCODE. The Epigenomics Roadmap Project integrated 392 

combinatorial interactions between five different chromatin marks to define 15 chromatin 393 
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states using a Hidden Markov Model 394 

(http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). 395 

Four states were used to define promoters, active transcription start site (1_TssA), TSS 396 

flank (2_TssAFlnk), bivalent TSS (10_TssBiv), and bivalent TSS flank (11_BivFlnk). 397 

Three states were used to define fetal brain enhancers, genic enhancer (6_EnhG), 398 

enhancer (7_Enh), and bivalent enhancer (12_EnhBiv).  399 

For the Epigenomics Roadmap Project data, fetal brain promoters/enhancers were 400 

defined using the intersection of male and female fetal brain tissue (epigenomes: E081 & 401 

E082). Adult brain promoters/enhancers were defined using the intersection of 402 

epigenomes from eight brain regions (E067 (Angular gyrus), E068 (Anterior Caudate), 403 

E069 (Cingulate Gyrus), E070 (Germinal Matrix), E071 (Hippocampus), E071 (Inferior 404 

Temporal Lobe), E073 (Dorsolateral Prefrontal Cortex), & E074 (Substantia Nigra)), 405 

excluding any elements that intersected with those in fetal brain. 406 

ENCODE enhancers and promoters were defined based on chromatin state segmentations 407 

from six human cell lines (GM12878, K562, H1-hESC, HeLa-S3, HepG2, and HUVEC), 408 

which integrated ENCODE ChIP-seq, DNase-seq, and FAIRE-seq data from two 409 

algorithms (chromHMM and Segway) to segment the genome into seven states. Data for 410 

all six cell types was downloaded from UCSC genome browser, two states were used to 411 

defined ENCODE promoters, predicted promoter or transcription start site (state: TSS), 412 

predicted promoter flanking region (state: PF). One state was used to define ENCODE 413 

enhancers, predicted strong enhancer (State: E). ENCODE CTCF enriched elements were 414 

used to define CTCF binding sites (State: CTCF). Promoters and Enhancers were 415 

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
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assigned to genes based on proximity, if they intersected or were within 10kb of the 416 

transcription start site of an isoform of the gene. 417 

Assigning enhancers to genes based purely on proximity is not the most effective 418 

approach, as the majority of annotated enhancers do not interact with the nearest gene. 419 

We therefore implemented TargetFinder (https://github.com/shwhalen/targetfinder), a 420 

machine-learning algorithm that annotates to genes with an FDR <15% by integrating 421 

features such as DNA methylation, histone marks, and cap analysis of gene expression 422 

(CAGE) data to predict distal enhancers (distance 10kb-2Mb) that interact with 423 

promoters. We extracted all enhancers predicted to directly activate genes in six cell 424 

types from ENCODE (GM12878, HeLa-S3, HUVEC, IMR90, K562, & NHEK). We also 425 

attempted to assign enhancers to genes using the correlation of expression between 426 

enhancers and promoters within 500kb of each other using data from FANTOM5 427 

(http://fantom.gsc.riken.jp/data/). 428 

We downloaded chromatin interaction analysis by paired-end tag (ChIA-PET) data 429 

detailing the interactome map between noncoding elements and transcription start sites 430 

through CTCF or RNA polymerase II interactions (21, 22). For each interacting pair of 431 

elements if one member of the pair overlapped a promoter of a gene (within 10kb) we 432 

assigned its pair to the target gene as a putative noncoding interacting element. 433 

Finally fetal central nervous system DNase hypersensitivity data (6) and ‘human 434 

accelerated regions’ that have undergone rapid evolution since the split from 435 

chimpanzees (5) were also tested. Both these features were assigned to genes based on 436 

proximity as for enhancers and promoters.  437 

 438 

https://github.com/shwhalen/targetfinder
http://fantom.gsc.riken.jp/data/
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Defining variant-intolerant genes and annotating known ASD genes 439 

Genes were categorized based on their probability of being loss-of-function (LoF) 440 

intolerant (pLI) as assessed by large-scale exome sequencing of populations by the 441 

Exome Aggregation consortium (ExAC) (12). The EXAC release 0.3.1 dataset (January 442 

