Supplementary Information

Identification of STK25 as an upstream activator of LATS signaling.

Lim et al.

This supplementary information section contains the following:

Supplementary figures 1-8

- Supplementary figure 1: pages 2-3
- Supplementary figure 2: pages 4-5
- Supplementary figure 3: page 6
- Supplementary figure 4: page 8
- Supplementary figure 5: page 9
- Supplementary figure 6: page 10
- Supplementary figure 7: page 11
- Supplementary figure 8: pages 12-16

Supplementary tables 1-5

- Supplementary table 1: page 17
- Supplementary table 2: page 18
- Supplementary table 3: page 19
- Supplementary table 4: page 20-21
- Supplementary table 5: pages 22

Supplementary Figure 1. Loss of STK25 decreases YAP phosphorylation in response to actin disruption.

a. Representative immunoblot of YAP phosphorylation following treatment with 10 µM DCB in IMR90 fibroblasts transfected with the indicated siRNA. b. Quantitation of the IMR90 focused kinome screen (n=3 biological replicates, *p<0.05 by One-Way ANOVA with Dunnett's post-hoc analysis). c. Representative immunoblot of YAP phosphorylation following treatment with 10 µM DCB in hTERT-RPE-1 cells transfected with the siRNA. **d.** Ouantitation of the RPE-1 secondary kinome screen (n=4 biological replicateds, *p<0.05, ***p<0.001 by One-Way ANOVA with Dunnett's post-hoc analysis). e. Representative immunoblot of YAP phosphorylation following treatment with 1 µg/mL Latrunculin A in HEK293A cells transfected with the indicated siRNA. f. Immunoblot and g. quantification of YAP phosphorylation and STK25 protein levels following treatment with 10 µM DCB in HEK293A cells transfected with the indicated siRNA. STK25 protein levels were normalized to GAPDH protein levels and plotted against the respective P-YAP/YAP ratios. Linear regression was performed to assess whether a correlation existed between levels of STK25 protein expression and P-YAP/YAP ratios (p=0.0176, Pearson's $R^2 = 0.5768$). h. Global phosphorylation status of YAP was assessed using phos-tag gel electrophoresis in Control and STK25 KO 293A cells following treatment with 10 µM DCB for one hour; DMSO served as vehicle control. i. Lysates collected from HEK293A cells transfected with either control siRNA or siRNAs targeting STK25 were assessed for perturbations in levels of total LATS1, LATS2, MST1, and MST2. j. Immunoblot and quantitation of phosphorylated YAP levels following treatment with 10 µM DCB in HEK293A cells stably expressing wild-type STK25 (STK25-WT), kinase-dead STK25 (STK25-KD), or vector control (Vector) transfected with the indicated siRNAs. (n=3 biological replicates; ***p<0.001, N.S.: not significant; One-way ANOVA with Tukey's post-hoc analysis). S.E. stands for Short Exposure; L.E. stands for Long Exposure. All data presented as mean \pm SEM unless otherwise noted.

Supplementary Figure 2. Loss of STK25 increases levels of active, nuclear YAP.

a. MEFs isolated from STK25+/+, STK25+/-, and STK25-/- mice were plated on coverslips and stained for YAP (Green), Actin (Red), and DNA (White). Scale bar, 20 μ m. **b.** YAP intensity was quantified and nuclear:cytoplasmic ratios were calculated for the MEF images (n>150 per group over 3 biological replicates;

