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SUPPLEMENTARY METHODS 
 
Simulated data 
We simulated data from low- and high-dimensional networks with 50 different directed 
graph topologies each, randomly selected using TETRAD (version 5.3.0, 
https://github.com/cmu-phil/tetrad), a Java package for causal modeling that uses linear or 
non-linear structural equation models (SEMs) to generate data from network distributions. 
Each of the 50 low dimensional datasets consisted of 500 samples, drawn from network 
structures of 50 variables: 25 Gaussian and 25 3-level categorical. Each of the 20 high 
dimensional datasets consisted of 100 samples drawn from network structures of 200 
variables: 100 Gaussian and 100 3-level categorical. The structures are sampled uniformly 
from the space of all directed acyclic graphs (DAGs) with maximum node degree of 10 
and a maximum of average node degree of 2. The low dimensional dataset tests the 
efficiency of the algorithms when the study is well powered; while the high dimensional 
dataset tests the efficiency of the algorithms when the number of samples is small 
compared to the number of variables, a condition that is frequently present in many 
biomedical applications. 

The relationships between variables in all datasets are set up in a similar fashion to 
Lee and Hastie 1. Here, for an edge 𝑋	 → 𝑌 we refer to X as the parent and Y as the child. 
Parents of the Gaussian variables contribute linearly to the mean of each child; the value 
of continuous parents is multiplied by an edge parameter and the value of discrete parents 
is associated with an edge parameter where a separate edge parameter is specified for each 
category of the discrete variable. Parents of discrete variables contribute log-linearly to the 
probabilities of each category, with separate parameters for each category of the child 
variable. With this set up, each edge connecting two continuous variables (cc) depends on 
1 edge parameter, each edge connecting a continuous and a discrete variable (cd) depends 
on a vector of 3 parameters and edges connecting two discrete variables (dd) depend on a 
3 by 3 matrix of 9 edge parameters. In order to ensure identifiability, the cd parameter 
vector, and the rows of the dd parameter matrix are constrained to sum to 0 leaving these 
edges with 2 and 6 degrees of freedom, respectively. Edge weights were drawn uniformly 
from the union of the regions [-1.5, -1] and [1, 1.5]. For cc edges the parameter is equal to 
the weight; for cd edge parameters we draw a vector three values uniformly from [0,1] and 
shift and scale the values so they sum to zero and the largest parameter is equal to the edge 
weight; for dd edge parameters we draw one vector of three values as with cd edges and 
set the rows of the matrix as the three permutations of this vector. 

 In the continuous case, zero-mean, Gaussian error terms with standard deviation 
uniformly drawn from the interval [1, 2], are drawn for every variable and then the variable 
means are resolved. In DAGs this resolution is trivial as we can start from root nodes with 
no parents and propagate downwards. To make this process accommodate categorical 
distributions, we use a uniform draw over [0, 1] as an error term for each discrete variable 
and this term is used to determine the value of the variable given the probabilities of each 
category. In generating simulated models, these probabilities that are then updated in the 
same way as are the means of the continuous variables. This approach ensures convergence 
of each discrete variable for each sample. 
 
 



 

 
Biological and clinical datasets 
In this paper, we used two publicly available datasets (TCGA, LGRC) that combine omics 
and clinical variables to show how CausalMGM can recapitulate existing knowledge. We 
also used a third dataset (SCCOR) to identify clinical variables that are directly linked to 
longitudinal lung function decline of COPD patients. Below, we describe these datasets in 
detail. 

The breast cancer dataset was obtained from The Cancer Genome Atlas 
(TCGA)19. These data (BRCA, n=448 samples) included RNA-seq data normalized with 
RSEM for 20530 transcripts, and clinical variables (PAM50 subtypes, Progesterone, 
Estrogen and HER2 receptor status, and tumor and node stage codes). We used only the 
500 genes with the most variant expression across all samples.  

The Lung Genomics Research Consortium (LGRC) contains multiple genomic 
datasets and clinical variables for two chronic lung diseases: chronic obstructive pulmonary 
disease (COPD) and interstitial lung disease (ILD). We used two data types from LGRC: 
gene expression profiles (15,261 probes) and clinical data for 457 patients (COPD N=215; 
ILD N=242). To expedite the execution time and avoid sample size problems, we only used 
the 530 most variant expression probes and 8 clinical variables: age, height, weight, forced 
expiratory volume in one second (FEV1), forced vital capacity (FVC), gender, cigarette 
history, and diagnosis (COPD or ILD). Age, height, weight and the spirometry variables 
(FEV1 and FVC) were divided into tertiles.  

The Pittsburgh Specialized Center of Clinically Oriented Research (SCCOR) 
cohort consists of 747 subjects that were recruited from a larger less characterized 
community-based tobacco-exposed cohort, enriched for subjects with visual emphysema; 
385 subjects returned for similar 2-year follow-up evaluation. Data acquisition included: 
1) semi-quantitative visual and quantitative MDCT chest radiograph analyses; 2) pre- and 
post-bronchodilator lung function testing including spirometry, body plethysmography, 
impulse oscillometry and diffusing capacity; 3) extensive symptom, demographic, 
environmental exposure and health outcome data and incremental shuttle exercise testing; 
4) blood circulating proteins. The total number of variables measured was 281. 
 