2016) was downloaded, and we used the published pLI scores that were calculated on the 443 

subset of the cohort after excluding individuals with schizophrenia. The pLI score ranges 444 

from 0-1 for 18,421 genes, with higher scores indicating that a gene is more intolerant to 445 

inactivating mutations. 446 

Our set of known autism genes were taken from the integration of ASD array data and 447 

exome sequencing of the SSC cohort (10), and genes with an FDR < 0.1 from another 448 

large scale whole exome sequencing study (18). In total there are 71 ASD associated 449 

genes. 450 

Transmission Disequilibrium Test 451 

Family-based association tests were performed using SV2 genotype calls for SVs filtered 452 

at standard stringency. We tested whether variants private to families in our callset were 453 

transmitted to affected children or controls more or less than expected by chance, using a 454 

two-tailed haplotype-based group-wise transmission disequilibrium test (gTDT) (34), 455 

assuming a dominant model. Variants smaller than 100bp or overlapping STRs (>50%) 456 

were excluded as it is challenging to validate them or estimate their FDR. We further 457 

excluded two families from this analysis, one family where the parents DNA was cell line 458 

derived (MT_121), and one family where the mother and child had an excess of coverage 459 

based calls from ForestSV (F0226).  460 
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Our analysis focused on genes with pLI scores >= 90th percentile, which we determined 461 

are enriched for genes associated with autism from published exome studies. We also 462 

only tested features that were SV intolerant from the callset permutation analyses above 463 

as we hypothesize that these features will be enriched for variants associated with autism. 464 

P values were corrected for multiple testing using a Benjamini–Hochberg false-discovery 465 

rate adjustment. 466 

To compare paternal and maternal transmission rates to cases we performed a binomial 467 

test under the assumption that 50% of transmitted variants should derive from each 468 

parent. 469 

Considering potential biases or technical artifacts in the TDT 470 

The transmission disequilibrium test requires accurate genotyping of variants. 471 

Genotyping error can result in the apparent biased transmission of parental variants to 472 

offspring. For example false-positive SV calls in parents or false negative genotype calls 473 

in children can lead to an apparent under-transmission bias. For instance, given an FDR 474 

of 2% for SV calls in parents, and no transmission of the false calls, a rate of 48% 475 

transmission would be consistent with random segregation. This modest under-476 

transmission bias, is not specific to SVs, and is also apparent for single nucleotide 477 

variants genotyped using GATK (34). 478 

We have therefore evaluated the potential for genotyping error to lead to spurious results 479 

in the TDT as part of a companion study (11) and in this study, we further examined the 480 

rates of Mendelian error and transmission to offspring for private SVs across a broad size 481 

range (fig. S4). Our results suggest that private >100 bp deletions and duplications 482 

respectively have low FDR (2.3% and 1.7%) and Mendelian error rates (2.0% and 0.6%). 483 
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Since only a small fraction (2.7%) of SVs <100bp in length overlapped with probes on 484 

the Illumina 2.5M SNP microarray we could not accurately estimate the FDR for these; 485 

therefore SVs <100bp in size were not included in our analysis. 486 

As an additional control in the TDT we also demonstrate that there is no transmission 487 

bias for SVs in a non-depleted control category (intronic), which has a similar length 488 

distribution (mean = 1,988 bp) to the cis-regulatory category (mean = 2,920 bp). We also 489 

observe 50% transmission in tolerant genes for all functional categories of private SVs 490 

that were tested (table S6). We are therefore able to rule out a systematic transmission 491 

bias as an explanation for our results. Lastly, over-transmission of private coding and 492 

noncoding SVs was specific to cases, not observed in controls, and the association was 493 

replicated in an independent cohort. 494 

Test for enrichment of recurrent SVs in cases 495 

To permute the relative enrichment / depletion of SVs overlapping the same functional 496 

elements (e.g. exons) in different families, we permuted these variants across the genome 497 

ensuring that permuted variants intersected at least one functional element of a gene with 498 

a pLI score >= 90th percentile using bedtools shuffle (by implementing the –incl 499 

command). Variants could overlap because of an elevated mutation rate We excluded 500 

variants that overlapped a functional element that was also overlapped by a variant from 501 

the 1000 Genomes phase 3 SV callset, or that overlapped ≥50% with a 1000 Genomes 502 

variant, to exclude variants that may reside in hotspots for structural mutation. We 503 

repeated the analysis for controls and for genes with pLI scores <90th percentile. For 504 

analysis of coding variants we required that observed / permuted variants impacted any 505 

exon of the same gene to be considered recurrent. For noncoding analysis we required 506 
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that variants impacted the same element (e.g. a 5’UTR from the same transcript) to be 507 

considered recurrent. We counted the number of times we observed a gene or functional 508 

element was intersected by more than one distinct SV and compared this to 10,000 509 

permutations.  510 

Testing the association of LEO1 de novo mutations with ASD and DD 511 

A series of 20 different studies have been published that reported all de novo mutations 512 

detected across the exome in cases. For a specific candidate locus in this study we have 513 

investigated the potential association with developmental disorders base on tests of de 514 

novo mutation burden in a large combined sample of 13,391 subjects. 515 

SV Burden 516 

The burden of de novo structural variants between individuals with ASD in this study and 517 

the controls from this study was assessed using a case-control permutation test 518 

implemented in PLINK. 519 

Mutational Clustering 520 

To assess whether de novo SVs cluster with de novo nucleotide substitutions or indels, 521 

we used a window based permutation approach. We took windows of 100bp, 1kb, 10kb, 522 