p<0.01, **p<0.0001 by Kruskal-Wallis test with Dunn's post-test). **c.** YAP localization in the MEFs was quantified (n=3 biological replicates, N>C, YAP is enriched in the nucleus; N=C, YAP is evenly distributed between the nucleus and the cytoplasm; N<C, YAP is enriched in the cytoplasm). **d.** hTERT-RPE-1 transfected with the indicated siRNA were stained for YAP (Green), Tubulin (Red), and DNA (White). Scale bar, 20 μ m. **e.** YAP intensity was quantified and nuclear:cytoplasmic ratios were calculated for the RPE-1 experiments (n=225 over 3 biological replicates; ****p<0.0001 by Mann-Whitney test). **f.** YAP localization in the hTERT-RPE-1 cells was quantified (n=3 biological replicates, N>C, YAP is enriched in the nucleus; N=C, YAP is evenly distributed between the nucleus and the cytoplasm; N<C, YAP is enriched in the cytoplasm). **g.** IMR90 fibroblasts transfected with the indicated siRNA were stained for YAP (Green), Actin (Red), and DNA (White). Scale bar, 20 μ m. **h.** YAP intensity was quantified and nuclear:cytoplasmic ratios were calculated (n=300 per group over 4 biological replicates; ****p<0.0001, Mann-Whitney test). **i.** YAP localization in the IMR90 cells was quantified (n=4 biological replicates, N>C, YAP is enriched in the nucleus; N=C, YAP is evenly distributed between the nucleus and the cytoplasm; N<C, YAP is enriched in the nucleus; N=C, YAP is evenly distributed between the nucleus size of the nucleus; N=C, YAP is evenly distributed between the nucleus and the cytoplasm; N<C, YAP is enriched in the nucleus; N=C, YAP is evenly distributed between the nucleus and the cytoplasm; N<C, YAP is evenly for an alysis of YAP-target gene expression in control and STK25 KO HEK293A cells (n=4 biological replicates; ***p<0.001, ****p<0.0001, One-way ANOVA with Dunnett's post-hoc analysis). All data presented as mean ± SEM.

Supplementary Figure 3. STK25 requires LATS1/2 for its inhibitory effects on YAP.

a. Immunoblot and quantitation of phosphorylated YAP levels in HEK293A cells stably expressing wild-type STK25 (STK25-WT) or vector control (Vector) (n=3 biological replicates; *p<0.05, paired t-test). **b.** Immunoblot and quantitation of phosphorylation YAP levels in HEK293A cells stably expressing kinase-dead STK25 (STK25-KD) or vector control (Vector) (n=3 biological replicates; N.S. stands for not significant. paired t-test) **c.** Representative immunoblot of phosphorylated YAP following STK25 knockdown in wild-type and LATS dKO HEK293A. Cells were grown to confluence in order to activate Hippo signaling to induce YAP phosphorylation. **d.** qRT-PCR analysis of YAP-target gene expression in HEK293A cells stably overexpressing either wild-type STK25 (STK25-WT) or vector control (Vector) after transfection with control siRNA or siRNAs targeting LATS1 and LATS2 (n=3 biological replicates; ***p<0.001, One-way ANOVA with Dunnett's post-hoc analysis; DF=2, 6; F=30.08). **e.** Representative immunoblot and quantitation of phosphorylated YAP following STK25 knockdown in wild-type, LATS dKO, and MM8KO HEK293A cells. Cells were grown to confluence in order to activate Hippo signaling and promote YAP phosphorylation. (n=5 biological replicates, ****p<0.001, **p<0.01, N.S.: not significant, One-way ANOVA with Tukey's post-hoc analysis). S.E. stands for Short Exposure; L.E. stands for Long Exposure. (Corresponds to Fig. 3j).

Supplementary Figure 4. STK25 activates the LATS kinases.

a. IP purified wild-type LATS2 (HA-LATS2-WT) from transfected MM8KO 293A cells was co-incubated with IP purified FLAG-STK25-WT, FLAG-STK25-KD, or FLAG-MAP4K1, all from transfected MM8KO 293A. Kinase reactions were allowed to occur in the presence of 500 µM ATP, and levels of phosphorylated LATS at the hydrophobic motif (P-LATS-HM) and activation loop motif (P-LATS-AL) were assessed via immunoblotting. A mock IP product from untransfected MM8KO 293A lysates using FLAG antibody and protein G magnetic beads served as control. **b.** IP purified kinase-dead LATS2 (HA-LATS2-KD) from transfected LATS dKO 293A cells was co-incubated with IP purified FLAG-STK25-WT, FLAG-STK25-KD, or FLAG-MAP4K1, all from

transfected LATS dKO 293A. Levels of phosphorylated LATS at the hydrophobic motif (P-LATS-HM) and activation loop (P-LATS-AL) were assessed via immunoblotting. c. Immunoblot to confirm absence of LATS1 and LATS2 in LATS dKO 293A cells, as well as the absence of STK25 in LATS1/2-STK25 triple KO (LS tKO) 293A cells. β-actin served as loading control. d. IP-purified kinase-dead LATS2 from transfected LS tKO 293A cells was co-incubated with IP purified FLAG-STK25-WT, FLAG-STK25-KD, or FLAG-MST1, all from transfected LS tKO 293A. Levels of phosphorylated LATS at the hydrophobic motif (P-LATS-HM) was assessed via immunoblotting. e. LATS dKO 293A were transfected with empty vector, wild-type LATS2 (HA-LATS2-WT), or kinase-dead LATS2 (HA-LATS2-KD), alongside Vector, wild-type STK25 (FLAG-STK25-WT), or kinase-dead STK25 (FLAG-STK25-KD). Lysates were collected and assessed via SDS-PAGE and immunoblotting for YAP phosphorylation at serine 127. f. Quantitation of YAP phosphorylation under the various transfection conditions from e. are presented (n=3 biological replicates, ***p<0.001, One-Way ANOVA with Tukey's post-hoc test; DF=18, F=25.93). g. LATS dKO 293A were transfected with HA-tagged hydrophobic motif mutant LATS2 T1041A (LATS2-TA) alongside either Vector, FLAG-STK25-WT, FLAG-STK25-KD, or FLAG-MST1. HA-tagged LATS2 WT expression served as positive control. The transfected LATS2 kinases were immunoprecipitated using an anti-HA-tag antibody and assessed by immunoblotting for levels of phosphorylated LATS-AL. All data presented as mean \pm SEM.

Supplementary Figure 5. STK25 loss impairs physiologic Hippo activation.

a. Representative phase images of HEK293A grown to low or high confluence following transfection with the indicated siRNA. Scale bar, 100 μ m. **b.** Global phosphorylation status of YAP was assessed via phos-tag gel electrophoresis using lysates from HEK293A grown to either low or high confluence following transfection with the indicated siRNA. **c.** Global phosphorylation status of TAZ was assessed via phos-tag gel electrophoresis using lysates from HEK293A grown to either low or high confluence following transfection with the indicated siRNA. **c.** Global phosphorylation status of TAZ was assessed via phos-tag gel electrophoresis using lysates from HEK293A grown to either low or high confluence following transfection with the indicated siRNA. **d.** Immunoblot and quantitation of phosphorylated YAP levels under conditions of low and high confluence in either control HEK293A stably expressing Cas9 and a non-targeting sgRNA or STK25 KO 293A stably expressing Cas9 together with either sgRNA 1 (Clone 1) or sgRNA 2 (Clone 2) targeting STK25. (n=4 biological replicates; **p<0.01, One-way ANOVA with Dunnett's post-hoc analysis). Data is presented as mean ± SEM.

b

Supplementary Figure 6. Loss of STK25 increases YAP levels in vivo.

a. Photographic images of a *STK25-/-* female mouse that spontaneously developed massive hepatomegaly at approximately 11 months of age. **b.** Representative 40X images of IHC staining for YAP in liver sections from *STK25+/+* and *STK25-/-* mice. Each image panel was obtained from a different mouse. Scale bar, 100 μ m.

а

Supplementary Figure 7. Focal deletions of identified Hippo pathway components are rare.

a. Rates of recurrence-free survival in sarcoma patients with and without deletions in *STK25* (n=125 for patients without deletions, n=90 for patients with deletions, *p<0.05, two-tailed chi-square goodness-of-fit test).

Fig. 1a

Fig. 1b

Fig. 1d

STK25

β-Actin

2018-12-06

Fig. 4f

Fig. 5a

Supplementary Figure 8. Uncropped Original Images of Immunoblots

Uncropped digital originals from which main figure immunoblots were assembled are presented here in linear order. Please note that the auto-scale function on ImageLab was further used to process immunoblots from their original states for final figure assembly.

Annotated Cellular Function/	Enrichment	Normalized	FDR
Published YAP/TAZ gene set	Score	Enrichment Score	q-value
Park et al. 2016	0.62	3.17	0.000
HALLMARK_MYC_TARGETS_V1	0.64	3.06	0.000
HALLMARK_E2F_TARGETS	0.63	3.04	0.000
Enzo et al. 2015	0.59	3.01	0.000
Mohseni et al. 2014	0.55	2.84	0.000
Mori et al. 2014	0.55	2.77	0.000
HALLMARK_OXIDATIVE_PHOSPHORYLATION	0.56	2.66	0.000
Kim et al. 2016 – YAP/TAZ	0.50	2.60	0.000
Zhang et al. 2009 – TAZ	0.48	2.50	0.000
HALLMARK_G2M_CHECKPOINT	0.51	2.46	0.000

Supplementary Table 1. Loss of STK25 results in enrichment of active YAP/TAZ gene sets. Relative enrichment of active YAP/TAZ gene sets in comparison to enrichment of hallmark gene sets from the Molecular Signatures Database are shown. YAP/TAZ gene sets are in bold, while hallmark gene sets are in italics.

