
Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

In this study, Fields et al characterize the dynamic genomic landscape of a differentiating hESC to 

cardiomyocyte and of human fetal hearts. They find, as expected, that while a large fraction of the 

genome architecture remains invariant during the process of differentiation, a small, yet important 

fraction does undergo dynamic alterations that are coincident with changes in chromatin accessibility 

and gene expression. This study confirms some predicted patterns of cell-type specific gene 

regulation, while also providing an important and useful resource from which new mechanisms of 

transcriptional regulation may be uncovered. However, some major revisions are required for this to 

be suitable for publication in this journal.  

 

Major concerns:  

a. Currently, these data do not robustly support the simple notion that lost or gained TAD boundaries 

correlate with gene expression changes during differentiation. The data, in its current form, suggest 

that are several classifications of genes within each group – some that do follow expected correlations 

of compartments, chromatin accessibility and gene expression changes, as well as some that do not. 

These trends should be further categorized with relevant examples.  

• The observation that TAD boundaries gained in CMs are generally depleted in B to A transitioning 

compartments conflicts with the gene expression data in Figure 2. While CAMK2D does better 

exemplify the correlation between a gained boundary and transcription (Fig 3f), there does seem to be 

residual TAD structure even in the CM stage.  

• The correlations between open chromatin regions and transcriptional activity are also unclear. For 

eg: B to A switching compartments are enriched for ESC ATAC peaks, although they are depleted for 

any differentially expressed genes at this stage  

b. The relevance of the analysis about TAD size and numbers within compartments (Fig 3) is currently 

unclear.  

c. The analysis of open chromatin regions and the underlying motifs may be further strengthened by 

integrating ChIP-Seq data for the transcriptions factors identified, such as those published by Ang et al 

(2016).  

d. In Fig 5, does the analysis pertaining to gene size at the CM stage hold true even with the exclusion 

of the TTN gene? There are several predicted CTCF sites within the TTN gene, but only two show 

progressive loss of ATAC peaks through differentiation – does this correlate with CTCF binding 

strength, orientation or other attributes?  

e. The postulated mechanism of an RBM20-mediated trans-interaction is not supported by these data 

and will require far more detailed experiments to validate. Instead, more DNA FISH experiments to 

validate other interactions identified by this study will strengthen the current narrative.  

 

Minor concerns:  

a. The example of transient A compartment dynamics is not easily discernable from Fig 2. Either a 

better example or a clear detailing of the region undergoing the compartment switching is necessary 

to make this point. Additionally, an example of compartment dynamics of genes expressed in CP that 

undergo B to A compartment switching would also be interesting to add to this figure.  

b. The text should be edited for minor typos. Eg.s; line 37 – “...during human development.”. , line 43 

– “…emerged as a key mechanism..”, line 57: “…feeds back on gene regulation”.  

 

 

 

Reviewer #2:  

Remarks to the Author:  



Fields et al have performed in situ DNase Hi-C on samples from 4 stages of a cardiomyocyte 

differentiation protocol (following the same approach in their previous publication in Cell 2012, ref 7 

where they interrogated histone profiles and RNA-seq, but not Hi-C then), and this time, along with 

two fetal human heart samples. Here, they have described changes in higher order chromatin 

architecture, and propose the presence of a cell type-specific “splicing factory”. Although they are the 

first to perform these analyses in human cardiomyocytes, nearly all of their findings are not surprising 

(e.g. ATAC-seq peaks enriched in A compartment, cardiac genes changing from B to A compartment 

and so on). While it is interesting to uncover another angle which is to group genes together in a 

splicing factory, and also to propose that the splicing units are pulled together at their templates by a 

splicing factor such as RBM20, the authors fall short of having strong evidence for the phenomenon.  

 

Criticism (major and minor):  

1. QC metrics are provided in supplement table 1. However, adequate details of the QC assessment 

are lacking to conclude if these hi-C libraries are robust and of good quality for downstream 

interpretation. Some of the few important QC metrics are  % duplication of read pairs,  fragment 

length distribution, fraction of hi-C read pairs within the same restriction fragments. It is also 

noted that the sequencing depth for each replicate does not seem sufficient to provide a high 

resolution interactome.  

2. The ATAC-seq QC metrics provided are also inadequate and lacking of key information such as total 

number of peaks detected, FRiP, insert length, etc. It is also strange (and concerning) that the 

sequence data contains high percentage of mitochondrial RNA.  

3. The authors perform A/B compartment analysis on the samples, and found that the proportion of A 

and B compartments are roughly equal. The authors mentioned “PCA of A/B scores separates the 

samples by differentiation time point (PC1) and cardiomyocyte purity (PC2)”. It is not conventional to 

compare PC scores between samples as the PC scores are generated individually for individual 

replicates, and it is hard to put meaning to the magnitude of difference between samples .  

4. Line 43. “Spatial organisation of the genome in 3-D has emerged as key mechanism by which cells 

can control regions of chromatin accessibility” sounds a fundamentally important biological idea. what 

is the reference to support this?  

5. Line 47. “… implicated in a range of diseases, including cancer and limb malformations” references 

3-6 do not include the reference on Limb Malformations.  

6. The motivation statement in Line 48. “.. how these transitions occur temporally across stages of 

human lineage remains unaddressed, or how structural arrangement differs between pluripotent 

progenitors and terminally differentiated cells” is debatable accuracy. Many of the references in this 

manuscript precisely address these topics. This is exactly what lends to the lack of novelty for this 

manuscript.  

7. In Figure 1f, compartments were defined as "dynamic". The statistics used here is unusual. Can the 

authors justify why is ANOVA used here. It is unclear how was the comparison done to obtain the p-

value. Was it done across the time point? Are the PC scores normally distributed, and independent? If 

not, this test is deemed inappropriate.  

8. Figure 1i. What is the meaning  of "cis-interaction score"? How was it generated quantitatively? 

Similar to figure 1j, what is trans interaction score?  

9. Similar questions for statistic significance arise in other figures: e.g. Fig3e, Fig6a. There do not 

appear to be differences in the medians between groups, and yet the difference is deemed statistically 

significant?  

10. There are some bits of novelty within: e.g. Line 97. “Examining the dynamic regions, many of the 

strongest gains in long-range interactions are associated with the B compartment. .. stronger intra-

chromosomal contacts occur between homotypic regions” .. but what does this mean functionally? 

There is only one example given in Suppl Fig 3A. what is the global picture?  

11. Line 111. states the authors set out to “investigate for genes that may be drivers of compartment 

changes…” but they end up not doing so. At least not with their RNA-seq. Instead it was their motif 



analysis of ATAC-seq related sites that throw up GATA and NKX which may be implicated in this role?  

12. Line 115. “In contrast to Hi-C. most of the dynamic changes in gene expression are cell-type 

specific.”. The authors should elaborate further on this. What are the gene signatures that are cell 

type specific? Are these differentially expressed genes?  

13. Line 174. Only one example of the motif is given at the NEBL locus. what are others? It is the 

important message that GATA and NKX could be the key drivers of chromatin organisational change?  

14. Fig 2f. the PC1 levels to suggest the transition B -> A -> B are small vis a vis neighbouring PC. 

Besides the regions that go from A-B-A and B-A-B appear to be regions that are already in the 

borderline zone of compartments. This makes it concerning that the change could be noise as 

generated by the algorithm calling the compartments. How do the authors exclude the possibility that 

these small changes are not noise?  

15. Figure 3a. The dendrogram is not visible to make any meaningful conclusion. Also, by given a 2-

window width (80kb) allowance for error seems less stringent. Even at such low stringency, the 

agreement between two replicates is only about 60-70%.   

16. Fig 3f. TAD changes as defined by the algorithm dont match to the heat map visually. It simply 

looks like the original TAD marks between ANK2 and CAMK2D are blurred? The authors called A/B 

compartment at 500kb resolution while they call TADs at 40kb resolution. Yet, they claim that TAD 

organization is dynamic across differentiation but independent of AB compartment changes. The 

differences observed could be an artefact of different resolution used. It is also not justified on the 

criteria used to assess if a TAD is overlapping with a AB compartment. It is also unsure how many 

boundaries are called by the authors, It is very hard to assess the quality of the TAD calling as well 

unless the authors are diligent in providing clearer heatmaps showing TADs. The authors are lacking 

evidence of TADs transition during the differentiation process.  

17. As commented, the presence of a splicing factory is not convincing. Chromatin organization, 

particularly CTCF mediated chromatin loops has been shown to regulate splicing, however the link 

between spatial proximity of genes and co-splicing is relatively new. The concept of “splicing factories” 

in addition to the more conventional “transcription factories” is important. The genes may be grouped 

together because they are co-transcribed, but not necessarily because they are co-spliced. Since 

RBM20 is an RNA binding protein, would there have to be communication with another DNA binding 

protein that brings these gene loci together. More evidence is needed to make this bold claim.  

 

Finally, given that the changes in higher order chromatin architecture as described here are not 

surprising, the authors should have to give more insight into the local Enhancer-Promoter interaction 

changes during development. For example, In Page 9, line 193, they imply that the isolation of 

important developmental genes allows for individual regulation of these genes, they arrive at this 

conclusion by analysing separation of these cardiac genes from the next gene promoter. While these 

genes may not be situated very close to other genes, they may be regulated by distal enhancers 

which a deeper interactome would be able to map out. Hence it will be interesting to look at the 

Enhancer-Promoter interaction dynamics, beyond just the structural changes which have turned out to 

be as expected.  

 

 

 

Reviewer #3:  

Remarks to the Author:  

I thought this was an interesting paper and would be happy to recommend publication if the authors 

could improve some of the computational analysis as detailed below:  

 

1) At around line 97 the authors describe their examination of the dynamic regions, but it was not 

clear how they corrected for the fact that interactions are more likely to be with adjacent regions in 

the same compartment. They say – “In the pluripotent state, the median cis interaction signal 



between A compartments…”. How was the median cis interaction signal derived? For (e.g. A-A) is it 

simply the median of normalized contacts for all possible pairs of A compartment bins? Or does the 

calculation involve further normalization e.g. comparing observed to that expected? If it is the former, 

I think that some comparison against the background contact level in relation to sequence separation 

is needed.  

 

2) The authors suggest in their analysis that the average proportion of the genome belonging to either 

the A or B compartments does not change much during differentiation. However, it is not clear 

whether the A or B compartments become more/less fragmented (i.e. what are the average sizes of 

pieces of A and B compartment)? If there is a big change, the shift in the distribution of interaction 

signals could be partially attributed to fragmentation. To resolve this, the authors should calculate the 

observed/expected ratio instead of using the contact score itself. The expected value could be 

straightforwardly derived from an empirical averaging of contacts for different sequence separations 

(e.g. at 40 kb, 80 kb, 120 kb etc.) within each chromosome. Alternatively, and perhaps more 

informatively, instead of using a simple median value they could group the A-A or A-B contacts into 

different groups according to sequence separation and compare each group specifically. That would 

give a better idea whether the observed change in homotypic/heterotypic compartment score is 

mostly due to short or long range contacts, or both.  

 

3) Moving to the analysis of the dynamics of TAD organisation during differentiation (lines 140-154), 

there are a lot of statements made where the results are only weakly significant (see e.g. Fig 3e) or 

unsubstantiated. For example, is it really true that the changes in TAD boundaries are independent of 

A/B dynamics (lines 150-151)?  

 

4) In Figure 5d, there are two TSS within the TTN locus – I think one must be missing from this 

Figure? In the references there are papers describing the internal TSS in more detail, but it would be 

helpful for the reader's if the authors could show them in the Figure and discuss the two TSS briefly 

and what is special about them.  

 

5) In Figure 5d, the authors do not say what sort of cells were used to determine the CTCF binding 

data? The citation is for the ENCODE project paper, but the dataset used is not specified. Is it relevant 

for the cells they are looking at, or do the authors need to carry out their own experiments?  

 

6) Furthermore, also in Figure 5d, the observation that ATAC signal diminished around CTCF sites 

during lineage specification is interesting. However, I didn’t understand how the authors concluded 

this might be due to a physically proximal chromatin hub in hESC’s? It would be interesting to discuss 

this.  

 

7) In Figures 6c-d, according to a background model of random gene distribution along each 

chromosome, the association of 16 co-regulated genes is significantly different from the background in 

CM but not in ESC. However, the randomization of genes does not take into account their A/B 

compartment identity. It could simply be that those genes get activated and move from B to A in CM, 

which leads to their observed higher than expected interaction by chance if they are randomly 

distributed in either A/B. It would therefore be useful to compare this with random sets of genes with 

the same A/B identity as the 16 genes of interest.  

 

8) Regarding the definition of A/B compartments, did the authors assign a genome region to be within 

A if PC1 > 0 and B if PC1 < 0? Or were there further probabilistic measures involved?  

 

9) In Figure 6f, in the example cell for the FISH experiments it looks as if there is one allele that 

shows co-localisation between the red and green dots, but not the other. It would be interesting to 



know whether this occurs across the majority of cells or it is just a co-incidence?  

 

Textual matters: Line 702: Figure legend: The upper value is the number of TADs, and the lower value 

is the median size.  

 

Not sure what the upper/lower values refer to in Figure 3c?  

 

Lines 219 to 224: Would this be better in the Discussion?  

 

From line 239: “In contrast, heterochromatic, silent regions in hESCs are relatively accessible 

compared to differentiated cells but compact during differentiation coincident with increased long 

range Hi-C signals and a loss of ATAC-peaks. This is similar to results seen in CTCF and cohesin 

depletion studies where loss of local TAD structure does not alter compartmentalization and in fact 

strengthens long-range interactions.” I understand that the two observations mentioned above were 

made independently, but find it hard to follow the logic of why those two observations are similar.  
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Point by point answer to the Reviewers 
 

Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent 
splicing factory 

 
Bertero, Fields et al. 

 
We thank the Reviewers for their helpful and encouraging comments. In our revised manuscript we have 
addressed all the concerns raised by the Reviewers by performing several additional analyses and 
experiments, and by modifying the text based on their suggestions. Toward that end, we have strengthened 
our bioinformatics analyses both methodologically and by including additional datasets, thus reinforcing and 
expanding our initial conclusions. Additionally, we have greatly expanded the mechanistic side of the 
manuscript by providing robust functional validation of RBM20-mediated trans chromatin interactions using 
both pharmacological and genetic perturbations combined with extensive 3D DNA FISH analyses. Collectively, 
these experiments support our original hypothesis that RBM20 is involved in a cardiac specific splicing factory, 
and they demonstrate that this factory is important for efficient alternative splicing of key cardiac transcripts. 
Finally, we have generated DNase Hi-C data from a second hPSC line, which confirm our general findings 
regarding chromatin organization changes during human cardiogenesis and provide another useful dataset for 
the community. You will find below our detailed point by point answer to all of the Reviewers’ comments, with 
detailed references to the new data and text changes. Furthermore, all text changes are indicated in magenta 
in the revised manuscript and supplementary information. 
 

Reviewer 1 
Reviewer 1 general considerations: 
 
“In this study, Fields et al characterize the dynamic genomic landscape of a differentiating hESC to 
cardiomyocyte and of human fetal hearts. They find, as expected, that while a large fraction of the 
genome architecture remains invariant during the process of differentiation, a small, yet important 
fraction does undergo dynamic alterations that are coincident with changes in chromatin accessibility 
and gene expression. This study confirms some predicted patterns of cell-type specific gene 
regulation, while also providing an important and useful resource from which new mechanisms of 
transcriptional regulation may be uncovered. However, some major revisions are required for this to be 
suitable for publication in this journal.” 
 
We are thankful to the Reviewer for his/her constructive feedback. In our revised manuscript we have 
performed major revisions based on the Reviewer’s suggestions to strengthen and expand our analyses on 
TADs and chromatin accessibility, and integrated these with ChIP-seq data for cardiac transcription factors and 
CTCF. Further, we have added substantial new data which not only expand the resource provided by our 
study, but also showcase how this could be mined to uncover a new mechanism involved in stage-specific 
gene expression control. 
 
Reviewer 1 major comments: 
 
Comment 1: “Currently, these data do not robustly support the simple notion that lost or gained TAD 
boundaries correlate with gene expression changes during differentiation. The data, in its current form, 
suggest that are several classifications of genes within each group – some that do follow expected 
correlations of compartments, chromatin accessibility and gene expression changes, as well as some 
that do not. These trends should be further categorized with relevant examples. “ 



 2 

 
We agree that our data shows that chromatin organization dynamics at the local or global level is not always 
predictive of gene expression changes and vice-versa. This is not unexpected, as chromatin organization is but 
one of many layers of epigenetic regulation, and the field as a whole is striving to resolve this complex puzzle. 
While it would be far beyond the scope of the current study to reconcile all of our observations within a unified 
model of gene regulation for different classes of genes, our results do make substantial progress in this 
direction and provide some significant examples. Most notably, our analyses regarding the relationship 
between A/B compartment dynamics and gene expression reveal that large cardiac genes are often regulated 
by a transition from the inactive to the active compartment during differentiation. In contrast, smaller 
developmental genes seem to rely on locally-acting regulatory mechanisms. 
 
Aside from A/B compartments, we agree with the Reviewer that it was important to strengthen our analyses of 
TAD dynamics. A major limitation for this is that in contrast to A/B compartment calls, in which use of the PC1 
from the correlation map is widely considered as gold standard within in the field, there is currently no single 
accepted standard for the TAD calling. As such, we have repeated all our analyses with a second TAD caller 
such that we now have results with both the DI method (Dixon et al., 2015) and the insulation score method 
(Crane et al., 2015), which are presented in the updated Figure 3 and updated Supplementary Figure 6. 
While both TAD callers identified TAD boundaries that are distinct between hESCs and CMs, the insulation 
score method has a higher concordance between samples (68% shared between hESCs and CMs by DI 
method; 84% shared by Insulation score metric). Both methods confirm our initial observation that in general 
novel TAD boundaries appearing in cardiomyocytes are associated with upregulation of the nearest gene 
(Figure 3d and Supplementary Figure 6e), while loss of TADs during differentiation does not correlate with 
gene expression dynamics of the nearest gene. On the other hand, this process is associated with the 
increased condensation of B compartments (Figure 3c,d and Supplementary Figure 6d-e). The mechanism 
by which TADs can control gene expression of certain genes still remains largely unclear throughout the field, 
and will continue to be the subject of future investigation. 
 
Comment 2: “The observation that TAD boundaries gained in CMs are generally depleted in B to A 
transitioning compartments conflicts with the gene expression data in Figure 2”.  
 
While CM-gained boundaries in B to A regions show a slight depletion by the DI method (updated Figure 3c), 
there is actually a slight enrichment by the insulation score method (new Supplementary Figure 6d). 
However, as these boundaries represent only a small subset of TADs (27 and 16 for the DI and insulation 
score methods, respectively; refer to the relevant new Source Data Tables) neither of these changes reached 
statistical significance. The fact that the trends we observed depend on the specific method used to determine 
TAD boundaries highlights the current limitations in the field in reliably determining TADs and the associated 
complexity in interpreting the results from a biological standpoint. On the other hand, both TAD calling methods 
confirm that lost TAD boundaries are enriched in regions that go from A to B or are constitutively B, 
strengthening our confidence in this finding. Of note, the fact that neo-TADs are not significantly enriched in B 
to A regions is compatible with upregulated genes being enriched in such dynamic compartments. We think 
this observation reinforces the conclusion that TAD and compartment changes can act independently to control 
gene expression at different levels. We have sought to clarify this point with the updated lines 171-173 “In 
contrast, boundaries that are gained during differentiation are associated with a modest but significant 
activation of the nearest gene, but are not associated with a transition from inactive to active compartment” 
 
Comment 3: “While CAMK2D does better exemplify the correlation between a gained boundary and 
transcription (Fig 3f), there does seem to be residual TAD structure even in the CM stage.” 
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This was a valuable observation, and indeed our new analyses showed that the neo-boundary between 
CAMK2D was only identified by one of the two TAD calling methods. Thus, we have now included a different 
example in the genomic region surrounding LMO7 (updated Figure 3e), which gains a TAD boundary that is 
identified by both methods coincidentally with LMO7 upregulation. 
 
Comment 4: “The correlations between open chromatin regions and transcriptional activity are also 
unclear. For eg: B to A switching compartments are enriched for ESC ATAC peaks, although they are 
depleted for any differentially expressed genes at this stage”. 
 
We thank the Reviewer for pointing this out. We submit that this likely reflects the overall more accessible 
chromatin in ESCs, and we have added a sentence discussing this point at updated lines 189-191: “While we 
also observe an enrichment of hESC-specific peaks in B to A regions, this is less strong than CP- or CM-
specific enrichment and is likely an effect of the overall more open chromatin in hESCs.” As we address in the 
replies to Comments 6 and 7 below, the connection between chromatin accessibility and gene expression 
was further clarified by the new analysis of ChIP-seq data for cardiac transcription factors and CTCF. 
 
Comment 5: “The relevance of the analysis about TAD size and numbers within compartments (Fig 3) 
is currently unclear”. 
 
We sought to make the small point that when we separate out TADs by compartment we observe smaller 
TADs in the A compartment (and thus inherently more TADs, since the total amount of the genome in A and B 
compartments is roughly equal). We hypothesize that the higher degree of topological compartmentalization in 
the A compartment facilitates gene regulation, given that this compartment is more gene-dense. While 
statistically significant, this difference is not outside the expected TAD size of 500Kb-1Mb. We have clarified 
this point at updated lines 165-167 “While genome-wide TADs range in size between approximately 500Kb-
1Mb, TADs in the A compartment are smaller in size (Fig. 3b, Supplementary Fig. 6c), which is likely 
necessary for proper gene regulation in gene-dense areas.” 
 
Comment 6: “The analysis of open chromatin regions and the underlying motifs may be further 
strengthened by integrating ChIP-Seq data for the transcriptions factors identified, such as those 
published by Ang et al (2016)”. 
 
This was a very valuable suggestion, and we have included new analyses which integrate our ATAC-seq data 
with published ChIP-seq for GATA4, NKX2-5, and TBX5 in cardiomyocytes (Anderson et al., 2018; Ang et al., 
2016) and for GATA4 in ESCs (Tsankov et al., 2015). These results strengthen and expand our original 
conclusions (updated Figure 4, Supplementary Figure 7, and lines 200-221). To summarize we found that: 
 

- GATA4, NKX2-5, and TBX5 are enriched in CM-specific ATAC peaks, confirming our original 
predictions based on de novo motif discovery. 

- GATA4 more strongly overlaps with NKX2-5 and TBX5 in B to A switching compartments compared to 
the rest of the genome, suggesting that these cardiac TFs could be involved also in large-scale 
chromatin organization changes. 

- GATA4 is enriched both at CP&CM and CM-specific peaks in B to A regions, while NKX2-5 and TBX5 
show much greater enrichment at CM-specific peaks. This suggests a temporal hierarchy for cardiac 
TF binding with GATA4 “pioneering” certain sites already in the CP stage followed by NKX2-5 and 
TBX5 in CM. 

- Expanding our analyses of the NEBL locus, all three TFs bind at the promoter. We also included a 
second example of this regulation in the ACTN2 gene. 
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Overall, these findings provide support for a model whereby key cardiac TFs, in particular GATA4, may act as 
a driving force facilitating both local chromatin accessibility and B to A transitions during differentiation.  
 
Comment 7: “In Fig 5, does the analysis pertaining to gene size at the CM stage hold true even with the 
exclusion of the TTN gene?” 
 
The statistics we present in updated Figure 5a and Supplementary Figure 8b-c are all based on the median 
value of 28 cardiac genes in B to A regions, and thus do not strongly suffer from the influence of possible 
outliers. Accordingly, excluding TTN from the gene set does will not alter the p-value statistics, as seen below 
in Figure 1 for Reviewers only. 
 

 
Figure 1 for Reviewers only. Boxplot of gene size of upregulated genes peaking in CM stage subdividing either B to A 
compartment or heart development genes (GO term), outliers removed for clarity. TTN was excluded from the analysis. 
 
Comment 8: “There are several predicted CTCF sites within the TTN gene, but only two show 
progressive loss of ATAC peaks through differentiation – does this correlate with CTCF binding 
strength, orientation or other attributes?” 
 
We thank the Reviewer for this additional valuable suggestion. We have now integrated our ATAC-seq data 
with ChIP-seq for CTCF from ENCODE for both ESCs (ENCSR000AMF) and in vitro differentiated CMs 
(ENCSR713SXF), along with the associated motif orientation (updated Figure 5d). We find that the CTCF 
peaks that overlap decreasing ATAC signal also show decreased CTCF signal as measured by fold change 
over control. We also see a convergent orientation for all but one of these CTCF peaks, which is suggestive of 
chromatin looping within the locus (de Wit et al., 2015). This agrees with our earlier observation that the TTN 
gene is more compact in hESCs (updated Figure 5e). Further exploring the ChIP-seq data for cardiac TF (see 
the reply to Comment 7 above), we find that the ATAC peaks that become accessible during differentiation are 
enriched for GATA4, NKX2-5, and TBX5 but not CTCF. These findings indicate that CTCF may contribute to 
silencing of the TTN locus in hESCs by promoting intergenic looping, a mechanism that is relieved during 
differentiation as cardiac TFs mediate transcriptional activation. We confirm this trend genome-wide, as CTCF 
is more associated with ESC-specific peaks compared CM-specific peaks (updated Figure 5f). Interestingly, 
differently from cardiac TFs, CTCF binding seems largely independent from A/B compartment changes. 
 
Comment 9: “The postulated mechanism of an RBM20-mediated trans-interaction is not supported by 
these data and will require far more detailed experiments to validate. Instead, more DNA FISH 
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experiments to validate other interactions identified by this study will strengthen the current 
narrative”.  
 
We acknowledge that the RBM20-mediated splicing factory involving loci on different chromosomes had not 
been functionally tested in our original manuscript. To address this weakness, we have performed a large 
number of additional experiments that validate our original findings and provide strong evidence for the 
mechanism we had postulated. These data are presented in updated Figure 6f-g, new Figures 7-10, new 
Supplementary Figures 9-10, and in the updated text at lines 292-384. Also refer to the updated discussion 
at updated lines 422-461. To briefly summarize:  
 

- We expanded the 3D DNA FISH validation of Hi-C-identified trans interactions involving the TTN locus 
and other RBM20 targets. Data for six such genes are now presented, confirming an increased 
interaction with TTN in CMs compared to hESCs. 

- We have functionally tested the hypothesis that such interactions are RBM20-dependent by disrupting 
RBM20 foci by means of transcriptional inhibition. In agreement with our prediction, this 
pharmacological intervention weakened the association between TTN and two important RBM20 
targets (CACNA1C and CAMK2D). 

- We have further probed our hypothesis by orthogonal approaches relying on gene editing. Knockout of 
RBM20 recapitulated the observations of the transcriptional inhibition, strengthening the notion that the 
trans interactions are RBM20-dependent. Further, deletion of the TTN promoter not only was sufficient 
to strongly impair the formation of RBM20 foci (indicating that the presence of the TTN mRNA is 
required for nucleation of these structures), but also weakened the association between TTN-
CACNA1C and TTN-CAMK2D. Notably, a point mutation in TTN leading to loss of the protein product 
but not of the transcript had no effect on RBM20 foci nor on the trans interactions, further reinforcing 
our conclusion that the TTN mRNA is necessary for RBM20-dependent trans interactions. 

- We observed that impairment of this mechanism leads to functional alterations in alternative splicing, as 
deletion of the TTN promoter impairs RBM20-dependent splicing in the CACNA1C and CAMK2D 
transcripts. 

 
Collectively, these findings led us to propose the existence of a cardiac-specific RBM20-dependent trans 
interacting chromatin domain (TID) with the function of a splicing factory. We believe this is an important 
finding which will pave the way for future research into the prevalence, type, and function of similar TIDs in 
other cell types and conditions. 
 
Reviewer 1 minor comments: 
 
Comment 10: “The example of transient A compartment dynamics is not easily discernable from Fig 2. 
Either a better example or a clear detailing of the region undergoing the compartment switching is 
necessary to make this point. Additionally, an example of compartment dynamics of genes expressed 
in CP that undergo B to A compartment switching would also be interesting to add to this figure.” 
 
We have included a clearer B-A-B transition in the CM-peaking gene BMPER (updated Figure 2f), and moved 
CXCR4 to updated Supplementary Figure 4c. We have also added a gene track for ELMO1, a gene which 
expressed in MES and CP and transitions from B-A (updated Supplementary Figure 4b). Further, we have 
added dashed boxes to indicate the genomic regions that undergo compartment transitions in updated Figure 
2, and Supplementary Figures 4-5. 
 