Undirected graph learning 
Lee and Hastie parameterize an MGM over p Gaussian variables (denoted by x), and q 
categorical variables (denoted by y), as a pairwise Markov Random Field 1. Here we 
present the formulation of the log-likelihood of this model. 
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In this model βst represents the interaction between two continuous variables, xs 
and xt; αs represents the potential of a continuous node xs; ρsj(yj) is a vector of parameters 
that correspond to the interaction between the continuous variable xs and the categorical 
variable yj indexed by the levels (i.e. categories) of the variable yj; and 𝜙FA(𝑦F, 𝑦A), is a 
matrix of parameters indexed by the levels of the categorical variables yj, and yr. In the 
continuous only case, this model reduces to a multivariate Gaussian model where the 𝛽9: 
parameters are entries in the precision matrix. In the categorical only case, this model is 



 

the popular pairwise Markov random field with potentials given 𝜙FA(𝑦F, 𝑦A); and it could 
parameterize an Ising model as in the binary-only case. Thus, the MGM model serves as a 
generalization of two popular uni-modal models to the multi-modal regime. 

In order to avoid the computational expense of calculating the partition function Z 
of this model, one can optimize the negative log-pseudolikelihood (𝑙L), which is:  
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where Θ is a shorthand for all of the model parameters. To ensure a sparse model, 
we minimize 𝑙L respect to three sparsity penalties, λcc, λcd, λdd, depending on the edge type 
(continuous-continuous, continuous-discrete and discrete-discrete, respectively) 
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The parameter matrices 𝛽  and 𝜙  are symmetric, so only half of each matrix is 
penalized. The choice of a different sparsity penalty for each edge type is one of the 
improvement we did in the Lee and Hastie algorithm 9. Lee and Hastie use an accelerated 
proximal gradient method 24 to solve this optimization problem. 

A standard way of handling a categorical variable with L levels is to convert the 
variable to L-1 indicator variables where the last level is encoded by setting all indicators 
to zero, this is necessary to ensure the linear independence of variables in the regression 
problem. Lee and Hastie’s MGM learning approach, uses L indicator variables (i.e. the 
elements of 𝜌9AB𝑦AC and 𝜙FA(𝑦F, 𝑦A) to improve interpretability of the model, and enforces 
a group penalty to ensure the indicator coefficients sum to zero. 

 
Description of graph search methods used in this paper 
To perform directionality searches on the undirected graph from step-1 of CausalMFM, we 
used the PC-based methodology, supplemented by our conditional independence tests on 
mixed data. There are various flavors of PC algorithms. Here we make a brief presentation 
of the ones we used in this paper. 

The PC algorithm and its descendants depend on conditional independence 
decisions that are made by a user-specified test and the α threshold (described below). PC 
starts with a complete graph and in step 1 it sequentially tests all edges for independence 
given conditioning sets of increasing size. Starting with the empty set, these conditioning 
sets are subsequently made up of every set (of the given size) of common neighbors of the 
two nodes incident to the edge being tested. Edges that are found to be conditionally 
independent are immediately removed and not considered in future tests. When an edge is 
removed, the conditioning set that lead to the independence decision is saved. Step 2 directs 
edges based on the fact that common neighbors of nodes incident to a removed edge that 
are not in the conditioning set must be in a v-structure (X à Z ß Y). It is possible that two 



 

implied v-structures will induce conflicting edge directions. Step 3 further directs edges 
based on a set of rules that ensure the directions will not induce any cycles or new v-
structures 22. PC-stable modifies PC by waiting to update the edge removals in phase 1 
until all tests for a given conditioning set size are completed. This leads to an output that 
is independent of variable ordering and allows for parallelization of the independence tests. 
In the TETRAD implementation of PC-stable, direction conflicts result in a bi-directed 
edge: 𝑋	 ⟷ 𝑌. 

CPC-stable 20 is the variable order independent variant of Conservative PC 23 
which revises step 2 of PC, described above to perform conditional independence tests with 
all possible conditioning sets between two nodes, X and Y, that have had an edge between 
them removed. The conditioning sets are determined by taking subsets of neighbors of the 
two nodes found in the skeleton graph returned by step 1 of PC. For any node, Z that is 
incident to both X and Y, the v-structure is only predicted if Z is not in any separating set S 
such that X ⊥ Y | S. Otherwise no direction is predicted from this triplet of nodes. If Z 
participates in some sets that result in the conditional independence of X and Y and some 
that result in a conditional dependence, the ambiguity is recorded. Since the change to the 
PC algorithm takes place after adjacency has been determined, PC and CPC algorithms 
will produce the same adjacency predictions. 
 
 
 
  



 

SUPPLEMENTARY FIGS 
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Supplementary Fig S1 Comparison of independence tests p-values to reject the null 
hypothesis that 𝑋	 ⊥ 𝑌	|	𝑍  in data generated from a network structure where the null 
hypothesis is true (a,b) and a structure where the null hypothesis is false (c,d). 
Independence tests were performed on 500 datasets of 100 samples from a discrete variable 
X and continuous variables Y and Z, with edge weight for 𝑍	 → 𝑌 set to 1 and weights for 
𝑌	 → 𝑋 and 𝑍	 → 𝑋 set to [.75, -1.5, .75]. 
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Supplementary Fig S2. (A) Precision-Recall curves of edge adjacency recovery on high-
dimensional dataset for 0.2 £ λ £ 0.8 (represented by different shaped points) and 0.001 £ 
α £ 0.1. For a given setting of λ, the different settings of α are connected by lines with 
colors corresponding to the algorithm. The CPSS line shows the settings of error rate 𝑞 ∈
{.001, .01, .05, .1}. 
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Supplementary Fig S2. (B) