natureresearch

Corresponding author(s): Hongjie Yao

Last updated by author(s): Jan 23, 2019

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For	all st	atistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a	Cor	firmed
\boxtimes		The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
	\square	A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
		The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.
\boxtimes		A description of all covariates tested
\boxtimes		A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
	\boxtimes	A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
	\boxtimes	For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable</i> .
\boxtimes		For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
\boxtimes		For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
	\boxtimes	Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
		Our web collection on <u>statistics for biologists</u> contains articles on many of the points above.

Software and code

Policy information about availability of computer code		
Data collection	N/A	
Data analysis	N/A	

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: - Accession codes, unique identifiers, or web links for publicly available datasets

- A list of figures that have associated raw data

- A description of any restrictions on data availability

Our sequencing data from ChIP-seq, RNA-seq, HiChIP have been deposited in the Gene Expression Ominbus and the accession number NCBI GEO: GSE108869.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Behavioural & social sciences Life sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	N/A
Data exclusions	No data were excluded from the analyses.
Replication	All the experiments were performed at least two-biological replicates, and each biological replicates were performed several technical replicates. The detailed replication information are provided in the corresponding figure legends.
Randomization	N/A
Blinding	N/A

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

Methods

n/a Involved in the study	n/a	Involved in the study
Antibodies		ChIP-seq
Eukaryotic cell lines		Flow cytometry
Palaeontology	\boxtimes	MRI-based neuroimaging
Animals and other organisms		
Human research participants		
Clinical data		
Antibodies		

Antibodies

Antibodies used	Anti-β Actin antibody, abcam, CatLog:ab3280 Anti-CTCF antibody, Millipore, CatLog:07-729 Anti-CTCF antibody, Active Motif, CatLog:61311 Anti-CTCF antibody, our lab, CatLog:NA Anti-FLAG antibody, Sigma, CatLog:F804 Anti-biotin, HRP-linked antibody, Cell Signaling Technology, CatLog:#7075 FLAG-M2 Magnetic beads, Sigma, CatLog:M8823 Anti-Tubulin antibody, Sigma, CatLog:T6074 Anti-RAD21 antibody, abcam, CatLog:ab992 Anti-H3 antibody, Cell Signaling Technology, CatLog:#4620
Validation	For those commercial antibodies, the validation statements are provided on the manufacturer's websites, and also the data provided in this manuscript.

Eukaryotic cell lines

Policy information about <u>cell lines</u>	
Cell line source(s)	293T cell line, HeLa-S3 cell line.
Authentication	These cell lines were purchased from ATCC.
Mycoplasma contamination	We confirmed that all cell lines used in this study are negative for mycoplasma contamination.
Commonly misidentified lines (See <u>ICLAC</u> register)	N/A

