- 1 Online resource file
- 2 Paper title:
- 3 A cellulolytic fungal biofilm enhances the consolidated bioconversion of
- 4 cellulose to short chain fatty acids by the rumen microbiome
- 5
- 6 Journal: Applied Microbiology and Biotechnology
- 7
- 8 Authors:
- 9 Charilaos Xiros¹, Robert Lawrence Shahab^{1,2}, Michael Hans-Peter Studer ^{1*}
- 10

11 Affiliations

- 12 ¹Laboratory of Biofuels and Biochemicals, School of Agricultural, Forest and Food Sciences,
- 13 Bern University of Applied Sciences (BFH), CH-3052 Zollikofen, Switzerland.
- 15 ² Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and
- 16 Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
- 17 Switzerland
- 18

- 19 *Corresponding author: michael.studer1@bfh.ch
- 20
- 21
- 22
- 23
- 24
- 25

Table S1 Changes in the diet of the fistulized cow before and after calving

	Before calving			After calving			
	ca.15.5	22.5	29.05	8.6	19.6	26.6	3.7
	21.5.2017	28.05.2017	7.6.2018	18.6.2017	25.6.2017	2.7.2017	9.7.2017
Нау	ad lib	ad lib	ad lib	ad lib	ad lib	ad lib	ad lib
Maize cubes							
(whole plant)	0.5	1	1.5	1.5	2	2	2
(kg/d)							
Protein							
concentrate	0	0.25	0.5	0.5	1	1.5	1.75
(kg/d)							
Energy supplementation							
(Organic acids.							
vitamins,	0.5	1	1.5	1.5	2	2.5	3.5
cereals, sugars)							
(kg/d)							
Mineral bolus	Normal mineral bolus			Lactation mineral		Normal mineral	
				bolus		bolus	

-

- Fig S2 Evolution of the redox potential in the reactors, with or without the
- 49 **development of a fungal biofilm on the membrane**. As zero, at the time scale, the
- 50 moment of *T. reesei* inoculation is counted.
- 51

- **Fig S3** Methane production in the MBM system with or without the inhibition of the
- 64 methanogenic activity. The accumulated amount produced is shown. BES
- 65 concentration was 5 mM. The membrane was flushed with air during all co-
- 66 cultivations with *T. reesei*.
- 67

- Only runlen, an, 30 C (glucose)
 T. reesei biofilm, 30°C (cellulose)
- \wedge Only rumen, N₂, 30°C(cellulose)
- \triangle Only rumen, N₂, 30 C(cellulose)
- *T. reesei* biofilm, + BES, 30°C (cellulose)
- Only rumen, N₂, 39°C (cellulose)

68

- 70
- 71
- 72

- 73 Fig S4 SCFAs selectivity in the MBM system at different fermentation pH values. The
- selectivity was defined as the ratio of the amount of a SCFA produced to the amount
- of total SCFAs (g/g).

77

- 78
- 79
- 80

Fig S5 SCFAs production at different fermentation temperatures. Experiments with *T. reesei* (26°C – 32°C) were performed at pH 6 in duplicate, at different periods of
the year: spring (A) and autumn (B). Crystalline cellulose (1.5 % w/v) was used as the
cellulosic substrate in all cases. The experiment with *C. cinerea* was performed once
during winter. The rumen fluid inoculum volume in all cases was 250 mL (ratio to
total volume 0.093)

87