Comment 11: “The text should be edited for minor typos. Eg.s; line 37 – “...during human 
development.”. , line 43 – “…emerged as a key mechanism..”, line 57: “…feeds back on gene 
regulation”. “ 
 
We have corrected the manuscript accordingly, and have further edited the text during the revision process. 
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Reviewer 2 
Reviewer 2 general considerations: 
 
“Fields et al have performed in situ DNase Hi-C on samples from 4 stages of a cardiomyocyte 
differentiation protocol (following the same approach in their previous publication in Cell 2012, ref 7 
where they interrogated histone profiles and RNA-seq, but not Hi-C then), and this time, along with two 
fetal human heart samples. Here, they have described changes in higher order chromatin architecture, 
and propose the presence of a cell type-specific “splicing factory”. Although they are the first to 
perform these analyses in human cardiomyocytes, nearly all of their findings are not surprising (e.g. 
ATAC-seq peaks enriched in A compartment, cardiac genes changing from B to A compartment and so 
on). While it is interesting to uncover another angle which is to group genes together in a splicing 
factory, and also to propose that the splicing units are pulled together at their templates by a splicing 
factor such as RBM20, the authors fall short of having strong evidence for the 
phenomenon”. 
 
We appreciate the Reviewer’s helpful feedback. In our revised manuscript we have improved our 
bioinformatics analyses and improved the presentation of our datasets based on his/her advice. Furthermore, 
we greatly expanded the experimental validation of our original hypothesis regarding the existence of an 
RBM20-dependent splicing factory by combining pharmacological approaches and genetic perturbations via 
CRISPR/Cas9 gene editing. 
 
Reviewer 2 comments: 
 
Comment 1: “QC metrics are provided in supplement table 1. However, adequate details of the QC 
assessment are lacking to conclude if these hi-C libraries are robust and of good quality for 
downstream interpretation. Some of the few important QC metrics are % duplication of read pairs, 
fragment length distribution, fraction of hi-C read pairs within the same restriction fragments. It is also 
noted that the sequencing depth for each replicate does not seem sufficient to provide a high 
resolution interactome.” 
 
We share the Reviewer’s concern regarding the need for high quality data sets, and indeed we had assessed 
this extensively. To confirm the quality of our data we have now included in updated Supplementary Table 1 
the percentage of PCR duplication during the sequencing library preparation (which was low at 1.8-8.04% for 
cell culture samples), and the distribution of strand directionality among the valid pairs (FF, RR, RF and FR; 
F=forward; R=reverse). HiC-Pro outputs this last statistic to evaluate the proportion of self-ligation events, 
which would increase the fraction of FR and RF reads. We do not see a bias toward these fractions; instead, 
the four strand combinations are approximately equally distributed, suggesting high quality ligation products. 
The fraction of Hi-C read pairs within the same restriction fragment is a statistic that does not apply to our 
DNase Hi-C data as interaction libraries were generated following random DNase digestion and therefore do 
not map to restriction enzyme sites (Ramani et al., 2016). Similarly, the fragment length distribution is not 
informative for DNse Hi-C data since the fragments represent ligation products of long-range interactions 
following randomly distributed DNase digestion (Ramani et al., 2016). On the other hand, Supplementary 
Table 1 includes the number of cis interaction that involve regions >20 Kb apart (long-range) or < 20Kb apart 
(short-range): these figures confirm that as it would be expected our Hi-C libraries contain a majority of long-
range interactions. To further assess the quality of our Hi-C data using orthogonal metrics we used QuASAR, 
which has been proposed in a recent ENCODE consortium pre-print as an effective way to compare quality 
across numerous datasets (Yardımcı et al., 2018). They found that an empirical cut-off of approximately ≥ 0.04 
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defines high-quality datasets, and the majority of our samples fell within this range as shown in updated 
Supplementary Table 1. 
 
With regards to the sequencing depth, we acknowledge that the identification of significant local looping events 
would be facilitated by a larger number of reads in order to allow the generation of contact maps at a resolution 
of ~5Kb. However, our study was not designed to determine this type of chromatin interactions, which we 
submit would be more accurately studied using tethered or capture Hi-C (Hughes et al., 2014). On the other 
hand, we aimed for a sequencing depth sufficient to generate high quality contact maps at 40-500 Kb 
resolution in order to reliably determine A/B compartments and TADs, which represent the analytical focus of 
our study. Accordingly, our current depth of 140-280 million reads per sample is comparable to a number of 
recent studies that identified A/B compartments and TADs across multiple samples. These include  

- Wu et al., 2017, Nat. Commun. à 2 replicates of ~200 million reads each 
- Li et al., 2018, Cell Death Dis à 2 replicates with ~150 million reads total 
- Schmitt et al., 2016, Cell Rep.  à ~100-200 million reads per sample 
- Nothjunge et al., 2017, Nat. Commun. à does not list reads, but ~30 million useable pairs per sample 

 
Comment 2: “The ATAC-seq QC metrics provided are also inadequate and lacking of key information 
such as total number of peaks detected, FRiP, insert length, etc. It is also strange (and concerning) 
that the sequence data contains high percentage of mitochondrial RNA.” 
 
We have included more information for the ATAC-seq as requested. (updated Supplementary Table 7). We 
included the number of detected peaks and the number of reads in peaks. Our values for the Fraction of Reads 
in Peak (FRiP) are above the ENCODE threshold of 0.2 for 5 out of 8 samples, with the remaining falling 
slightly below (https://www.encodeproject.org/atac-seq/). However, we note that FRiP values depend on the 
peak calling settings: since we wanted to focus on the most significant peaks, we used a q-value of 0.01, while 
the ENCODE pipeline for calculating FRIP utilizes a lower stringency threshold of 0.1. We have also included 
size distribution plots for all eight ATAC-seq samples (updated Supplementary Figure 7a). All these plots 
show an expected peak corresponding to sub-nucleosomal fragments smaller than 100 bp, and a peak at 
around 150-200 bp corresponding to mononuclosomes. Such findings collectively support the high quality of 
our data sets. 
 
With respect to the burden of mitochondrial reads in ATAC-seq data (between 33% and 50%), this is a well-
documented and unfortunate limitation of the technology, as mitochondria are difficult to separate from the 
nuclei during the preparatory steps (for instance refer to Montefiori et al., 2017 and Wu et al., 2016). Previous 
studies report that mitochondrial reads can make up 20-80% of the sequencing sample depending on the cell 
type and other technical differences. Since methods to minimize mitochondrial contamination are still largely in 
development, the current best practice is still to filter out mitochondrial reads during the analyses based on 
their sequence. In our samples, the number of mapped reads following such filtering is well within the range of 
what is required for reliable ATAC peak calling (36-72 million reads per sample). 
 
Comment 3. “The authors perform A/B compartment analysis on the samples, and found that the 
proportion of A and B compartments are roughly equal. The authors mentioned “PCA of A/B scores 
separates the samples by differentiation time point (PC1) and cardiomyocyte purity (PC2)”. It is not 
conventional to compare PC scores between samples as the PC scores are generated individually for 
individual replicates, and it is hard to put meaning to the magnitude of difference between samples.” 
 
We agree with the Reviewer that comparison between samples of raw PC1 values from the contact map 
generated by HOMER would be complicated, as “precise qualitative nature of this association may differ 
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slightly between experiments” [from http://homer.ucsd.edu/homer/interactions/HiCpca.html]. We were aware of 
this difficulty and took several steps to address it. First, to mitigate this weakness we used the HiCpca function, 
which performs a z-score normalization the PC1 output and thus generates scaled values that are comparable 
across samples. Moreover, we used a constitutively active subset of the genome to seed the positive values of 
the HiCpca output, with the aim of keeping the positive and negative values consistent between samples 
(manual inspection of the resulting PC1 tracks confirmed that no chromosomes were mis-assigned). Finally, 
and most importantly, we focused our analyses on those regions that significantly change PC1 sign, which 
indicates a substantial change in compartmentalization that is negligibly affected by small fluctuations in PC1. 
This aspect is further discussed in the reply to Comment 7 below. 
 
With regards to visualization of A/B compartmentalization changes across samples, we used a strategy 
recently employed by multiple other groups (Bonev et al., 2017; Stadhouders et al., 2018). We generated PCA 
plots of A/B compartment scores (PC1 values of the correlation matrix) to reduce the original 2-D genome 
matrix to a single value per bin, and then further reduce this multidimensional space to a single 2-D value for 
each sample. We have now improved this analysis by replacing PCA plots with t-SNE plots, which have the 
analytical advantage of visualizing the similarities and differences between samples using a non-linear 
dimensionality reduction to 2D without preserving specific variance in the axes (updated Figure 1c and 
Supplementary Figure 5d). Accordingly, we clarified the text on updated lines 94-98 that we are using this 
approach to cluster and visualize the data, but not to assign quantitative variances: “Using t-SNE to visualize 
and cluster in two dimensions either PC1 scores or HiC-Rep scores15 closely pairs replicates while generating 
a differentiation trajectory (Fig. 1c, Supplementary Fig. 3a, Supplementary Table 2). Fetal heart Hi-C most 
closely resembles in vitro cardiomyocytes but clusters separately, likely reflective of lower cardiomyocyte 
purity”. To further support these findings we have also included an orthogonal method to visualize and cluster 
our data based on HiC-Rep to quantify the similarities and differences across samples (Yang et al., 2017). 
Results are included in updated Supplementary Figure 3a and new Supplementary Table 2, and confirm 
our original conclusions regarding the developmental trajectory of chromatin organization changes during 
hPSC differentiation. 
 
Comment 4: ”Line 43. “Spatial organisation of the genome in 3-D has emerged as key mechanism by 
which cells can control regions of chromatin accessibility” sounds a fundamentally important 
biological idea. what is the reference to support this?” 
 
At updated line 48 we have added references to two landmark studies which investigated the correlations 
between Hi-C patterns and open chromatin regions marked by histone marks and showing DNase 
hypersensitivity (Lieberman-Aiden et al., 2009; Wang et al., 2017). These studies support our statement that 
the 3D organization of the nucleus can regulate chromatin accessibility. 
 
Comment 5: ”Line 47. “… implicated in a range of diseases, including cancer and limb malformations” 
references 3-6 do not include the reference on Limb Malformations.” 
 
We apologize for having omitted the reference to (Franke et al., 2016); this has now been added to updated 
line 51. 
 
Comment 6. “The motivation statement in Line 48. “.. how these transitions occur temporally across 
stages of human lineage remains unaddressed, or how structural arrangement differs between 
pluripotent progenitors and terminally differentiated cells” is debatable accuracy. Many of the 
references in this manuscript precisely address these topics. This is exactly what lends to the lack of 
novelty for this manuscript.” 
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While previous studies have investigated chromatin organization changes during the differentiation of mouse 
embryonic stem cells (Bonev et al., 2017; Fraser et al., 2015) or the initial transition of human embryonic stem 
cells into early progenitors (Dixon et al., 2015), to our knowledge no study has yet integrated Hi-C with multiple 
other data sets at defined stages of differentiation of human embryonic stem cells into a fully differentiated cell 
type. Moreover, while a recent study published during the revision of our manuscript performed promoter 
capture Hi-C in hiPSCs and hiPSC-CM (Montefiori et al., 2018), the global chromatin architecture changes at 
multiple stages of in vitro cardiomyocyte differentiation have not been yet explored. Notably, the heart is a very 
important model to understand gene regulation as it is the first major organ to form during human development, 
and congenital heart disease represents a major cause of birth defects and infant mortality. Collectively, we 
respectfully disagree that our original manuscript lacked novelty, and submit that our findings and publicly 
available datasets will be very value to geneticists, developmental biologists, and cardiac biologists. 
 
In addition to this, we trust that the Reviewer will agree that the novelty and impact of our revised manuscript 
were greatly increased by the additional validations and functional experiments which led us to identify a novel 
mechanism of gene expression control: the existence of an RBM20-dependent trans-interacting chromatin 
domain with the function of splicing factory (described in more detail in the response to Comment 19 below). 
Finally, as a result of our major revisions we have also included DNase Hi-C data during differentiation of 
hiPSCs (new Supplementary Note and new Supplementary Fig. 5), further expanding the resource provided 
by our work. 
 
To clarify the novel aspects of our study we changed our statement at updated lines 51-54 to read: “While 
these studies have demonstrated regulated regions of chromosomes, how these transitions occur temporally 
across multiple stages of human lineage commitment remains to be addressed. Further, to what extent such 
changes causally impact gene expression is still poorly understood”. 
 
Comment 7: ”In Figure 1f, compartments were defined as "dynamic". The statistics used here is 
unusual. Can the authors justify why is ANOVA used here. It is unclear how was the comparison done 
to obtain the p-value. Was it done across the time point? Are the PC scores normally distributed, and 
independent? If not, this test is deemed inappropriate.” 
 
There is currently no gold standard in the Hi-C field to determine A/B compartment changes. Previous studies 
have either used no cut-off except for a PC1 sign change (Barutcu et al., 2015; Wu et al., 2017), an arbitrary 
PC1 score change (Nothjunge et al., 2017), or an ANOVA test of PC1 scores combined with requirement for a 
sign-change (Dixon et al., 2015). We chose to follow this last strategy by first applying a significance cutoff for 
PC1 scores differences across all samples based on one-way ANOVA-calculated p-value < 0.05, and then 
further filtering for regions where the average PC1 score changed from positive to negative (or vice versa). 
This stringent approach was aimed to reduce the burden of false positive regions where PC1 sign changes 
merely result from small fluctuations around 0 (thus representing unclear compartment calls). The use of an 
ANOVA-calculated p-value was preferred over an arbitrary PC1 change cut-off since as the Reviewer correctly 
pointed out in Comment 3 even though the PC1 values are z-scored these values are not completely 
comparable across multiple samples. 
 
To rigorously test the appropriateness of a one-way ANOVA test for our dataset, we performed a Shapiro-Wilk 
test and a Bartlett test on the PC1 values of the 5293 genome bins analyzed. The Shapiro-Wilk test looks at 
the residuals from the ANOVA fit and is a test of normality, while the Bartlett test looks at the variance across 
the samples and tests for different variances between groups. The resulting p-values are presented in density 
histograms in Figure 2 for Reviewers only below, which indicate that neither test showed a strong skew 
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toward significant p-values less than 0.05. This confirms that for the vast majority of genomic bins the 
assumptions of the one-way ANOVA test were satisfied, and thus supports the use such test for our analysis. 
 

 
Figure 2 for Reviewers only. Results of the indicated statistical tests calculated on the PC1 score values for each of the 
500 Kb genomic bins considered for statistical analysis using one-way ANOVA. The resulting p-values are shown as 
density histograms. 
 