Gene	Amplified/Deleted	Q-value	Overall Frequency
MST1	Neither	N/A	N/A
MST2	Amplified	1.07 E-15	0.4231
MAP4K1	Amplified	1.36 E-37	0.2158
MAP4K2	Neither	N/A	N/A
MAP4K3	Neither	N/A	N/A
MAP4K4	Neither	N/A	N/A
MAP4K5	Neither	N/A	N/A
TNIK/MAP4K6	Amplified	7.75 E-217	0.3284
MINK1/MAP4K7	Neither	N/A	N/A
TAOK1	Amplified	1.55 E-7	0.1857
TAOK2	Neither	N/A	N/A
TAOK3	Neither	N/A	N/A
STK25	Deleted	5.61 E-223	0.1892

Supplementary Table 2. Recurrent focal deletions of upstream LATS activators are rare in cancers.

Publicly available TCGA datasets were probed to assess rates of focal deletion in known upstream activators of LATS kinases, using the "All Cancers" dataset from the Tumorscape program online (http://www.broadinstitute.org/tcga/).

Genes in Peak (19)		
HDLBP		
SEPT2		
FARP2		
HSA-MIR-3133		
STK25		
BOK-AS1		
BOK		
THAP4		
ATG4B		
DTYMK		
ING5		
D2HGDH		
GAL3ST3		
NEU4		
PDCD1		
RTP5		
LINC01237		
AC093642.3		
LOC728323		

Supplementary Table 3. List of genes deleted in the *STK25* **focal deletion peak.** A list of genes deleted together in the *STK25* focal deletion peak were obtained via TCGA analysis using the "All Cancers" dataset.

Targets	Sequences	Manufacturer
Non-Targeting #1	UGGUUUACAUGUCGACUAA	Dharmacon GE
STK4 SmartPool	CCAGAGCUAUGGUCAGAUA	Dharmacon GE
	GCCCUCAUGUAGUCAAAUA	
	GAUGGGCACUGUUCCGAGUA	
	UAAAGAGACCGGCCAGAUU	
STK3 SmartPool	GCCCAUAUGUUGUAAAGUA	Dharmacon GE
	CCACAAGCACGAUGAGUGA	
	GAACUUUGGUCCGAUGAUU	
	CAUGAACCCUUCCCUAUGU	
STK24 SmartPool	UAUUAUGGAUCCUAUCUGA	Dharmacon GE
	UCGAUUAUCUCCAUUCGGA	
	CCAAGAAUCUCGAGAAUGG	
	AGAAAGUGGUUGCCAUAAA	
STK25 SmartPool	CUAAAGAGCACCAAGCUAU	Dharmacon GE
	UCUACAAGGGCAUCGAUAA	
	ACACGCAGAUUAAGAGGAA	
	GCACUGGACUUGCUUAAAC	
MAP4K1 SmartPool	GAUACAAAUGAGCUGUGUGA	Dharmacon GE
	CAACAACGUUCUCAUGUCU	
	GGAGUUAUCUCUUGGUUGCA	
	GAAAGGACCCUCCAUUGGG	
MAP4K2 SmartPool	GCGCAAAGGUGGCUACAAU	Dharmacon GE
	GGACAGGGACACAAUCCUA	
	GGAAUGACCGCUUGUGGAU	
	CGCCCAAACUGAGAGAUAA	
MAP4K3 SmartPool	CAAUCGAGCUGUUGGAUAA	Dharmacon GE
	GAAGUGUUGUGUUGUAAGA	
	UGUUAACACUGGUGAAUUA	
	GGAGCUAACAUUCUAUUAA	
MAP4K4 SmartPool	GGGAAGGUCUAUCCUCUUA	Dharmacon GE
	GACCAACUCUGGCUUGUUA	
	UAAGUUACGUGUCUACUAU	
	UAUAAGGGUCGACAUGUUA	
MAP4K5 SmartPool	GGAGAGAGAUACCGUUUUA	Dharmacon GE
	CGAAUCAGGUAGUUCAGUU	
	GGUCAUCAACAUUCCAUAA	
	GAACAGUUAUUUCCACGGA	
MINK1 SmartPool	UGAAAUACGAGCGGAUUAA	Dharmacon GE
	UCAUGACUCUGAACCGUAA	
	GGAGGACUGUAUCGCCUAU	
	GAACAGCUAUGACAUCUAC	

