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Supplementary Figure 1. Average MES of G-Cut by using different GOF distributions on a 

Golgi-staining image stack. The image stack was obtained from mouse neocortex and the neuron 

clusters in it were reconstructed by Neuronstudio as shown in Fig. 7c. Manual reconstruction 

shown in Fig. 7b was used as ground truth. The green dot indicates the highest average MES of 

G-Cut, achieved by using GOF distribution derived from data set of mouse neocortex. Magenta 

dots indicate the average MES of G-Cut by using GOF distribution derived from other data sets, 

such as other mouse brain regions (basal ganglia, brainstem, cerebellum, hippocampus, 

hypothalamus, pons, retina, spinal cord, thalamus, and ventral striatum) and different species (C 

elegans, drosophila melanogaster, human, monkey, mouse, rat, spiny lobster, and zebrafish) The 

horizontal axis shows the Kullback-Leibler divergence between GOF distribution of mouse 

neocortex (green dot) and others (magenta dot). Pearson correlation test shows the correlation 

between average MES and KL-divergence is significant. Results were standardized for 

visualization. Source data are provided as a Source Data file. 



 

Supplementary Figure 2. Spurious links in a real image stack and their topological connection 

changes in digital reconstruction. The spurious links between two different branches appear in 

three situations: first, in the end of each branch; second, in the end of one branch and in the 

segment of another branch; third, in the segment of each branch. a shows spurious links in the 

three situations in a real image stack. The branches are shown in white pixels on black 

background and spurious links are drawn in brown circles. In b, the correct topological 

connections correspond to the three situations are shown. c shows the topological changes 

between branches in the three situations. 

  



Supplementary Figure 3. a Boxplot of Miss-Extra-Scores between G-Cut segmented and 

ground truth neurons across different neuron cluster scales. The cluster scale ranges from 4 to 15. 

The red line represents median MES. b Boxplot of G-Cut MES in cluster scale six with different 

degrees of entanglement. Number of total spurious links in a cluster lies in intervals shown along 

the x-axis. Source data are provided as a Source Data file. 



 

Supplementary Figure 4. Statistical analysis of MES results from G-Cut, NeuroGPS-Tree and 

TREES toolbox in simulated datasets. a Neuron cluster scale does not strongly influence 

segmentation accuracy. In order to avoid interaction between cluster scale and degree of 

entanglement in statistical tests, we first group clusters according to their average number of 

spurious links per neuron into intervals of 1. In the resulting cluster groups, we further examine 

clusters with per neuron spurious links of [3, 4) and [4, 5) (other cluster groups occur at much 

lower frequency and may not satisfy sufficient sample size for all scales). Top left graph show the 

average MES of clusters with per neuron spurious links in [3, 4) from the three methods (the total 

number of neuron clusters is 3753). Upon visual inspection, there is no obvious correlation 

between MES cluster scale. Kruskal-Wallis test does show significant difference between MES of 

G-Cut segmentation at different scales (H(11) = 25.801, p = 0.007). However, pair-wise Mann-

Whitney U-test with Benjamini–Hochberg correction show no significant difference between 

MES of any two cluster scales following G-Cut segmentation, and few significant pairs following 



NeuroGPS-Tree and TREES toolbox segmentation (top right panel). Similarly, we see no obvious 

correlation between MES and cluster scale when per neuron spurious links fall in [4, 5) (bottom 

left graph, the total number of neuron clusters is 5093). Kruskal-Wallis test has a non-significant 

p-value of 0.064 for G-Cut segmentation (H(11) = 18.819), while Mann-Whitney U-test with 

Benjamini–Hochberg correction shows no cluster scale pair to be significantly different in MES 

following segmentation by any of the three methods (bottom right panel). These results suggest 

that when cluster degree of entanglement is tightly controlled, cluster scale does not strongly 

influence segmentation accuracy. b The p-values of pair-wise Mann-Whitney U-test MES results 

with Benjamini–Hochberg correction derived from neuron clusters of different degrees of 

entanglement. The axis shows the range of spurious link number when the cluster scale is six. 

Kruskal-Wallis test shows significant difference between MES of G-Cut segmentation at different 

degree of entanglement (H(11) = 543.291, p < 0.01). And MES results of NeuroGPS-Tree and 

TREES toolbox are also significantly different at different degree of entanglement (Kruskal-

Wallis test, H(11) = 307.698, p < 0.01, and H(11) = 51.533, p < 0.01 for NeuroGPS-Tree and 

TREES toolbox, respectively). Source data are provided as a Source Data file. 