Regarding the use of the term “dynamic” in old line 97 and old Figure 1i-j and Supplementary Figure 3, we 
realize that our phrasing might have been unclear. Indeed, these analyses examined the different properties of 
contact matrices within A or B compartments, but not within regions that are switching A/B. We have clarified 
this in the text at updated lines 110-112: ”By integrating the A/B compartment information across 
differentiation with the interaction contact maps, we noticed that many of the strongest gains in long-range 
interactions are associated with the B compartment (Supplementary Fig. 3c)” (also refer to the reply to 
Comment 8 below). We also clarified the heading for this section at updated line 79 by re-phrasing it to 
“interrogation of higher order chromatin structure during human cardiogenesis”. Collectively, these 
modifications clarify that we are not looking at fluctuations within the A or B compartments because, as the 
Reviewer pointed out, the PC1 statistic is not well suited to reliably determine such fluctuations. 
 
Comment 8: “Figure 1i. What is the meaning of "cis-interaction score"? How was it generated 
quantitatively? Similar to figure 1j, what is trans interaction score?” 
 
Data plotted in old Figure 1i-j indicated the enrichment of homotypic interactions (A-A or B-B) over heterotypic 
interactions (A-B), expressed as ratio of the median raw counts for read pairs falling within these categories in 
a given sample. The data was computed separately for interactions happening within the same chromosome 
(cis) or between chromosomes (trans). In updated Figure 1i, Supplementary Figure 3e-f, and 
Supplementary Figure 5e we have improved this analysis to also control for varying genomic distances 
between compartments by generating “compartmentalization saddle plots” as described in (Schwarzer et al., 
2017). These plots represent distance-normalized average contact frequencies between compartments 
subdivided by PC1 score percentile. Briefly, each bin is assigned to the corresponding decile based on its PC1 
value, and the count of all interactions involving another bin in a given decile is assigned an observed/expected 
value based on the average value of all interactions observed at the same genomic distance. The log2 average 
observed/expected for each pair of percentiles is then plotted. This was done for both cis and trans contacts. 
The conclusions drawn from the new analyses confirm our earlier results showing that during differentiation the 
interaction between B-B in cis is strengthened while the A-A interactions in cis are weakened. In contrast, A-A 
interactions are favored in trans consistently across differentiation. 
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To further expand on these observations, we have also plotted cis and trans contact frequencies calculated as 
just described against the genomic distance involved (updated Figure 1j and Supplementary Figure 3g). 
While B-B cis interactions show the strongest signal at short range in all stages of differentiation, long range cis 
interactions are remarkably strengthened in CM. These analyses provide quantitative and genome-wide 
support for the observation that B compartments in cis compact at long range during differentiation 
(exemplified in updated Supplementary Figure 3c). 
 
Comment 9: “Similar questions for statistic significance arise in other figures: e.g. Fig3e, Fig6a. There 
do not appear to be differences in the medians between groups, and yet the difference is deemed 
statistically significant?” 
 
All data used to generate the Figures are provided in new Source Data Tables and can be consulted to 
confirm the results of our statistical analyses. When working with very large datasets with hundreds to 
thousands of values it is not uncommon that even small changes in median/mean value can lead to significant 
p-values. Thus, it is important to give biological interpretation to the results not only from the standpoint of 
statistical significance but also considering of the magnitude of the observed change. 
 
Specifically to old Figure 3e, the statistically significant differences reported were the result of multiple 
comparisons across all groups, and thus in some cases they did not address a clear biological question. To 
clarify the goal of the analysis, in updated Figure 3d we indicate p-values from a one-sample t-test to 
determine whether there is a change in gene expression from hESCs for each of the analyzed groups (a 
median expression change value of 0 would indicate no difference). Confirming our earlier conclusions, we 
observe a significant upregulation of the nearest gene to a TAD boundary gained in CMs. Of note, we repeated 
this analysis also having applied a second TAD calling method (an aspect described in more detail in the 
replies to Comments 17 and 18 below), which confirmed our conclusion by clearly showing an upregulation of 
the nearest gene to CMs neo-TADs. We have updated the text to reflect these new analyses and to clarify that 
the absolute difference we observed is modest in its magnitude (updated lines 171-173): ”In contrast, 
boundaries that are gained during differentiation are associated with a modest but significant activation of the 
nearest gene, but are not associated with a transition from inactive to active compartment (Fig. 3c-d, 
Supplementary Fig 6e)”.  
 
With respect to Figure 6a, we confirm that there is a modest but significant difference in all timepoints between 
z-scored TTN trans contacts to the A or B compartments. However, the key conclusion of this analysis was 
that TTN trans contracts switch from being slightly enriched within the B compartment in hESCs to being 
clearly enriched in the A compartment in CM. We have now included the median z-scores in the text to 
emphasize this point at updated lines 270-271: “(Fig. 6a, hESC median Z-score A: -0.26 B: -0.07, CM median 
Z-score A: 0.19, B: -0.29)”. 
 
Comment 10. “There are some bits of novelty within: e.g. Line 97. “Examining the dynamic regions, 
many of the strongest gains in long-range interactions are associated with the B compartment. .. 
stronger intra-chromosomal contacts occur between homotypic regions” .. but what does this mean 
functionally? There is only one example given in Suppl Fig 3A. what is the global picture?” 
 
We appreciate the Reviewer pointing this out. As we described in our response to Comment 8 above, we 
have performed additional genome-wide analyses for homotypic and heterotypic cis interactions and shown 
that in hESCs we see the strongest long-range contacts in A-A, while in CMs this trend is reversed in favor of a 
strongest signal for B-B. The biological interpretation of this phenomenon is presented at updated lines 121-
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126: “Together these observations suggest a model whereby during differentiation heterochromatic (B 
compartment) regions condense and pack more tightly, specifically within chromosomes in cis, while inter-
chromosomal interactions are most likely to occur between active regions (A compartment) independent of cell 
state. This is consistent with recent electron micrograph studies showing that heterochromatic regions are 
more densely packed relative to euchromatic regions in differentiated cells18”. 
 
Comment 11: “Line 111. states the authors set out to “investigate for genes that may be drivers of 
compartment changes…” but they end up not doing so. At least not with their RNA-seq. Instead it was 
their motif analysis of ATAC-seq related sites that throw up GATA and NKX which may be implicated in 
this role?” 
 
We apologize for the confusion about this statement: we had intended to refer to those genes whose change of 
expression might result in (or be the result of) a compartment change. Given that a genomic bin of 500 Kb may 
have 1 to 3 genes in it and that many genes in the human genome are not expressed, we integrated RNA-seq 
data with the A/B compartment calls to identify genes whose expression may be correlated with compartment 
changes. We have clarified this by changing the sentence at updated lines 129-131 to now read: “To 
investigate genes whose expression may be regulated in relationship with compartment changes, we 
performed RNA-seq on the same stages of differentiation, along with the fetal hearts (Supplementary Table 
3)”. 
 
On the other hand, as the Reviewer correctly points out our original analyses of ATAC-seq data pointed at 
GATA4 and NKX2-5 as potential trans-acting drivers of compartment changes by virtue of their transcription 
factor role. In the revised manuscript we have expanded these analyses to include integration of ATAC-seq 
and Hi-C data with published ChIP-seq for these and other cardiac transcription factors. This aspect was 
described in detail in the response to Comment 6 from Reviewer 1 above, and is further expanded in the 
response to Comment 13 below.  
 
Comment 12: “Line 115. “In contrast to Hi-C. most of the dynamic changes in gene expression are cell-
type specific.”. The authors should elaborate further on this. What are the gene signatures that are cell 
type specific? Are these differentially expressed genes?” 
 
We were indeed referring to differentially expressed genes that are expressed in a largely cell-type specific 
manner. We have clarified this at updated lines 132-134: “In contrast to Hi-C, differentially expressed genes 
are largely expressed in a cell-type specific manner (Fig. 2b, Supplementary Fig. 4a)”. 
 
Comment 13: “Line 174. Only one example of the motif is given at the NEBL locus. what are others? It 
is the important message that GATA and NKX could be the key drivers of chromatin organisational 
change?” 
 
We agree with the Reviewer this is an important point. As also described in detail in the response to Comment 
6 from Reviewer 1 above, we have now incorporated analysis of ChiP-seq data for GATA4, NKX2-5, and 
TBX5 in cardiomyocytes (Anderson et al., 2018; Ang et al., 2016) and for GATA4 in hESCs (Tsankov et al., 
2015). We observed that in CMs all these cardiac transcription factors are enriched in regions that switch from 
B to A, and have greater overlap to those regions compared to the rest of the genome (updated Figure 4g). 
This and other analyses shown in updated Figure 4 and Supplementary Figure 7 strengthen the conclusion 
that these TFs may contribute to changes in both chromatin accessibility and compartmentalization during 
cardiogenesis. 
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Regarding NEBL, in agreement with our original motif analyses we observe binding of all three factors at the 
promoter (updated Figure 4j). We have also included another example of this in the ACTN2 gene in updated 
Supplementary Figure 7h. 
 
Comment 14: Fig 2f. the PC1 levels to suggest the transition B -> A -> B are small vis a vis 
neighbouring PC. Besides the regions that go from A-B-A and B-A-B appear to be regions that are 
already in the borderline zone of compartments. This makes it concerning that the change could be 
noise as generated by the algorithm calling the compartments. How do the authors exclude the 
possibility that these small changes are not noise?” 
 
We shared the Reviewer’s concerns on this, and to mitigate this possibility we had also utilized the one-way 
ANOVA p-value for PC1 differences to filter out regions whose fluctuations between replicates was highly 
variable around the 0 axis (uncertain compartment calls, as also discussed in the reply to Comment 7 above). 
We do of course recognize that a small subset of imputed compartment transitions might still be the result of 
inaccurate compartment calls. Nevertheless, our analyses of the correlation between gene expression changes 
and transitory compartment switches supported the notion that at least some of these dynamics could have 
regulatory function. Indeed, we observed that these regions exhibited distinct enrichment in gene expression 
patterns compared to B-A or A-B regions, and that in particular the B-A-B regions were enriched in genes with 
peak expression in CP (Figure 2c).  
 
As already described in the reply to Comment 10 from Reviewer 1 above, to show a clearer example of B-A-
B transition we have substituted the data for CXCR4 (now showed in updated Supplementary Figure 4c) 
with that for BMPER (updated Figure 2f). Further, in Figure 3 for Reviewers only below we show an 
additional representative example of a portion of chromosome 5 in which two regions show B-A-B or A-B-A 
transition that are clearly demarcated and outside of compartment border zones. 
 

 
Figure 3 for Reviewers only. Gene tracks of PC1 values for a portion of chromosome 5 involved in dynamic 
compartment transitions during differentiation. Regions of note are indicated by dashed boxes. 
 
Overall, while our general conclusion remains that the majority of compartment changes are unidirectional, 
these observations suggest that at least a subset of putative transitory transitions might be functionally 
relevant. 
 
Comment 15: “Figure 3a. The dendrogram is not visible to make any meaningful conclusion. Also, by 
given a 2-window width (80kb) allowance for error seems less stringent. Even at such low stringency, 
the agreement between two replicates is only about 60-70%.” 
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We realize that the dendrogram and heatmap in old Figure 3a were unclear because of the inclusion of self-
correlations with a value of 1. To bypass this limitation, we have replaced this figure with t-SNE plots clustering 
the samples by their Jaccard distance based on TAD boundary overlap. Notably, as already discussed in the 
reply to Comment 1 from Reviewer 1, we have expanded and strengthened our TAD analyses by also 
repeating them with a second TAD caller based on the insulation score (Crane et al., 2015). The t-SNE plots of 
Jaccard index values for both TAD callers are shown in the new Supplementary Figures 6a-b, while the raw 
Jaccard values are reported in Supplementary Table 6.  
 
Regarding the determination of shared TAD boundary between two samples, we chose to use a flexible 
window approach since all currently available TAD callers are subject to local noise which affects the precise 
location of the boundary. This is exemplified by a recent comparative analysis of TAD calling methods in which 
no flexible windows was implemented to calculate Jaccard indexes for concordance of TAD boundaries. 
(Forcato et al., 2017). The authors observed showed a low median agreement for sample replicates, which 
ranged between 2% and 37% depending on the TAD caller used (Forcato et al., 2017). Similarly, while we saw 
a replicate concordance based on Jaccard indexes of about 60-70% using the DI method, we noticed a higher 
score of approximately 75-85% using the insulation score method. This discrepancy may be the result of the 
distinct approaches to define a TAD: the TAD caller based on the DI method that we originally used allows for 
regions of boundary (meaning that adjacent TADs are not required to start and end in consecutive bins), while 
the insulation method generates a continuous set of TADs. These points illustrate the current limitations in 
reliably determining TAD boundaries, and show that replicate concordance is highly dependent on the specific 
method used. Collectively, we deemed the use of a flexible window necessary to avoid a large number of false 
positive differential TAD boundaries by increasing the stringency of the criteria that had to be fulfilled to define 
a neo-TAD.  
 
We devised the windowing method following Schmitt et al., 2016: “Merging of adjacent boundary bins was 
performed because often times larger TAD boundaries (up to 400Kb) may result in slightly shifted (by a few 
bins) boundary calls between samples, and though they do not directly overlap, then both are a bin within the 
same boundary region.“ Thus we used a medium stringency cut-off of 80 Kb to compare the similarity between 
biological replicates, and we used a stronger cut-off of 200 Kb to define distinct TAD boundaries between time 
points in order to reduce the burden of false positive differentiation-specific boundary changes due to 
technical/computational artifacts. Finally, we performed these analyses using the two aforementioned distinct 
TAD callers, and both confirmed our key findings (updated Figure 3 and Supplementary Figure 6). 
 
Comment 16. “Fig 3f. TAD changes as defined by the algorithm dont match to the heat map visually. It 
simply looks like the original TAD marks between ANK2 and CAMK2D are blurred?” 
 
As also described in the reply to Comment 3 from Reviewer 1 this was a valuable observation, and indeed 
the weak neo-boundary originally identified by the DI method was not confirmed by the second TAD caller. We 
have thus included a clearer example of a CM-specific neo-TAD around the LMO7 locus (updated Figure 3e). 
Upon differentiation a new boundary appears between the LMO7 and COMMD6 genes, coincidental with 
LMO7 upregulation. Of note, this new example was supported by both TAD calling methods.  
 
Comment 17: “The authors called A/B compartment at 500kb resolution while they call TADs at 40kb 
resolution. Yet, they claim that TAD organization is dynamic across differentiation but independent of 
AB compartment changes. The differences observed could be an artefact of different resolution used.” 
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The choice to call TADs and A/B compartments at different resolutions is common in the field. Indeed, while 
TAD determination is based on the count of short-range interactions that are very abundant, A/B compartments 
are calculated based on correlations between long-range interactions across the entire chromosome that are 
less frequent. Thus, A/B compartment calls are substantially improved by increasing the read count per bin as 
a result of an increased bin size. This principle is exemplified by these manuscripts: 
 

- (Wu et al., 2017) à 500 Kb resolution for compartments; 40 Kb resolution for TADs 
- (Schmitt et al., 2016) à 1 Mb resolution for compartments; 40 Kb resolution for TADs 
- (Stadhouders et al., 2018) à 100 Kb resolution for compartments; 50Kb resolution for TADs 

 
Aside from this important technical reason, we decided to focus our analyses on A/B compartments at 500 Kb 
resolution because this also reduces the instances of genes falling into multiple compartment types. 
 
Having clarified our rationale, we appreciate the suggestion of the Reviewer to confirm that the different 
dynamics of TAD and A/B compartment changes during differentiation is not due to the different resolutions 
used for these analyses. To this end we also performed the A/B compartment analyses at 40 Kb resolution. 
First, we observed that a similar fraction of the genome was deemed to change compartment during 
cardiogenesis (16.4% vs 19.1% calculated at the original 500 Kb resolution), and that in agreement with our 
original conclusion the majority of these changes were unidirectional (33.28% AàB and 49.47% BàA, vs 
33.10% and 48.60%, respectively, as calculated at the original 500 Kb resolution). Furthermore, integrating 
these results with the each of the two differential TAD boundaries analyses confirmed our initial conclusions 
(Figure 4 for Reviewers only, below). Our main point is that those boundaries that are lost in CMs are 
enriched in constitutive B compartment and regions transitioning A to B, and this point holds true in all four 
analyses. This indicates that our conclusions regarding the relationship between A/B compartments and TADs 
are neither an artifact of our methodology nor of the resolution. 
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Figure 4 for Reviewers only. Enrichment of TAD boundaries between hESC and CM state within A/B compartment 
dynamics calculated with the DI method or insulation score method. A/B compartment calls were done at 500 Kb 
resolution (top) or 40 Kb resolution (bottom). Observed/Union Set p-values calculated by chi-sq test; *<0.05; **<0.01; 
***<0.01. The 500 Kb analyses are shown in updated Figures 3c and Supplementary Figure 6d. 
 
Comment 18: “It is also not justified on the criteria used to assess if a TAD is overlapping with a AB 
compartment. It is also unsure how many boundaries are called by the authors, It is very hard to 
assess the quality of the TAD calling as well unless the authors are diligent in providing clearer 
heatmaps showing TADs. The authors are lacking evidence of TADs transition during the 
differentiation process”. 
 
For comparison between TADs and A/B compartments, TADs entirely included within a compartment were 
assigned to it, while TADs spanning a compartment boundary were assigned to the compartment that had the 
largest overlap (>50%). This same approach was taken to assign differential TAD boundaries to 
compartments, in which case the overlap was measured for the region between the two adjacent TADs. We 
have clarified these aspects in the Methods at updated lines 568-574: “For comparison between A/B 
compartments and TADs we used to bedtools intersect -u -f 0.51 -a <TADs.bed> -b <compartment.bed> to 
assign the TADs to a specific compartment, and the majority compartment if it spans a boundary. For 
differential and shared boundaries between ESC and CM we used bedtools intersect -u -f 0.51 -a 
<TADs_boundary.bed> -b <compartment.bed>, p-values were calculated based on a Chi-squared test 
between the distribution of differential or shared TAD boundaries versus the distribution of the union set of TAD 
boundaries.”  
 
The number of TADs called at the various time points is indicated in updated Figure 3b and Supplementary 
Figure 6c, which also report the average TAD size. We observed more TADs with smaller average size using 
the insulation score method compared to the DI method. However, both methods have significantly larger 
average TADs within the B compartment, confirming our earlier conclusion. 
 
As described in the reply to Comment 16 above, we now include a clearer example of TAD structure in 
updated Figure 3e, in which the TAD boundaries inferred by the two methods we used are also indicated. 
 
We trust that the replies to Comment 15 through 18 have clarified and corroborated our conclusion regarding 
TAD dynamics during differentiation. 
 
Comment 19: “As commented, the presence of a splicing factory is not convincing. Chromatin 
organization, particularly CTCF mediated chromatin loops has been shown to regulate splicing, 
however the link between spatial proximity of genes and co-splicing is relatively new. The concept of 
“splicing factories” in addition to the more conventional “transcription factories” is important. The 
genes may be grouped together because they are co-transcribed, but not necessarily because they are 
co-spliced. Since RBM20 is an RNA binding protein, would there have to be communication with 
another DNA binding protein that brings these gene loci together. More evidence is needed to make 
this bold claim.” 
 
This is a fair point. As also described in the reply to Comment 9 from Reviewer 1, we have performed a large 
number of additional experiments that further validate our original findings and provide strong evidence for the 
mechanism we had postulated. These data are presented in updated Figure 6f-g, new Figures 7-10, new 
Supplementary Figures 9-10, and in the updated text at lines 292-384. Also refer to the updated discussion 
at updated lines 422-461. 
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In summary, we functionally perturbed our biological system in three orthogonal ways:  
- Pharmacological inhibition of transcription, which greatly weakened the localization of RBM20 into foci 

and resulted in impaired interactions between TTN and other RBM20 target genes located in trans. 
- Genetic ablation of TTN transcription, which remarkably reproduced the effects of global transcriptional 

inhibition indicating that the TTN mRNA is required for the nucleation of RBM20 into foci. This 
conclusion was further strengthened by results in another gene edited line where a premature 
nonsense mutation in TTN abolished protein expression but did not affect its transcription, as in this 
case no effect was observed on RBM20 foci and on the trans interactions. 

- Genetic ablation of RBM20 expression, which also weakened the trans interactions involving TTN and 
RBM20 targets. 

 
Collectively, these experiments point toward the existence of an RBM20-depedent trans interacting chromatin 
domain. Notably, disruption of this structure due to ablation of TTN transcription has a trans-acting effect on 
the alternative splicing of the RBM20 target mRNAs CACNA1C and CAMK2D, which suggest that RBM20 
forms a splicing factory as we had originally hypothesized. 
 
The Reviewer suggested that TTN could be colocalized with other RBM20 transcripts because they are co-
transcribed rather than co-spliced, and that DNA binding proteins could alternatively mediate this process. 
However, these possibilities were ruled out by our findings that loss of RMB20 expression (which affects the 
splicing but not the transcription of these genes) was sufficient to impair the colocalization of these loci. 
Mechanistically, this can be explained by the fact that RBM20 binds to nascent pre-mRNAs and, accordingly, 
co-localizes with the TTN locus (updated Figure 7a-b), its main target possessing more than 50 binding sites 
(Li et al., 2013; Maatz et al., 2014). Thus, we propose that the proximity between TTN and other genomic loci 
in trans is a result of RBM20 binding to the relevant nascent mRNAs which are still chromatin-associated 
(updated Figure 10e). Of course, this model does not exclude that other RNA- or DNA-binding proteins whose 
localization depends on RBM20 might also be involved in establishing and/or stabilizing this interaction. 
 
Comment 20: “Finally, given that the changes in higher order chromatin architecture as described here 
are not surprising, the authors should have to give more insight into the local Enhancer-Promoter 
interaction changes during development. For example, In Page 9, line 193, they imply that the isolation 
of important developmental genes allows for individual regulation of these genes, they arrive at this 
conclusion by analysing separation of these cardiac genes from the next gene promoter. While these 
genes may not be situated very close to other genes, they may be regulated by distal enhancers which 
a deeper interactome would be able to map out. Hence it will be interesting to look at the Enhancer-
Promoter interaction dynamics, beyond just the structural changes which have turned out to be as 
expected.” 
 
As discussed in the reply to Comment 1 above, we did not design our study with the primary goal of 
identifying local interactions such as those between promoter-enhancers, which would be more reliably studied 
using tethered or capture Hi-C (Hughes et al., 2014). Accordingly, we did not strive for a sequencing depth 
optimal for the detection of promoter-enhancer interactions. While our datasets could still be mined to gather 
some information on these aspects, we submit that this would be beyond the goals of the current work in which 
we wanted to primarily focus on large scale chromatin changes. Indeed, considering the already very 
substantial scope and length of the revised manuscript, we believe that further investigations stemming from 
our publicly available datasets will be better suited for future reports. 
 
To address the specific point raised by the Reviewer, while we agree that the separation of cardiac genes from 
the nearest neighbor does not preclude some of them being regulated by long-range enhancers, studies have 
shown that approximately half of all enhancers still act on the nearest active gene, and that the probability of 
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chromatin interactions strongly decays over increasing genomic distances (Sanyal et al., 2012). Thus, the 
larger than average separation of transcriptional start sites of developmental genes would in principle provide 
more genomic space for enhancers or insulators to uniquely act on such genes, thus facilitating local regulation 
of gene expression. While currently largely speculative, this is an intriguing hypothesis that will be the focus of 
future investigation. 
 

Reviewer 3 
Reviewer 3 general considerations: 
 
I thought this was an interesting paper and would be happy to recommend publication if the authors 
could improve some of the computational analysis as detailed below: 
 
We thank the Reviewer for the encouraging and useful comments. We have revised our study according to 
his/her recommendations to strengthen the computational analyses. 
 
Reviewer 3 comments: 
 
Comment 1: “At around line 97 the authors describe their examination of the dynamic regions, but it 
was not clear how they corrected for the fact that interactions are more likely to be with adjacent 
regions in the same compartment. They say – “In the pluripotent state, the median cis interaction 
signal between A compartments…”. How was the median cis interaction signal derived? For (e.g. A-A) 
is it simply the median of normalized contacts for all possible pairs of A compartment bins? Or does 
the calculation involve further normalization e.g. comparing observed to that expected? If it is the 
former, I think that some comparison against the background contact level in relation to sequence 
separation is needed.” 
 
We appreciate the Reviewer pointing this out. We addressed this extensively in the response to Point 8 from 
Reviewer 2. Briefly, we recognized that our original analyses were not corrected for genomic distance as we 
only relied on normalization of homotypic interactions (A-A or B-B) over heterotypic ones (A-B). We therefore 
generated new analyses shown in updated Figure 1i-j and Supplementary Figure 3d-g that are now 
corrected for distance and reflect the observed/expected based on the empirical average contacts for a given 
distance. The conclusions drawn from the new analysis agree with our original ones ans also provide 
additional insights into how homotypic interactions at different ranges change during differentiation (also refer 
to the reply to the next comment). 
 
Comment 2: The authors suggest in their analysis that the average proportion of the genome 
belonging to either the A or B compartments does not change much during differentiation. However, it 
is not clear whether the A or B compartments become more/less fragmented (i.e. what are the average 
sizes of pieces of A and B compartment)? If there is a big change, the shift in the distribution of 
interaction signals could be partially attributed to fragmentation. To resolve this, the authors should 
calculate the observed/expected ratio instead of using the contact score itself. The expected value 
could be straightforwardly derived from an empirical averaging of contacts for different sequence 
separations (e.g. at 40 kb, 80 kb, 120 kb etc.) within each chromosome. Alternatively, and perhaps 
more informatively, instead of using a simple median value they could group the A-A or A-B contacts 
into different groups according to sequence separation and compare each group specifically. That 
would give a better idea whether the observed change in homotypic/heterotypic compartment score is 
mostly due to short or long range contacts, or both. 
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This was a very valuable suggestion. As we described in relation to the previous point, in addition to generating 
distance-normalized contact matrices for compartment interactions, we have also generated plots of relative 
contact frequency between compartments at different distances in either ESCs or CMs (updated Figure 1i-j 
and Supplementary Figure 3d-g). These analyses clarified that the stronger interaction in cis between B 
compartments observed during differentiation is predominantly due to an increase in long range interactions 
 
We also included in updated Supplementary Figure 3b the empirical distribution of compartment sizes 
across differentiation. While there is no change in A compartment sizes, there is a minor but significant shift in 
B compartment sizes, which are slightly smaller in CMs. However, given that the change in enrichment for 
homotypic/heterotypic interactions was observed even after distance-normalization, the small change in B 
compartment sizes is not likely to account for the dramatic shift we see in the cis interaction profiles. 
 
Comment 3: “Moving to the analysis of the dynamics of TAD organisation during differentiation (lines 
140-154), there are a lot of statements made where the results are only weakly significant (see e.g. Fig 
3e) or unsubstantiated. For example, is it really true that the changes in TAD boundaries are 
independent of A/B dynamics (lines 150-151)?” 
 
We agree that the analysis of TAD boundaries needed to be strengthened. This is also extensively discussed 
in the replies to Comment 1 from Reviewer 1 and Comments 15 through 18 from Reviewer 2. To 
summarize, in order to improve the confidence in our results on TAD dynamics we repeated all our analyses 
with a second TAD caller, such that we now present results with both the DI method (Dixon et al., 2015) and 
the insulation score method (Crane et al., 2015) (updated Figure 3 and Supplementary Figure 6). We find 
that while only a small portion of TAD boundaries change their distribution, the results are similar using both 
methods (updated Figure 3a). Further, we confirm that TAD boundaries that are gained in CMs are near up-
regulated genes (updated Figure 3d and Supplementary Figure 6e). In contrast, TAD boundaries that are 
lost during differentiation are enriched within the B compartment. Finally, our new analyses confirmed our 
original conclusion that differential boundaries do not seem to be significantly correlated with A/B compartment 
switching (updated Figure 3c and Supplementary Figure 6d). 
 
Comment 4: “In Figure 5d, there are two TSS within the TTN locus – I think one must be missing from 
this Figure? In the references there are papers describing the internal TSS in more detail, but it would 
be helpful for the reader's if the authors could show them in the Figure and discuss the two TSS briefly 
and what is special about them” 
 
We have now added an indication for the internal TSS in TTN to updated Figure 5d, as can be seen below. 
We have edited updated lines 245-247 to emphasize the importance of the second isoform: “Both isoforms 
have important developmental roles as mutations downstream of the Cronos TSS are significantly more 
deleterious than those only in the long isoform31”. 
 
Comment 5: “In Figure 5d, the authors do not say what sort of cells were used to determine the CTCF 
binding data? The citation is for the ENCODE project paper, but the dataset used is not specified. Is it 
relevant for the cells they are looking at, or do the authors need to carry out their own experiments?” 
 
According to the Reviewer’s useful suggestion, in the revised manuscript we have integrated cell type-specific 
CTCF ChIP-seq data from ENCODE for both hESCs (ENCSR000AMF) and in vitro differentiated CMs 
(ENCSR713SXF), along with motif orientation direction for those. We discuss this aspect in depth in the reply 
to Comments 6 and 8 from Reviewer 1. To summarize, we found that the ATAC peaks with decreased signal 
during differentiation correlated with loss of CTCF binding, while gained ATAC peaks corresponded to well-
known transcription factors (GATA4, NKX2-5, and TBX5). This pattern is consistent genome-wide, as we find 
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that CTCF is more associated with hESC-specific ATAC peaks compared CM-specific peaks updated Figure 
5f. 
 
Comment 6: “Furthermore, also in Figure 5d, the observation that ATAC signal diminished around 
CTCF sites during lineage specification is interesting. However, I didn’t understand how the authors 
concluded this might be due to a physically proximal chromatin hub in hESC’s? It would be interesting 
to discuss this”. 
 
We apologize for the confusion on this point. We had hypothesized this partially based on a pre-print (now 
published) that showed how at the single cell level co-accessiblity (ATAC peaks) correlates with physical 
proximity between loci (Pliner et al., 2018). Accordingly, virtual 4C had indicated a stronger intragenic signal 
from the promoter of TTN in hESCs, which was suggestive of gene compaction. We were excited to see that 
these intuitions were further corroborated by the analysis of cell-specific CTCF peaks just described above. 
Indeed, locations that have decreasing ATAC and CTCF signal in CMs show CTCF motifs largely in a 
convergent direction, which is predictive of intergenic looping (de Wit et al., 2015). Taken together we 
concluded that during differentiation TTN experiences decompaction within in the gene body coincident with 
activation. We have now added text to clarify this point at updated lines 251-258: “Using CTCF ChIP-seq data 
from hESCs and CMs, we find that the CTCF sites that overlap hESC ATAC peaks show decreased 
occupancy during differentiation. With the exception of one CTCF site located at the transcriptional termination 
site, the CTCF motifs on TTN are orientated in a convergent direction, predictive of the presence of intragenic 
looping. Indeed, during differentiation there is a decreased interaction between the TTN TSS and the TTN 
gene body, while there is little change involving the upstream region (Fig. 5e). Together this suggests that 
intragenic looping may be a mechanism to maintain silencing of TTN within the B compartment in hESCs, and 
that this is potentially mediated through CTCF34”. 
 
Comment 7: “In Figures 6c-d, according to a background model of random gene distribution along 
each chromosome, the association of 16 co-regulated genes is significantly different from the 
background in CM but not in ESC. However, the randomization of genes does not take into account 
their A/B compartment identity. It could simply be that those genes get activated and move from B to A 
in CM, which leads to their observed higher than expected interaction by chance if they are randomly 
distributed in either A/B. It would therefore be useful to compare this with random sets of genes with 
the same A/B identity as the 16 genes of interest.” 
 
This is a very important point. Unfortunately, we could not generate a fully paired randomized background 
because some of the genes we had considered are on the X chromosome, for which we could not compute 
A/B compartment analysis due to the confounding effect of X inactivation in this female hESC line (as a pair of 
X chromosomes with very distinct 3D structure co-exist). We thus chose to focus on the genes that are 
upregulated and are found constitutively in the A compartment, and repeated our random permutation analysis 
comparing a gene set of 9 such RBM20 targets against the comparable background set of 1988 genes 
(updated Supplementary Figure 8f). Supporting our original findings, we observed an enrichment of trans 
interactions within the gene set in CMs (empirical p-value of 0.07) which is not seen in ESCs (empirical p-value 
of 0.46). We have now added the following text at updated lines 288-291: “To control for the possibility that 
this could be simply the result of compartment switching, we repeated the analysis with only those genes that 
are constitutively in the A compartment against a comparable background gene set and still observed a gain in 
association (Supplementary Fig. 8f)“. 
 
On top of this additional computational control, in our revised manuscript we provide extensive experimental 
validation of the mechanism we had proposed regarding the existence of an RBM20-dependent splicing factory 
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involving multiple genes interacting in trans. This is discussed extensively in the reply to Comment 9 from 
Reviewer 1 and Comment 19 from Reviewer 2, and the data is presented in updated Figure 6f-g, new 
Figures 7-10, new Supplementary Figures 9-10, and in the updated text at lines 292-384. Also refer to the 
updated discussion at updated lines 422-461. 
 
Specifically relevant to the important aspect raised by the Reviewer, all of the functional experiments in CMs 
which weakened the trans interactions involving TTN and RBM20 target loci did so without strongly affecting 
the localization of these genes with relation to the nuclear periphery (new Supplementary Figures 9b-c). Of 
note, 3D DNA FISH measurements of the distances between multiple loci and the nuclear periphery were in 
close agreement with Hi-C-inferred compartmentalization (updated Figure 6g), demonstrating their functional 
relevance. Therefore, we conclude that the trans interactions involving TTN and RBM20 target loci do not 
merely result from higher chances of proximity for genes within the same chromatin compartment, but require 
an active mechanism to be established. Based on the results of our pharmacological and gene editing 
perturbations we propose that RBM20 foci are indeed needed for such inter-chromosomal associations 
(updated Figure 10e). 
 
Comment 8: ”Regarding the definition of A/B compartments, did the authors assign a genome region 
to be within A if PC1 > 0 and B if PC1 < 0? Or were there further probabilistic measures involved?” 
 
We apologize for having omitted this from the Methods section; we had indeed defined A and B compartments 
based on a positive or negative sign for PC1. We have now added this to updated lines 541-544: “Using 
eigenvalue decomposition of the contact maps PC1 (A/B) scores were calculated using HOMER64 on the valid 
pairs file at 500Kb resolution and with no additional windowing (super-resolution also set at 500Kb). Bins were 
assigned to A compartment if their average value between replicates were greater than 0 and B if less than 0”. 
 
Comment 9: “In Figure 6f, in the example cell for the FISH experiments it looks as if there is one allele 
that shows co-localisation between the red and green dots, but not the other. It would be interesting to 
know whether this occurs across the majority of cells or it is just a co-incidence?” 
 
Updated Figure 6f and new Figures 7d and 10a provide more examples of the types of interactions we 
observed between TTN and CACNA1C. While in several CMs both of the alleles for these loci are very 
proximal, in a large number of CMs only one of the two alleles is strongly co-localized. To test whether on 
average each of the alleles of TTN is found in increased proximity with those of other RBM20 target loci in 
CMs, we calculated the maximal distance between pairs of loci (updated Supplementary Figure 9a-c). 
Similarly for what we observed for the minimal distance (updated Figures 6g, 7e, and 10b), cardiomyocyte 
differentiation led to increased proximity between loci, which was impaired by transcriptional inhibition, loss of 
TTN transcription, or loss of RBM20. These results suggest that while not all CMs show a biallelic interaction 
between TTN and other RBM20 target loci, there is no obvious preference for a monoallelic interaction (which 
would result in only the minimal distance between loci to be affected by RBM20-dependent interactions). 
Further, this indicates that the different interaction patterns we observed within a CM population are likely the 
result of on-off dynamics for these trans chromosomal interactions. We speculate that this aspect could 
depend on the transcriptional activity (and therefore on the amount of splicing) at a given allele. This would be 
consistent with the model we propose in updated Figure 10e, as only the presence of nascent mRNAs would 
result in increased chances of localization at RBM20 foci of the corresponding locus. 
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Reviewer 3 minor comments:  
 
Comment 10: “Line 702: Figure legend: The upper value is the number of TADs, and the lower value is 
the median size. Not sure what the upper/lower values refer to in Figure 3c?” 
 
We apologize for the error: the legend referred to an earlier version of the figure which also indicated the 
median TAD size. We have revised the figure legend at updated lines 1132-1134 to read: “(b) Boxplot of TAD 
sizes and number within A and B compartments across differentiation for DI method. n represents the number 
of TADs. (Wilcoxon test ***=p-value < 0.001)”. 
 
Comment 11: “Lines 219 to 224: Would this be better in the Discussion?” 
 
The relevant section was rewritten during the revision to incorporate the new functional validations of the 
RBM20-dependent splicing factory. This concept is now expressed at updated lines 317-319, where it serves 
as background to the experiment described thereafter: “It was previously shown that RBM20 foci in HL-1 
immortalized mouse cardiomyocytes are transcription-dependent36, which offers an avenue to test the effect of 
their disruption”. 
 
Comment 12: “From line 239: “In contrast, heterochromatic, silent regions in hESCs are relatively 
accessible compared to differentiated cells but compact during differentiation coincident with 
increased long range Hi-C signals and a loss of ATAC-peaks. This is similar to results seen in CTCF 
and cohesin depletion studies where loss of local TAD structure does not alter compartmentalization 
and in fact strengthens long-range interactions.” I understand that the two observations mentioned 
above were made independently, but find it hard to follow the logic of why those two observations are 
similar.” 
 
Our findings regarding chromatin changes in the B compartment during physiological development seem to 
recapitulate certain aspects of what was observed following genetic perturbations leading to the loss of CTCF 
or cohesin. This would indicate that during differentiation a decrease of CTCF and/or cohesion activity might be 
responsible for some of the changes we observe with the B compartment. We have clarified this discussion 
point at updated lines 399-406: “In contrast, heterochromatin is relatively accessible in hESCs compared to 
differentiated cells, but compact during differentiation. This coincides with loss of ATAC-peaks and TAD 
boundaries while long range Hi-C signal increases. This process is similar to that resulting from CTCF or 
cohesin depletion, which results in loss of local TAD structure but does not alter compartmentalization, and in 
fact strengthens long range interactions47,48. Thus, we speculate that loss or decrease of CTCF/cohesin activity 
in B compartment along with a gain in heterochromatin proteins during differentiation may provide the driving 
force behind compaction.”  
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Point by point answer to the reviewers 
 

Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent 
splicing factory 

 
Bertero, Fields et al. 

 
We are pleased to see that our revision was well-received by all three reviewers. We have performed further 
minor revision of the text and figures to address the remaining comments from reviewer 2. Further, we 
modified the text according to the editorial requirements for publication. 
 

Reviewer 1 
 
The authors have considerably revised their manuscript to address all reviewer queries. I'm happy to 
support publication. 
 
We thank the reviewer for his/her feedback which helped to improve our manuscript. 
 

Reviewer 2 
 
The authors have done an impressive job at this revision. The submitted piece is now quite 
compelling. As commented before, the concept of “splicing factories” is really interesting, and there is 
now empirical evidence offered in this revision. Specifically, the dissection using experiments with 
TTN-delta-prom, compared to TTN-KO and RBM20- KO, and thereby showing which of these RBM20 
foci depends upon, is really commendable. 
 
Nonetheless the conclusions of “strongest gains in long-range intra-chromosomal interactions 
associated with B compartment”, and “switch as a result of gain in long range B-B interactions during 
differentiation” will need validation from other groups over time. 
 
I would still recommend the following detail technical edits: 
 
We thank the reviewer for the laudatory comments and additional suggestions for improvement; we have 
address them all as described below. Please note that while the revised manuscript Word file includes track 
changes as per editorial requirements, the line numbering references below apply to the document read in 
modality “no markup” (continuous line numbering). 
 
Methods: 
 
1. Line 530: "excluding pairs less than 1kb". Please be more specific on the definition on pairs. Di-tag 
length? 
 
Hi-Pro is able to filter out reads that map close together such that they may be a product of self-ligation of the 
same fragment and not a result of proximity ligation of distal fragments. To increase the robustness of our HiC 
data analysis, we thus filtered paired-end reads that mapped within 1 Kb of each other. To clarify this point, we 
have now rephrased line 541 to say “excluding read pairs that mapped within 1 Kb”. 
 
2. Line 532: "ICE balanced matrix". Please cite this normalization method. 
 
The ICE balancing is included in the HiC-Pro package cited in the prior line (line 540; reference 56 to Servant 
et al 2015). To clarify this point reference 56 is now also mentioned on line 542. 
 
3. Line 534: "Heatmaps for all Hi-C data were generated through Cooler". Are the hi-C interaction 
counts used for heatmap generation also ICE-balanced? It wasn't stated very clearly in the method. 
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The cooler package includes its own balancing method based on a similar ICE algorithm, which was used to 
generate heatmaps in cooler starting from the raw counts. Of note, these heatmaps were only used for 
visualization purposes. We have now included on lines 545-547: “Heatmaps for all Hi-C data were generated 
through Cooler (https://github.com/mirnylab/cooler), based on the raw counts as cooler includes its own ICE 
balancing, and were used only for visualization purposes”. 
 
4. Line 536: “HiC-Rep scores were calculated using a resolution of 500Kb with a max distance of 5Mb 
and h=1”. What is the significance of using HiC-REP? The relevance or importance seems negligible in 
the result section. Suggest to remove this. 
 
The inclusion of clustering with both HiC-Rep and PC1 scores was to take advantage of two orthogonal 
methods to demonstrate that the HiC assay is reproducible across biological replicates and separates samples 
by the differentiation stage. HiC-Rep measures aspects of HiC data reproducibility which may not be fully 
captured by the analysis of chromatin compartmentalization (Yardımcı et al., 2018). Thus, while we appreciate 
the reviewer’s suggestion to simplify, we believe the inclusion of HiC-Rep strengthens our conclusions and 
should remain in the manuscript as it could prove informative for the more specialist readers. To clarify this 
aspect, we have changed the text at lines 95-97 to say: “Using t-SNE to visualize and cluster in two 
dimensions either PC1 scores or HiC-Rep scores13 closely pairs replicates while generating a differentiation 
trajectory, demonstrating the reproducibility of the assay”. 
 
5. Line 539: "PC1 (A/B) scores were calculated using HOMER". Again, Are the hi-C interaction counts 
used here also ICE-balanced? This is important to ensure consistency in the analysis. Please 
comment. 
 
HOMER includes its own normalization and takes in a set of valid interactions, which were generated by HiC-
Pro. This is the list of all pairs of reads after filtering for distance and MAPQ score. To clarify this, we have now 
added on lines 552-554: “The valid pairs file from HiC-Pro (after filtering for distance and MAPQ score) was 
used as input into HOMER57 for eigenvalue decomposition of the contact maps to calculate PC1 (A/B) scores 
at 500 Kb resolution and with no additional windowing (super-resolution also set at 500 Kb)”. 
 
6. Line 541: Have the authors tabulated number of bins with PC1 values of 0? Any statistics? If they 
exist, how were the "A" and "B" status assigned? 
 
We can confirm that no bins had a value of exactly 0 and thus as all bins could be assigned to either A or B 
compartment. 
 
7. Line 544: The test is rather confusing. Were the ANOVA test 1-way or 2-way ANOVA? Was it carried 
out across the differentiation or pairwise? How do the authors control for false positive? If the authors 
do not control for false positive, please comment on the confidence of the finding. 
 
We performed a one-way ANOVA test since only one independent variable was being tested: the time point of 
differentiation. We compared the variance of PC1 scores across differentiation to test the significance of the 
observed changes relative to the variance within the biological replicates at each time point. We have clarified 
this on line 557-560: “Switching A/B compartments were determined by a one-way ANOVA p-value < 0.05 (2 
replicates per time point, across the 4 time points of differentiation) and at least one time point having an 
average PC1 score greater than 0 and at least one less than 0”. 
 
As described in detail in our earlier point-by-point reply, there is currently no gold standard to determine A/B 
compartment changes. Our approach of combining a significance cutoff for PC1 scores and then further 
filtering for regions where the average PC1 score changed from positive to negative (or vice versa) is more 
stringent than other approaches that either used no cut-off except for a PC1 sign change (Wu et al., 2017; 
Barutcu et al., 2015) or an arbitrary PC1 score change (Nothjunge et al., 2017). Indeed, we aimed to reduce 
the burden of false positive regions where PC1 sign changes merely result from small fluctuations around 0 
(thus representing unclear compartment calls). Consistently with a previous study that followed this same 
approach (Dixon et al., 2015), we did not include a multiple hypothesis correction for the ANOVA test. 
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8. Line 557: Please cite ggplot2 for "geom_smooth" 
 
We have now included the citation for ggplot2 at line 571 (reference 58). 
 
9. Line 559: Did the authors use 3 TAD-calling methods? "Directionality Index (DI) method and domain 
call pipeline and insulation score method". 
 
We used two distinct methods: the Directionality Index approach (DI), and the insulation score method. The 
domain call algorithm is part of the DI method pipeline, per the software package. To clarify the point we have 
changed the text at lines 573-574 to say: “TADs were determined using two distinct methods: (1) Directionality 
Index (DI) method and domain call pipeline17; (2) insulation score method18 at 40 Kb resolution”. 
 
10. Line 563: Line 556: "within 80kb" and "within 200kb". Are the authors referring to +-80kb from the 
boundary or +-40kb from the boundary? 
 
These analyses were performed considering overlaps in windows of ±	80 Kb and ±	200Kb. We have corrected 
the methods section accordingly at lines 577 and 580, respectively. 
 
11. Line 563: Also, please comment on the choice of a less stringent distance cut-off (200kb, instead of 
80kb) used here for "time point boundaries" overlap since the authors reported based on these hiC 
data that "TAD boundaries are highly constitutive across differentiation timepoint"(Line 164). Is this 
self-fulfilling prophecy? 
 
We chose such stringent for this analysis since all currently available TAD callers are subject to local noise 
which strongly affects the precise location of the boundary (Forcato et al., 2017). This is described in detail in 
Schmitt et al., 2016: “Merging of adjacent boundary bins was performed because often times larger TAD 
boundaries (up to 400Kb) may result in slightly shifted (by a few bins) boundary calls between samples, and 
though they do not directly overlap, then both are a bin within the same boundary region. Moreover, in previous 
reports, TAD boundaries have been defined as 40-400Kb (Dixon et al., 2012) while regions >400kb are 
characterized as regions of “disorganized chromatin”. 
 
We recognize that the use of a stringent cutoff for boundary changes might have led to some false negatives. 
However, we determined it was more important to focus on the most significant changes to reduce the burden 
of false positives. To clarify the point on lines 166-167, we have now rephrased it to clarify that a stringent cut-
off was used: “Using a stringent cut-off, both methods show a majority of TAD boundaries that are constitutive 
across differentiation (Fig. 3a)”. 
 
12. Line 571: what was the test used for "differential boundary" analysis. 
 
This analysis relied on determining the absence/presence of boundary overlaps across time points, and thus 
no statistical test was used as a null model for this phenomenon could not be defined. We defined boundaries 
shared between two time points when these were found within a 400 Kb window. On the contrary, differential 
boundaries are those that did not have nearby a TAD boundary in the other time point. We have sought to 
clarify this on lines 579-582: “For comparison between time points boundaries were considered shared if there 
was a boundary within ± 200 Kb, time point specific boundaries were identified by the lack of a shared 
boundary with the respective comparison”. 
 
13. Line 557: what was the multiple-testing control on the p-value. 
 
No multiple-testing control was applied; please refer to the response to point 7 above explaining this analysis in 
additional detail. 
 



	 4	

14. Line 583: Besides "chromosomal distribution", are there any other potential factors that might bias 
the permutation test? Also, please define chromosomal distribution: distance? number of genes per 
region? 
 
We refer to chromosomal distribution as the same number of genes per chromosome. Since we are focusing 
exclusively on trans interactions, we did not control for the distance between the genes on the chromosome. 
This is consistent with Witten and Noble, 2012, which showed that this is the best method to evaluate trans 
interactions. We have amended the text at lines 597-600 to clarify this: “The background model was based on 
a set of 1,000 random permutations, each time selecting a new set of genes with the same number of genes 
per chromosome as the seed set, similar to an earlier report60, and totaling the respective ICE balanced 
counts”. 
 
As part of our previous revision we performed an additional permutation analysis to control for any changes 
associated with upregulation or B-A transitions by restricting the test to only those genes that are constitutively 
A and upregulated, and found a similar trend (Supplementary Figure 8f). 
 
15. Line 602: "P-values were calculated based on a Chi-squared test between the total number of genes 
in a type of compartment transition versus the number of differentially expressed genes within that 
region (sub-divided by time point of peak expression)." It is rather confusing here. Firstly, are both 
repressed and over-expressed genes counted separately towards the "total number of genes"? 
Secondly, it is not clear what is meant by "sub-divided by time point of peak expression". 
 
For this test we compared each type of transition (B-A, A-B, B-A-B, A-B-A) with the genes that are differentially 
expressed and peaking at each time point (ESC, MES, CP, CM). For example, we performed a Chi-squared 
test to see if there is significant overlap of: (1) genes that are differentially expressed with peak expression in 
CMs; and (2) genes that are in B-A regions (Figure 2c). All raw values are also included in the Source Data 
File. We have clarified the text at lines 618-621: “P-values were calculated by a Chi-squared test between the 
total number of genes in a type of compartment transition relative to the number of differentially expressed 
genes within that region. For example, comparing the number of genes in B to A regions with the number of 
genes upregulated at CM”. 
 
16. Line 606: Was the p-value calculated using Wilcoxon test.  
 
Yes, this is stated on lines 621-623: “Gene sizes and gene distances were calculated from the ensemble hg38 
annotation. P-values were calculated by the Wilcoxon test in R”. 
 
17. Line 610: Are these proteins measured specifically in cardiomyocytes? 
 
We did not perform these measurements: this comparison was performed by taking advantage of previously 
published publicly available data from 37 adult tissues. The results described on lines 238-240 pertain to 
expression in adult heart, rather than isolated cardiomyocytes. Our finding that “those genes that are 
upregulated and go from B to A are more heart-enriched compared to other upregulated genes” would likely be 
even more significant if we had data from adult cardiomyocytes. However, that data not was not available in 
the cited study, and we lacked access to heathy cardiac tissue that would be required for this experiment. 
  
We have now added for clarity to lines 623-625: “For comparison of genes across adult tissues including adult 
heart from the EMBL Protein Atlas, RNA expression values were downloaded from EMBL-EBI (E-MTAB-
2836)”.  



	 5	

Figures: 
 
1. Figure 1b: What is the numerical scale for "high" and "low"?  
 
Cooler generates normalized values, such that each row and column sums to 1. The values are plotted on a 
log scale, ranging from -1 (high) to -4.5 (low). We have now included the corresponding values to the heatmap 
legend of Figure 1b. 
 
2. Figure 1i: What are the rows and columns? Are they different stages of differentiation? These are 
not labeled. 
 
As described in the legend, each bin represents a decile of the genome by PC1 score. The figure is a 
symmetric matrix of the log2 observed/expected value comparing CM to hESCs. To clarify this we have now 
added to Figure 1i the text: “Decile PC1 score.” This was also done for Supplementary Figure 3d-f, which 
show the same type of plots. 
 
3. Figure 2d: "Benjamini p-value": have they been log-transformed? 
 
While the axis was log-transformed to better display the data, the p-value indicated is the actual p-value output 
from the GO analysis. To clarify this point, we have added to the legend for Figure 2d the text (lines 1119-
1120): “(d) GO term enrichment in CM peak expression genes in B to A compartments, p-values plotted on log 
scale.” 
 
4. Figure 3e: Again, please show the numerical scale for "high" and "low". 
 
We have now included values corresponding to high (-1) and low (-4) to the heatmap legend of Figure 3e. 
 
5. Figure 4g: The enrichment of TBX5 and NKX2-5 are very different from genome-wide background. 
What did the authors use as background, how do they prove that this observation is not just by 
chance? 
 
This figure indicates that the overlap between GATA4 peaks and NKX2-5 and TBX5 peaks was greater in B to 
A regions than in the rest of the genome. A Chi-squared test indicates a significant difference in such overlaps 
based on an observed to expected ratio, and therefore we reject the null hypothesis that there is no difference 
in overlap based on genomic region. This test considers the underlying distribution of the ChIP data to show 
significant overlap. 
 
6. Figure 6a: The medians don't look different. Yet the p-values are significant? Have the source data 
been shown somewhere? 
 
The source data is included in the Source Data File, which confirms that the median values are different, 
albeit slightly. Nevertheless, as already discussed in our previous point-by-point reply, these modest 
differences result in highly significant p-values because the data includes all trans contacts for the TTN locus, 
which represents thousands of data points. Moreover, the key conclusion of this analysis is that TTN trans 
contracts switch from being slightly enriched within the B compartment in hESCs to being clearly enriched in 
the A compartment in CM. We have now included the median z-scores in the text to emphasize this point at 
updated lines 276-277: “(Fig. 6a, hESC median Z-score A: -0.26 B: -0.07, CM median Z-score A: 0.19, B: -
0.29)”. 
 
7. Suggest that the legend of Figure 6(c-d) needs re-phrasing. 
 
We have clarified the legend at lines 1167-1171 to read: “(c-d) Association of upregulated RBM20 target 
genes in hESCs (c) and CM (d). Dashed red line indicates cumulative sum of ICE normalized Hi-C read 
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between target genes in trans, histogram represent the background of 1000 random permutations of selected 
genes from similar chromosomal distribution”. 
 
Results: 
 
1. Line 97: "Fetal heart Hi-C most closely resembles in vitro cardiomyocytes but clusters separately, 
likely reflective of lower cardiomyocyte purity.". The fetal hearts are clearly clustered with the derived 
cardiomyocytes in both t-sne and clustering plot. It is unclear how the authors have attributed the 
difference to cell-type contamination. Please comment. 
 
While there is similarity with respect to the x-axis of the t-SNE plot in Figure 1c for CM and Fetal samples, they 
separate further on the y-axis then do the replicates for CM or Fetal samples. We have stated that this is “likely 
reflective of lower cardiomyocyte purity.” While this could also reflect a different development stage or other 
biological/technical factors, we believe that a difference in cardiomyocyte purity is the most likely explanation 
as it is well established that the heart has a large number of non-myocytes (Zhou and Pu, 2016; Banerjee et 
al., 2007). 
 
2. Line 105: "Most of these changes are unidirectional (B-A or A-B)." Dixon et al (Nature ,2015) also 
noticed a 4%-25% compartment changes in differentiation of ES to different lines. However, there 
seems to be more A->B changes rather than B->A unlike what has been reported in this study. In figure 
1g, >60% of the compartment switches are from B->A. Please comment if this is an artifact from 
resolution issue, or this is a biological meaningful observation. 
 
This is not surprising as in Dixon et al. the authors both used a different cell line and examined a distinct type 
of differentiation. Interestingly, another study found more regions transitioning from B to A then A to B in a 
terminal endothelial differentiation (Niskanen et al., 2018). As we were able to validate many of our findings on 
compartmentalization changes in a second hPSC line, we conclude that the differences in A/B compartment 
transitions between our study and Dixon et al. likely reflects biologically meaningful observations across 
distinct lineages. 
 
3. Line 114-117: This finding through hi-C data has been reported in Bonev et al(Cell, 2017). They also 
reported that the interaction strength between A compartments are decreased, while contacts within 
the B compartment became stronger between neuronal cells differentiated from stem cell. Please cite. 
 
We have now included the reference to Bonev et al., 2017. In such work they used a mouse differentiation 
system: the fact that they showed similar findings suggests that this may be a general phenomenon of 
differentiation. We have edited the text at lines 111-115 to state: “By integrating the A/B compartment 
information across differentiation with the interaction contact maps, we noticed that many of the strongest 
gains in long-range intra-chromosomal (cis) interactions are associated with the B compartment 
(Supplementary Fig. 3c), this is consistent with prior studies in mouse neuronal specification15, suggesting it 
may be a general phenomenon of differentiation”. 
 
4. Line 128-156: Result section: "Activated genomic regions occur coincident with upregulation of 
expression." The authors missed the opportunity to quantitatively link the percentage of the 
compartment switches to gene expression changes. If they have, how many percent of these genes are 
involved in cardiac differentiation. Likewise, how many percent of the differentially expressed genes 
are found in compartment switching? These statistics will be more evident to suggest if chromatin 
architecture plays any role in cell differentiation. This piece of information is glaring omission from an 
important result in the paragraph here. 
 
The overlap between differentially expressed genes and genes found in switching compartments was reported 
in the Source Data Table for Figure 2c, and is now found in the matching worksheet in the condensed 
Source Data File. This information was the input used to generate Figure 2c, in which we calculated the 
significance of the overlaps between these gene sets based on Chi-squared test. We chose this representation 
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over multiple Venn diagrams because it conveys the same information in a visually compact manner, while 
also facilitating the comparison of enrichments across multiple data sets. 
 
Among other things, we show that there is a statistically significant enrichment for differentially expressed 
genes peaking in CM in genes located in B to A compartment. Figure 2d confirms that these genes are 
enriched in factors involve in cardiac development. Further, we have shown in Supplemental Tables 4 and 5 
that genes that are upregulated in CM and found in B to A compartments are more cardiac specific then those 
that are upregulated in CM in general. 
 
To clarify and highlight this overlap based on the reviewer’s feedback, we have included a new Venn diagram 
in Supplemental Figure 4b demonstrating the substantial overlap between upregulated genes and genes in B 
to A compartment. While due to space constraints we cannot present similar Venn diagrams for all other types 
of overlaps between gene sets, this data is reported in the Source Data File in the worksheet for Figure 2c. 
 
5. Line 164: Are the constitutive TAD boundaries CTCF-enriched / Cohesin-enriched? 
 
6. Line 167: Are the gained/lost boundaries enriched for CTCF? 
 
To address points 5 and 6, we have analyzed the pattern of CTCF binding in relation to TAD boundaries 
determined by the DI or insulation score methods in hESCs or CM. We find that that CTCF is more enriched in 
the proximity (< 1 Kb) of constitutive TAD boundaries compared to gained/lost boundaries. On the other hand, 
as expected more than 50% of boundaries have a CTCF peak within 1 Kb irrespective of the boundary class or 
TAD calling method. We have included this new analyses in Supplemental Figure 6e, and described these 
results in the text at lines 171-175: “Consistent with prior studies19, we find that TAD boundaries are located 
near to CTCF peaks in both hESCs and CMs with ~70% of TAD boundaries having a CTCF peak with 1 Kb 
(Supplementary Fig. 6e). Moreover CTCF peaks are located closer on average to constitutive boundaries 
rather than differential boundaries by both TAD methods (Supplementary Fig. 6e, chi-sq test, p < 0.001)”. 
 
7. Line 173: Do the authors also have another example to support the claim that gain of TAD boundary 
is associated with increased genes expression? 
 
We have included in Supplementary Figure 6g a gene track of the genomic locus containing the KCNN2 
gene: this shows a gain of TAD boundary (based on both the DI and insulation score method) proximal to 
KCNN2 and coincident with its upregulation. 
 
8. Line 184: How do the authors explain the reducing number of ATAC peaks or open chromatin region 
with the increasing number of A compartment? It is contradictory on the face of it. 
 
We would like to point out that the percentage of the genome found in the A compartment in hESC and CM is 
not substantially different, and approximately of 50% (Figure 1d). Moreover, the reduced number of ATAC 
peaks in CM involves the whole genome (both A and B compartments), while we show that there is a strong 
reduction of ATAC peaks in CM specifically in regions that are constitutively in the B compartment or transition 
from A to B in CM (Figure 4c). Thus, the results indicate an overall decrease in accessibility of the B 
compartment during differentiation, which is consistent with an increase in interaction strength within the B 
compartment (Figure 1i). This is described on lines 194-195 where we state: “This supports the model of 
increased heterochromatin packing in CM coincident with decreased accessibility”. 
 
9. Line 228: It is interesting to find that the up-regulated genes are longer for those that are involved in 
B->A compartment switching. Have the authors performed any stats test to help draw any significant 
conclusions on this? 
 
We have indeed performed statistical tests to show that CM-upregulated genes in B to A compartments are in 
general larger than other upregulated genes (Figure 5a). These genes appear to be lineage specific, structural 
genes which tend to be larger than smaller transcription factor-type genes. 
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10. Line 253: Have the authors attempted to look into their hi-C data at higher resolution such as 10kb 
to observe if CTCF loops are present? 
 
As has been shown in other studies (such as Bonev et al., 2017; Rao et al., 2014), generation of high quality 
contact maps at 10 Kb resolution from conventional HiC data requires a sequencing depth greater by an order 
of magnitude than the one we adopted (which is however ideal for assessment of large-scale chromatin 
organization changes; Belton et al., 2012). As discussed in our earlier point-by-point reply, the focus of the 
present study was on global chromatin organization changes during human cardiogenesis, and on their 
relationship with chromatin accessibility and gene expression dynamics. Therefore, the determination of 
chromatin loops is beyond the scope of this manuscript, while this has been the subject of other excellent 
reports whose goal was to look at this fine level of chromatin structure regulation by using promoter capture Hi-
C (Montefiori et al., 2018; Gilsbach et al., 2018; Choy et al., 2018) or deeply sequenced Hi-C (Zhang et al., 
2018). All of these manuscripts are cited in our updated paper. 
 
11. Line 375: Would the authors comment on whether knocking out of CAMK2D and CACNA1C would 
show any effect on the RBM20 foci, similarly to how TTN KO has shown. 
 
Our expectation is that impairment of CAMK2D or CACNA1C expression would have a small effect, if any, on 
RBM20 foci. Indeed, compared to the TTN mRNA, which possesses > 100 RBM20 binding sites leading to 
exclusion of >100 exons, the CAMK2D and CACNA1C mRNAs have only a few RBM20 binding sites and, 
accordingly, a much more limited regulation of alternative splicing (Maatz et al., 2014). Thus, our model is one 
by which TTN is the main nucleating factor for RBM20 foci due to its peculiar splicing regulation which leads to 
highly cooperative RBM20 binding. Nevertheless, we agree that in future studies it will be interesting to test the 
functional effect of impairing transcription one or more other RBM20 target on the activity of the RBM20 
splicing factory. 
 
Finally, on the intriguing conclusion of a splicing factory, orchestrated in the author’s example by 
RBM20, I am not sure if the following possibility is discussed. There may indeed be a splicing factory, 
but RBM20 may also just be taking advantage of the chromatin architecture to co-splice other genes. It 
gets nucleated by Titin mRNA then while there, splices other genes and in the process of doing that 
brings them even closer. If the message is that RBM-20 orchestrates the trans-interaction, then another 
Hi-C after RBM-20 knockout will be needed to show the loss of the trans-interaction. Yes, the DNA FISH 
shows some level of separation after the KO experiments, but these genes are already located in 
proximity in the first place. Such a Hi-C/Chromatin architecture dataset may also serve as way to 
predict which genes are co-spliced rather that the RBM-20 determines which genes interact together. 
 
The interpretation of our data proposed by the reviewer is indeed in line with our model, according to which the 
formation of the RBM20 splicing factory is both the result of chromatin compartment transitions involving TTN 
and other RBM20 targets, and the formation of RBM20 foci (Figure 10e). As acknowledged by the reviewer, 
this model is supported by extensive validation using DNA 3D FISH after impairment of the RBM20 splicing 
factory by either knockout of RBM20 or of the TTN promoter. We agree that building upon our results it will be 
interesting in future studies to generate genome-wide chromatin interaction data (such as 4C or promoter-
capture HiC) to explore the trans interactions involving the RBM20 splicing factory, as well as other yet-to-be-
defined TIDs. This would be, however, clearly beyond the scope of the current, already extensively revised 
study. 
 
Overall, an impressive revision which has clearer novelty within now. 
 
We thank the reviewer for his/her feedback which helped to improve our manuscript. 

 
Reviewer 3 

 
I have been through the paper and the authors response to the referees. I think the authors have made 
a very good effort to address all of the points made by the referees and I would be happy to 
recommend publication.  
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There are still many questions as to the significance of the changes, and what is causing what, but I 
think they are inherent in the approach and this field at the moment and require more definitive 
experiments. The authors will be making a large amount of data available that others can analyse and 
they deserve to publish their work. 
 
We thank the reviewer for his/her feedback which helped to improve our manuscript. 
 
References 
 
Banerjee, I., J.W. Fuseler, R.L. Price, T.K. Borg, and T.A. Baudino. 2007. Determination of cell types and numbers during 

cardiac development in the neonatal and adult rat and mouse. Am. J. Physiol. Circ. Physiol. 293:H1883–H1891. 
doi:10.1152/ajpheart.00514.2007. 

Barutcu, A.R., B.R. Lajoie, R.P. McCord, C.E. Tye, D. Hong, T.L. Messier, G. Browne, A.J. van Wijnen, J.B. Lian, J.L. 
Stein, J. Dekker, A.N. Imbalzano, and G.S. Stein. 2015. Chromatin interaction analysis reveals changes in small 
chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biol. 16:214. 
doi:10.1186/s13059-015-0768-0. 

Belton, J.-M., R.P. McCord, J.H. Gibcus, N. Naumova, and Y. Zhan. 2012. Hi–C: A comprehensive technique to capture 
the conformation of genomes. Methods. 58:268–276. doi:10.1016/J.YMETH.2012.05.001. 

Bonev, B., N. Mendelson Cohen, Q. Szabo, L. Fritsch, G.L. Papadopoulos, Y. Lubling, X. Xu, X. Lv, J.-P. Hugnot, A. 
Tanay, and G. Cavalli. 2017. Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell. 171:557–
572.e24. doi:10.1016/j.cell.2017.09.043. 

Choy, M.K., B.M. Javierre, S.G. Williams, S.L. Baross, Y. Liu, S.W. Wingett, A. Akbarov, C. Wallace, P. Freire-Pritchett, 
P.J. Rugg-Gunn, M. Spivakov, P. Fraser, and B.D. Keavney. 2018. Promoter interactome of human embryonic stem 
cell-derived cardiomyocytes connects GWAS regions to cardiac gene networks. Nat. Commun. 9. 
doi:10.1038/s41467-018-04931-0. 

Dixon, J.R., I. Jung, S. Selvaraj, Y. Shen, J.E. Antosiewicz-Bourget, A.Y. Lee, Z. Ye, A. Kim, N. Rajagopal, W. Xie, Y. 
Diao, J. Liang, H. Zhao, V. V. Lobanenkov, J.R. Ecker, J.A. Thomson, and B. Ren. 2015. Chromatin architecture 
reorganization during stem cell differentiation. Nature. 518:331–336. doi:10.1038/nature14222. 

Forcato, M., C. Nicoletti, K. Pal, C.M. Livi, F. Ferrari, and S. Bicciato. 2017. Comparison of computational methods for Hi-
C data analysis. Nat. Methods. 14:679–685. doi:10.1038/nmeth.4325. 

Gilsbach, R., M. Schwaderer, S. Preissl, B.A. Grüning, D. Kranzhöfer, P. Schneider, T.G. Nührenberg, S. Mulero-Navarro, 
D. Weichenhan, C. Braun, M. Dreßen, A.R. Jacobs, H. Lahm, T. Doenst, R. Backofen, M. Krane, B.D. Gelb, and L. 
Hein. 2018. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in 
vivo. Nat. Commun. 9. doi:10.1038/s41467-017-02762-z. 

Maatz, H., M. Jens, M. Liss, S. Schafer, M. Heinig, M. Kirchner, E. Adami, C. Rintisch, V. Dauksaite, M.H. Radke, M. 
Selbach, P.J.R. Barton, S.A. Cook, N. Rajewsky, M. Gotthardt, M. Landthaler, and N. Hubner. 2014. RNA-binding 
protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J. Clin. Invest. 124:3419–3430. 
doi:10.1172/JCI74523. 

Montefiori, L.E., D.R. Sobreira, N.J. Sakabe, I. Aneas, A.C. Joslin, G.T. Hansen, G. Bozek, I.P. Moskowitz, E.M. McNally, 
and M.A. Nóbrega. 2018. A promoter interaction map for cardiovascular disease genetics. Elife. 7:1–35. 
doi:10.7554/eLife.35788. 

Niskanen, H., I. Tuszynska, R. Zaborowski, M. Heinäniemi, S. Ylä-Herttuala, B. Wilczynski, and M.U. Kaikkonen. 2018. 
Endothelial cell differentiation is encompassed by changes in long range interactions between inactive chromatin 
regions. Nucleic Acids Res. 46:1724–1740. doi:10.1093/nar/gkx1214. 

Nothjunge, S., T.G. Nührenberg, B.A. Grüning, S.A. Doppler, S. Preissl, M. Schwaderer, C. Rommel, M. Krane, L. Hein, 
and R. Gilsbach. 2017. DNA methylation signatures follow preformed chromatin compartments in cardiac myocytes. 
Nat. Commun. 8:1667. doi:10.1038/s41467-017-01724-9. 

Rao, S.S.P., M.H. Huntley, N.C. Durand, E.K. Stamenova, I.D. Bochkov, J.T. Robinson, A.L. Sanborn, I. Machol, A.D. 
Omer, E.S. Lander, and E.L. Aiden. 2014. A 3D map of the human genome at kilobase resolution reveals principles 
of chromatin looping. Cell. 159:1665–1680. doi:10.1016/j.cell.2014.11.021. 

Schmitt, A.D., M. Hu, I. Jung, Z. Xu, Y. Qiu, C.L. Tan, Y. Li, S. Lin, Y. Lin, C.L. Barr, and B. Ren. 2016. A Compendium of 
Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep. 17:2042–2059. 
doi:10.1016/j.celrep.2016.10.061. 

Witten, D.M., and W.S. Noble. 2012. On the assessment of statistical significance of three-dimensional colocalization of 
sets of genomic elements. Nucleic Acids Res. 40:3849–55. doi:10.1093/nar/gks012. 

Wu, P., T. Li, R. Li, L. Jia, P. Zhu, Y. Liu, Q. Chen, D. Tang, Y. Yu, and C. Li. 2017. 3D genome of multiple myeloma 
reveals spatial genome disorganization associated with copy number variations. Nat. Commun. 8:1937. 
doi:10.1038/s41467-017-01793-w. 

Yardımcı, G.G., H. Ozadam, M.E.G. Sauria, O. Ursu, K.-K. Yan, T. Yang, A. Chakraborty, A. Kaul, B.R. Lajoie, F. Song, 



	 10	

Y. Zhan, F. Ay, M. Gerstein, A. Kundaje, Q. Li, J. Taylor, F. Yue, J. Dekker, and W.S. Noble. 2018. Measuring the 
reproducibility and quality of Hi-C data. bioRxiv. 188755. doi:10.1101/188755. 

Zhang, Y., T. Li, S. Preissl, J. Grinstein, E. Farah, E. Destici, A.Y. Lee, S. Chee, Y. Qiu, K. Ma, Z. Ye, Q. Zhu, H. Huang, 
R. Hu, R. Fang, S. Evans, N. Chi, and B. Ren. 2018. 3D Chromatin Architecture Remodeling during Human 
Cardiomyocyte Differentiation Reveals A Novel Role of HERV-H In Demarcating Chromatin Domains. bioRxiv. 
485961. doi:10.1101/485961. 

Zhou, P., and W.T. Pu. 2016. Recounting Cardiac Cellular Composition. Circ. Res. 118:368–70. 
doi:10.1161/CIRCRESAHA.116.308139. 

 


	Decision 1
	Rebuttal 1
	Decision 2
	Rebuttal 2