nature research | reporting summary

Methodology

Replicates	For HiChIP experiments, we have performed two biological repeats. For ChIP-seq, since ChIP-seq data were highly convincible as the high overlapping ratio with the published ENCODE dataset, therefore, we did not perform biological replicates.
Sequencing depth	For FLAG ChIP-seq FLAG control, raw reads 32,386,788, high quality unique reads 23,594,792, read length 150 bp, paired-end. FLAG-CTCF overexpression, raw reads 50,256,287, high quality unique reads 36,468,522, read length 150 bp, paired-end. FLAG-CTCF-s overexpression, raw reads 35,551,107, high quality unique reads 26,084,762, read length 150 bp, paired-end.
	For CTCF ChIP-seq FLAG_input, raw reads 67,226,304, high quality unique reads 53,502,527, read length 75 bp, paired-end. FLAG_CTCF ChIP-seq, raw reads 65,523,895, high quality unique reads 53,118,020, read length 75 bp, paired-end. FLAG-CTCF-s_input, raw reads 71,073,427, high quality unique reads 57,334,292, read length 75 bp, paired-end. FLAG-CTCF-s_CTCF ChIP-seq, raw reads 60,420,904, high quality unique reads 47,904,732, read length 75 bp, paired-end.
	For RAD21 ChIP-seq FLAG_input, raw reads 67,226,304, high quality unique reads 54,204,191, read length 75 bp, single-end. FLAG_CTCF-s_input, raw reads 71,073,427, high quality unique reads 57,875,576, read length 75 bp, single-end. FLAG_RAD21 ChIP-seq, raw reads 29,358,349, high quality unique reads 19,601,476, read length 75 bp, single-end. FLAG-CTCF-s_RAD21 ChIP-seq, raw reads 31,950,672, high quality unique reads 24,098,525, read length 75 bp, single-end.
	For biotin ChIP-seq biotin-CTCF_bioChIP-seq, raw reads 26,074,975, high quality unique reads 15,694,355, read length 150 bp, paired-end. biotin-CTCF-s_bioChIP-seq, raw reads 32,603,177, high quality unique reads 20,600,686, read length 150 bp, paired-end. biotin_bioChIP-seq, raw reads 31,296,777, high quality unique reads 17,714,320, read length 150 bp, paired-end.
Antibodies	For CTCF ChIP-seq, we used Anti-CTCF antibody purchased from Active Motif (CatLog:61311). For biotin ChIP-seq, we used streptavidin M-280 dynabeads purchased from Invitrogen (CatLog:11205D). For RAD21 ChIP-seq, we used Anti-RAD21 antibody purchased from abcam (CatLog:ab992). For FLAG ChIP-seq, we used FLAG-M2 beads purchased from sigma (CatLog:M8823).
Peak calling parameters	For FLAG ChIP-seq macs2 callpeak -t FLAG-CTCF.bam -c FLAG.bam -f BAMPE -g hs -n FLAG-CTCF -p 1e-4 –B –SPMR macs2 callpeak -t FLAG-CTCF-s.bam -c FLAG.bam -f BAMPE -g hs -n FLAG-CTCF-s -p 1e-4 –BSPMR
	For CTCF ChIP-seq, macs2 callpeak -t FLAG_CTCF_ChIP-seq.bam FLAG_input.bam -f BAMPE -g hs -n FLAG_control_CTCF-peak –BSPMR macs2 callpeak -t FLAG-CTCF-s_CTCF_ChIP-seq.bam -c FLAG-CTCF-s_input.bam -f BAMPE -g hs -n FLAG-CTCF-s_CTCF-peak – BSPMR
	For RAD21 ChIP-seq, high quality unique reads were subsampled into 20M reads to call peaks. macs2 callpeak -t FLAG_RAD21_ChIP-seq_subsample.bed -c FLAG_input_subsample.bed -f BED -n FLAG_RAD21 -g hs -q 0.01 nomodelshift 0extsize 130 – BSPMR macs2 callpeak -t FLAG-CTCF-s_RAD21_subsample.bed -c FLAG-CTCF-s_input_subsample.bed -f BED -n FLAG-CTCF-s_RAD21 g hs q 0.01 = pended = fBED -n FLAG-CTCF-s_RAD21
	For biotin ChIP-seq, macs2 callpeak -t biotin-CTCF_bioChiP.bam -c biotin_bioChIP.bam -f BAMPE -n biotin-CTCF -g hs -BSPMR macs2 callpeak -t biotin-CTCF-s_bioChIP.bam -c biotin_bioChIP.bam -f BAMPE -n biotin-CTCF -g hs -BSPMR
Data quality	For FLAG ChIP-seq, due to the background noise, we used macs2 parameter "p 1e-4", flag-CTCF peaks is 11,578, FLAG-CTCF-s peaks is 8,890. Of them, few peaks are above 5-fold enrichment.
	For CTCF ChIP-seq, we used FDR 1% (macas2, q = 0.01) as cutoff, and we got 74,386 CTCF peaks in FLAG control samples, and got 79,925 CTCF peaks in FLAG-CTCF-s overexpression samples. Of them, peaks above 5-fold enrichment is 69,755, 65,198, respectively.
	For RAD21 ChIP-seq, we used FDR 0.01 (macs2, q = 0.01) as cutoff, and we got 80,362 RAD21 peaks in FLAG control samples, 46,469 RAD21 peaks in FLAG-CTCF-s overexpression samples. Of them, 71,018, 43,201 peaks were above 5-fold enrichment, respectively.
	For biotin ChIP-seq, we used FDR 5% (macs2, q = 0.05) as cutoff, and we got 72,937 peaks for CTCF, 41,362 peaks for CTCF-s. Of them, 58,378, 20,938 peaks were above 5-fold enrichment, respectively.
Software	FastQC (v0.11.2), Reads qualification. TrimGalore (v0.4.4), adapter and low quality reads Trimming. Bowtie2 (v2.2.5) Reads alignment. samtools (v1.2), high-quality mapped reads selection. picard tools (v1.90), PCR duplicates removing. MACS2 (v2.1.0), Peak calling or differential peak analysis. bedtools (v2.25.0), peak overlapping analysis.

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

 \bigcirc Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links	To review GEO accession GSE108869:
May remain private before publication.	Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108869
	Enter token sravsksipjstfmz into the box
Files in database submission	GSM2915162 FLAG_FLAG_ChIPSeq
	GSM2915163 FLAG-CTCF_FLAG_ChIPSeq
	GSM2915164 FLAG-CTCF-s_FLAG_ChIPSeq
	GSM2915165 Control_Input
	GSM2915166 Control_CTCF_ChIPSeq
	GSM2915167 CTCF-s_OE_Input
	GSM2915168 CTCF-s_OE_CTCF_ChIPSeq
	GSM2915169 FLAG_rep1.RNA-Seq
	GSM2915170 FLAG rep2.RNA-Seq
	GSM2915171 FLAG-CTCF rep1.RNA-Seq
	GSM2915172 FLAG-CTCF_rep2.RNA-Seg
	GSM2915173 FLAG-CTCF-s rep1.RNA-Seg
	GSM2915174 FLAG-CTCF-s rep2.RNA-Seg
	GSM2915175 CtrlshRNA rep1.RNA-Seg
	GSM2915176 CtrlshRNA_rep2.RNA-Seg
	GSM2915177 shCICE-s rep1.RNA-Seg
	GSM2915178 shCICF-s_rep2_RNA-Seg
	GSM2915179 shCTCF#1 RNA-Seg
	GSM2915180 shCTCF#2 RNA-Seg
	GSM2915181 shboth#1 RNA-Seq
	GSM2915182 shboth#2 RNA-Seq
	GSM2974085 Control CTCF-HiChIP ren1
	GSM2974086 Control CTCF-HiChlP rep2
	GSM2974087 CTCE-s OF CTCE-HICHP ren1
	GSM2974088 CTCE-s OE CTCE-HICHIP ren2
	GSM2990425 Control RAD21 ChiPsen
	GSM/2990/26 CTCE_6 OF RAD21 ChiPSen
	GM/2/56/31 bitin along bitin (h)Reg
	GMN3466322 biotin CTCE_OE_biotin_ChillBoog
	GSM3466333 biotin-CTCE-s OF biotin ChIPSeq
	GSE108869 CTCE-S OF CTCE-HiChIP combine allValidPairs bic gz
	GSE108869 CTCEs OF CTCE Chipsen parrowPeak gz
	GSE108869 CTCEs OF CTCE ChIPSeq control by
	GSE108869 CTCE-S OF CTCE ChildSea treat by
	GSE108869 CTCEs OF RAD21 ChilpSer control lambda bw
	GSE108869 CTCEs OF RAD11 ChilSan pask parmwBaak gz
	GSE108869 CTCEs OF RD21 ChIPSen treat nileum bw
	GSE108869 CTCE CTCE oF RNA.sea tsv.gz
	GSE108869 Control CTC-HiChIP combine allValidPairs bic gz
	GSE108869 Control CTC ChilDsen parroweak az
	GET108061 Control CTC ChIPSeq control hw
	GEL108869 Control_CTC_ChIPSeq_tratbw
	CEE108960 Control_PAD11 ChIRS.gr control lambda bur
	GEE10805_Control_NAD21_Chirsset_Control_landed.bw
	GET10805_CONTUT_AD21_CHT254_DEats.HallOWFEA.82
	GSE108805_CONTO_RAD21_CINFSed_treat_piledp.bw
	GSEI08805_FLAG-CICE-S.IIdIIOWPEdK.82
	GSE108805_FLAG-CICF-5_CONITO_IAINDUALDW
	GSE108809_FLAG-CTCF-S_Ited_Diledb.bw
	GSEI08805_FLAG-CICF.HallOWPER.gz
	GSEI0809_FLAG-CICF_CONTO_IAMD03.DW
	GSE108869_FLAG-CICF_TREAT_PIREUP.DW
	GSELUSSES_NOCKGOWN_KNA-SEQ.ISV.gz
	GGSE10869_DIOTIN-CICF-s_DIOCNIP_redup_with_SPMR_peaks.narrowPeak.gz
	GSE108869_biotin-CTCF-s_sorted_control_lambda.bw
	GSE108869_biotin-CTCF-s_treat_pileup.bw
	GSE108869_biotin-CTCF_bioChIP_redup_with_SPMR_peaks.narrowPeak.gz
	GSE108869_biotin-CTCF_sorted_control_lambda.bw
	GSE108869_biotin-CTCF_treat_pileup.bw

Genome browser session (e.g. <u>UCSC</u>) deeptools (v2.2.4), ChIP-seq heatmap generation. homer, Peak annotation and de novo motif finding.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

 \square All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation	Cells were seeded in 6-well plates and harvested at a density of 6 × 105 cells/ml, and then washed twice with ice-cold PBS. Cells were suspended with 100 μ l 1 × binding buffer containing 5 μ l of Annexin V-FITC and 5 μ l of propidium iodide (PI) and incubated for 10 min in dark at room temperature.
Instrument	BD LSRFortessa Cell Analyzer (Becton-Dickinson, CA, USA)
Software	FLowJo software
Cell population abundance	We gated the main cell population and used 104 cells for further apoptosis analysis. As we did not performed cell sorting, therefore we did not determined the purity of the samples.
Gating strategy	We performed PI and and Annexin V-FITC staining and used unstained sample as negative control, and PI or Annexin V-FITC single-stained cells as positive controls to gate the cell population.
Tick this hav to confirm t	bat a figure exemplifying the gating strategy is provided in the Supplementary Information

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.