TNIK SmartPool	GAACAUACGGGCAAGUUUA	Dharmacon GE
	UAAGCGAGCUCAAAGGUUA	-
	CGACAUACCCAGACUGAUA	-
	GACCGAAGCUCUUGGUUAC	-
LATS1 SmartPool	GGUGAAGUCUGUCUAGCAA	Dharmacon GE
	UAGCAUGGAUUUCAGUAAU	
	GGUAGUUCGUCUAUAUUAU	
	GAAUGGUACUGGACAAACU	
LATS2 SmartPool	GCACGCAUUUUACGAAUUC	Dharmacon GE
	ACACUCACCUCGCCCAAUA	
	AAUCAGAUAUUCCUUGUUG	
	GAAGUGAACCGGCAAAUGC	
TP53 SmartPool	GAAAUUUGCGUGUGGAGUA	Dharmacon GE
	GUGCAGCUGUGGGUUGAUU	
	GCAGUCAGAUCCUAGCGUC	
	GGAGAAUAUUUCACCCUUC	
STK25 siGENOME	GCGCACUGCUGUUCAGAUA	Dharmacon GE
	UAAGAACUGUGCUGACUUG	
	GAAGGUGCCCUGUGCUAUG	
STK25 Flexitube	CCGGCCGAGTCCACACAGCAA	Qiagen
	CACCAAGCTATGGATCATCAT	
	CACGGAGCTCATCGACCGCTA	
	AAGGGCATCGATAACCACACA	
	AAGAACTGTGCTGACTTGGAA	

Supplementary Table 4. List of siRNA sequences used in this study.

Targets	Primer Sequences (5'-3')		
Mouse genes			
Gapdh Forward	TGTTCCTACCCCCAATGTGT		
Gapdh Reverse	GGTCCTCAGTGTAGCCCAAG		
Ctgf Forward	CAAGGACCGCACAGCAGTT		
Ctgf Reverse	AGAACAGGCGCTCCACTCTG		
Cyr61 Forward	TAAGGTCTGCGCTAAACAACTC		
Cyr61 Reverse	CAGATCCCTTTCAGAGCGGT		
Ankrd1 Forward	AAACGGACGGCACTCCACCG		
Ankrd1 Reverse	CGCTGTGCTGAGAAGCTTGTCTCT		
Hprt1 Forward	TCAGTCAACGGGGGACATAAA		
Hprt1 Reverse	GGGGCTGTACTGCTTAACCAG		
Inhba Forward	TCCGAAGGATGGACCTAACTC		
Inhba Reverse	GCTTTCTGATCGCGTTGAGAAG		
Birc3 Forward	AGAGAGGAGCAGATGGAGCA		
Birc3 Reverse	TTTGTTCTTCCGGATTAGTGC		
Human	Genes		
GAPDH Forward	GAGTCAACGGATTTGGTCG		
GAPDH Reverse	CATTGATGGCAACAATATCCAC		
CTGF Forward	CCAATGACAACGCCTCCTG		
CTGF Reverse	TGGTGCAGCCAGAAAGCTC		
CYR61 Forward	AGCCTCGCATCCTATACAACC		
CYR61 Reverse	TTCTTTCACAAGGCGGCACTC		
EDN1 Forward	TGTGTCTACTTCTGCCACCT		
EDN1 Reverse	CCCTGAGTTCTTTTCCTGCTT		
AMOTL2 Forward	TTGGAATCTGCAAATCGCC		
AMOTL2 Reverse	TGCTGTTCGTAGCTCTGAG		

Supplementary Table 5. List of qPCR primers used in this study.