  



Supplementary Figure 5. Comparison of reconstruction results by G-Cut, NeuroGPS-Tree and 

TREES. a The raw image stack ( test data used by NeuroGPS-Tree software). Data size 

896×348×200 voxels. b A neuron cluster was reconstructed from image stack using GTree 

software, a latest release based on NeuroGPS-Tree. c Four neurons with distinguishable dendritic 

trees were manually reconstructed from image stack with neuTube software and used as ground 



truth. d The neuron cluster was segmented by G-Cut, NeuroGPS-Tree and TREES toolbox into 

four individual neurons, respectively. Identical post-processing (see Supplementary Figure 7 and 

Supplementary Note 2) was applied on segmentation results from all three algorithms. e Miss-

Extra-Scores of the segmented neurons from the three methods. Different neurons are represented 

by different colors. MES of neurons segmented by G-Cut, NeuroGPS-tree and TREES toolbox is 

represented by square, circle, and asterisk, respectively. Source data are provided as a Source 

Data file. 

  



Supplementary Figure 6. Example of four different tracing errors. The four tracing errors result 

in different topological connections between automatic reconstruction neurons and manual 

reconstruction neurons. In a, the automatic reconstruction neuron (upper left) is visually similar 

to manual reconstruction neuron (upper right). But the automatic reconstruction neuron has a 

Automatic reconstruction Manual reconstruction 



tracing error in soma indicated by the yellow-green box (bottom left) compared with manual 

reconstruction. In b, the automatic reconstruction neuron has several short and thin branches 

connected with soma (indicated by the yellow-green box). But manual reconstruction neuron is 

smooth. In c, yellow-green box show some breaks in branches of automatic reconstruction 

neurons which are connected in manual reconstruction neurons. These breaks result in different 

topological connections between neurons. d shows a tracing error by automatic reconstruction 

method in a soma (indicated by the yellow-green box and black boxes). The soma is divided into 

several nodes which is only one soma node in manual reconstruction and these nodes are 

connected by a branch path indicated by the black boxes. The branch path should be two different 

branches coming out from the soma in manual reconstruction. Thus in this situation we cannot 

simply merge the branch path and soma nodes into one soma. 



Supplementary Figure 7. Two tracing errors (indicated by red and blue arrows) and redundant 

branches (indicated by a yellow arrow) are shown in a. The tracing error shown by the blue arrow 

is the same as Supplementary Figure 6b and the tracing error shown by the red arrow is the same 

with Supplementary Figure 6a. We developed two methods to solve the tracing errors. To solve 

tracing errors shown by the blue arrow, we will detect these short and thin branches near the soma 

according to their distance and average diameter, and then merge these branches with the soma 

into a new soma node. For tracing errors shown by red arrows, we will detect the nodes inside the 

soma node and check for two conditions: (1) whether they are directly connected with the soma 

or (2) the path between them and the soma are also inside the soma node. If the nodes meet one of 

the two conditions, they can be merged with the soma. Tracing errors in Supplementary Figure 6d 

will be considered in our further developments. For the redundant branches, we prune them using 



methods described in Supplementary Figure 8 and Supplementary Note 2. b shows the result after 

tracing errors were fixed and redundant branches were pruned. 

  



Supplementary Figure 8. Detecting and pruning redundant branches in a neuron. In the left 

panel we show the tree structure of a neuron that has eight branches and redundant branches that 

need to be pruned (shown in the red circle). In the right panel we show a tree graph of the neuron. 

The node in the graph represents a branch, and links between branches are represented by 

connections between nodes. The connection between nodes in two adjacent layers indicates that 

the node in the upper layer is the parent node of bottom layer. We calculate GOF of all branches 

and prune the redundant branches according to the method in Supplementary Note 2. 



Supplementary Figure 9. Validation of G-Cut segmentation performance on four real image 

stacks. a Neuron clusters were reconstructed in Vaa3D software. Spurious links are drawn in 

yellow circles in the reconstructed neuron clusters. The reconstructed neuron clusters were 



segmented by G-Cut, NeuroGPS-tree, TREES toolbox respectively, and compared to manually 

reconstructed ground truth. Different neurons in each data set are represented by different colors. 

b MES of neurons segmented by G-Cut, NeuroGPS-tree and TREES toolbox is represented by 

square, circle, and asterisk, respectively. The standard deviation is shown as error bar. Source 

data are provided as a Source Data file. 

  



Supplementary Note 1. Simulation of neuron clusters 

Due to the lack of publicly available reconstructed intact neuron clusters, we simulated 

neuron clusters by selecting and joining random subsets of 2693 well reconstructed neurons 

(including 435 interneurons and 2258 principal neurons) hosted on neuromorpho.org. In our 

synthetic data, the information of a neuron is represented by two parts: one part is a set of node 

information (including the node type, x, y, z location, and radius); and another part is an 

adjacency matrix representing connecting edges between nodes. We generated two datasets to 

evaluate the effect of cluster scale and degree of entanglement respectively. The procedures are 

listed as below: 

1. Starting neuron population: Denote the predetermined number of neurons in a cluster as n,

and the corresponding cluster scale as Cn. From the public dataset of well reconstructed

neurons, we randomly chose m pyramidal neurons and  n - m interneurons as starting neuron

population, where P(m  k1 k n)  (n  1)
1

. One of the n neurons is randomly selected as

base neuron. Other neurons subsequently become connecting neurons. Each connecting

neuron is joined with the base neuron as described in the following step 2 – 4. The process is

iterated until all neurons are joined into a single cluster.

2. Spurious link construction: During the neuron tracing process, if the distance between

branches of two neurons is very small, an automatic tracing method will erroneously connect

the gap between the two branches into a spurious link. To realistically mimic real world

applications of neuron cluster tracing, we placed cell bodies of connecting neurons at

random locations in the same bounded volume space as the base neuron. If a pair of

branches from different neurons have a distance to each other less than the sum of their

radius, we considered the event an occurrence of spurious link and construct a connection

between these two branches (as shown in Supplementary Figure 2).



3. Synthetic dataset with varying cluster scales: In order to understand how the cluster scale

affects segmentation, it is necessary to bound the number of spurious links to a reasonable

range. We first empirically derived a distribution for the number of spurious links between a

random neuron pair, using criteria described in 2. The neuron pair was randomly drawn from

the set of well reconstructed neurons, and positioned together randomly 1000 time. We

repeated the drawing and positioning 50 times, resulting in a total spurious link counts for

50,000 clusters. The result shows a majority of spurious links number is less than 10. The

number of spurious link is extremely low when it is 1 and does not make sense in real image

stacks. Thus, we bound the spurious number between a neuron pair to be between 2 and 10.

We then iteratively join the n  1 connecting neurons to the base neuron. For each

connecting neuron, a random cell body position is generated and spurious link numbers are

counted. If the number falls within 2 and 10, we accept the cell body position and construct

links between the connecting and base neuron. Otherwise, a new position will be generated.

The cluster formed from the joining operation will be considered as the new base neuron.

The final cluster Cn then contains spurious links ranging between 2 * (n  1) and 10 * (n  1),

to be assigned between n cell bodies. We generated 100 clusters for each cluster scale Cn.

For clusters with the same scale, the difficulty of the segmentation problem will only differ

up to a bounded constant factor, and no unusually dense entanglement can occur. This

allows us to analyze how cluster scale affects segmentation accuracy.

4. Synthetic dataset with varying degrees of entanglement: In order to understand how cluster

degree of entanglement affects segmentation accuracy, we used a fixed cluster scale, n  6,

for the entire dataset. Spurious link constructions were performed without an upper bound.

We generated 10,000 clusters and stratified the cluster population based on probability

distribution of spurious link number (Fig. 5c). From clusters with spurious link number in



each of the intervals [10, 20), [20, 30) … [120, ∞), we randomly drew 100 samples for 

analysis. 

One example of the reconstructed neuron cluster is shown in Fig. 4. 



Supplementary Note 2. The redundant branches pruning method. 

We compute GOF of all branches in a neuron, and the total GOF of a branch i calculated by the 

equation: 

(∑ (  ) )

∑

where j represents all child branches of a branch i and lengthi represents the length of a branch i. 

After we calculate the total GOF of all branches of a neuron, we use a threshold value to prune 

the branches. The threshold can be a constant value or variable according to each neuron. If the 

total GOF of a branch is larger than the threshold value, all of its child branches are discarded 

from the neuron. 

Example: As shown in Supplementary Figure 8, branch 7 and branch 8 are the child branches of 

branch 6 in the right figure. If the total GOF of branch 6 is larger than a threshold value, branch 7 

and branch 8 are discarded from the neuron. 



Supplementary Note 3. The Dijkstra’s algorithm for branch orientation 

Input: A geometric network V and a soma   

Output: Total Cost, LocalCost, PreviousBranch assigned to each  

Procedure: 

For each branch   in V 

Assign   to TotalCost( ) 

Assign   to LocalCost( ) 

Assign NULL to PreviousBranch( ) 

End 

Assign 0 to TotalCost( )  

Push   into a Heap 

While the Heap is not empty 

Pop out the node whose TotalCost is the smallest in the Heap. We call this node 

  . 

If  is   or it is not a soma node, then 

For each branch  which directly connects to  with a node 

Calculate penalty   on branch 

If TotalCost(   )+     < TotalCost(  ), then 

Assign  to LocalCost(  ). 

Assign TotalCost(   )+  to TotalCost(  ). 

Assign  to PreviousNode(  ). 

End 

If  is not in the Heap, then 

Push  into the Heap. 



End 

End 

End 

End 