100kb, 1Mb, and 10Mb around the breakpoints of de novo SVs and intersected the 523 

windows with de novo SNVs and indels in the same individuals (de novo detection of 524 

SNVs and indels was performed as described in our previous publication (9). We then 525 

shuffled the position of these windows in the genome either randomly (excluding regions 526 

that were filtered during SV calling) or across detected inherited SV breakpoints using 527 
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BedTools and calculated the expected number of window overlapping DNMs using 528 

100,000 permutations. 529 

Fibroblast cell culture and quantitative RT-PCR 530 

Dermal fibroblasts were obtained from two carriers of LEO1 deletions (a father and son) 531 

identified in our study and additional unrelated control subjects by punch biopsy. 532 

Fibroblast cell lines were then derived by Cellular Dynamics international 533 

(https://cellulardynamics.com/) as part of the California Institute for Regenerative 534 

Medicine Tissue Collection for Neurodevelopmental Disabilities (http://bit.ly/2mKUhB2) 535 

and then provided to our lab for further study. Samples used for analysis included 536 

fibroblasts from F0182| REACH000322 (ASD proband and deletion heterozygote), 537 

F0182|REACH000321 (father, deletion heterozygote), and three unrelated control 538 

samples: CW60038, CW60044, and JS034. Cells were recovered from cryogenic storage 539 

as per CIRM’s protocol and cultured in Dulbecco’s modified eagle medium (DMEM) 540 

supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100µg/ml penicillin and 541 

100µg/ml streptomycin (Thermo Fisher Scientific, Waltham, MA, USA). Cells were 542 

maintained in an incubator at 37°C at 5% CO2 and harvested for RNA isolation at 543 

passage three.  544 

Total RNA was isolated using the Quick-RNA Microprep kit (Zymo Research, Irvine, 545 

CA, USA) protocol for adherent cells with in-column DNAse treatment. cDNA was 546 

synthesized from 100 ng of RNA using random oligo primers as part of the High 547 

Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA) 548 

according to the manufacturer’s protocol. Multiplexed qPCR reactions were conducted in 549 

triplicate for each sample using gene-specific predesigned PrimeTime® qPCR assays for 550 

http://bit.ly/2mKUhB2
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LEO1 (Hs.PT.58.448164, FAM-labeled) and the housekeeping gene HPRT1 551 

(Hs.PT.58v.45621572, HEX-labeled) (Integrated DNA Technologies, Coralville, IA, 552 

USA) on a CFX Connect Real-Time PCR System (Bio-Rad, Hercules, CA, USA) along 553 

with no-template and no-reverse-transcription controls. Changes in gene expression were 554 

calculated using the comparative CT method  and the null hypothesis was assessed using 555 

a Student’s two-tailed unpaired T-test. 556 

  557 
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 558 

Fig. S1. 559 

Flowchart detailing our custom pipeline for the discovery, genotyping, and validation of 560 

structural variants and de novo mutations. SV = Structural Variant; MEI = Mobile 561 

Element Insertion; PCR = Polymerase Chain Reaction. 562 

  563 
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 564 

Fig. S2 565 

A) Histogram of the size distribution of deletions, duplications, and inversions per 566 

individual (log10 scale). B) Histogram of the number of deletions, duplications, and 567 

inversions per individual. 568 
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 569 

Fig. S3 570 

Comparison of the SV call set from the discovery sample with the 1000 Genomes Phase 3 SV call set. A) Frequency of deletions, 571 

duplications, and inversions across parent allele frequency bins, stratified on known variants (from 1000 Genomes), and novel variants 572 

(detected only in this study). B) Venn diagrams of overlap of deletions, duplications, and inversions from our cohort with the 1000 573 

Genomes. 574 
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 575 
Fig. S4  576 

Metrics of genotyping accuracy for deletions and duplications by size. Bar charts 577 

illustrating A) FDR based on intensity rank sum test from microarray, B) Mendelian error 578 

rates, and C) variant transmission rates stratified on SV type (deletion and duplication) 579 

and SV length bins for private variants. Quality metrics are reported for all private SVs in 580 

the callset filtered based on SV2 genotype likelihood at two levels of stringency 581 

(“standard” and “de novo”). Whiskers represent 95% confidence intervals.  582 

  583 
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 584 

Fig. S5 585 

Known autism genes are concentrated among genes that are most intolerant to loss-of-586 

function variants (pLI > 90th percentile).587 
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 588 
Fig. S6 589 
Patterns of deletion intolerance in the 1000 genomes phase 3 SV call set were very similar to those observed in this study (see Fig. 1). 590 

(A) Depletion of deletions within exons correlated with a SNP-based measure of gene loss-of-function intolerance (pLI) from the 591 

Exome Aggregation Consortium. (B) Promoters, Transcription Start Sites and UTRs showed the strongest deletion depletion for 592 

variant intolerant genes (pLI >90th percentile). 593 
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 594 

Fig. S7 595 

Forest plot displaying the effect size (% transmitted) and 95% confidence intervals for 596 

each of the four cohorts that were included in the study, including the two discovery 597 

sample cohorts (REACH and SSC1), the two replication sample cohorts (MSSNG and 598 

SSC2) and combined sample (discovery + replication). For detailed information see table 599 

S6. 600 

 601 

602 
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 603 

Fig. S8 604 

UCSC genome browser image showing BLAT alignments of Oxford Nanopore long read 605 

sequences for three heterozygote deletions with corresponding wild type sequences. The 606 

first two deletions are private to families 14-59 and F0182, and the third deletion is a 607 

common polymorphism present in multiple families (an individual from F0208 was 608 

selected for sequencing). Black bars show alignments with yellow lines indicating indels 609 

and red lines SNPs. Wild type (wt) consensus contigs are shown within the breakpoint of 610 

the deletion. Deletion (del) contigs mapping either side of the breakpoints are linked with 611 

horizontal lines. Layered H3K27Ac = Histone 3 lysine 27 acetylation (an active promoter 612 

associated mark) in seven cell types from ENCODE (GM12878, H1-hESC, HSMM, 613 

HUVEC, K562, NHEK, and NHLF). DNase clusters = DNaseI Hypersensitivity Clusters 614 

in 125 cell types from ENCODE (V3). Txn Factor ChIP = Transcription Factor ChIP-seq 615 

(161 factors) from ENCODE with Factorbook Motifs (green).  616 

  617 
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 618 

Fig. S9. De novo structural variation in 1,510 children 619 

Circos plot of de novo variants with concentric circles representing (from outermost to 620 

inner): ideogram of the human genome with colored karyotype bands (hg19), deletions, 621 

mobile element insertions, balanced inversions, tandem duplications, complex structural 622 

variants. Circles indicate the location of de novo SVs, and their colors match the five SV 623 

types. Bars represent the log10 SV length of the de novo variants. 624 

  625 
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 626 
 627 

Fig. S10 628 
One example of a complex mutation cluster are shown in the control individual from the 629 

SSC, SSC09444 (alternate ID: 13874.s1). The 300kb zoomed in locus below the 630 

ideogram shows the positions of de novo mutations relative to each other, an 82.3kb 631 

deletion is clustered with six SNVs upstream and two downstream of it. Gene tracks 632 

below the mutation show the longest transcript of each gene within the locus, with arrows 633 

indicating the strand and bars indicating the exons of genes. 634 

  635 
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 636 

Fig. S11 637 

Forest plot of the de novo mutation rate in the two cohorts from the present study 638 

(REACH 2017 and SSC1 2017) compared to previous whole genome sequencing and 639 

microarray studies.640 
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 641 
Fig. S12 642 
Overlap between SV calls made from one sample sequenced on two platforms 643 

Sample REACH000236 was sequenced at 43X coverage on both the Illumina HiSeq 644 

2500 with 100bp reads and on the Illumina HiSeq X with 150bp reads. Venn diagrams 645 

highlight the overlap for each SV type. 646 

647 
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table S1 (separate file) 648 
Information on samples used in this study 649 

 650 

table S2 (separate file) 651 
Descriptive statistics of the SV callset 652 

 653 

table S3 (separate file) 654 
False Discovery rate of copy number variants across size ranges and filters 655 

 656 

table S4 (separate file) 657 
Enrichment of known autism genes across pLI bins 658 

 659 

table S5 (separate file) 660 
Selection of target functional categories based on SV intolerance 661 

 662 

table S6 (separate file) 663 
Group-wise Transmission/Disequilibrium Test (TDT) results 664 

 665 

table S7 (separate file) 666 
SVs detected in the target functional categories in this study 667 

 668 

table S8 (separate file) 669 
Expression of LEO1 and MAPK6 in fibroblast cell lines from CRE-SV carriers and 670 

controls  671 

 672 

table S9 (separate file) 673 
De novo SVs detected in the discovery sample 674 

 675 

table S10 (separate file) 676 
Complex Mutation Clusters 677 

 678 

table S11 (separate file) 679 
Known pathogenic SVs that were detected in the discovery sample 680 


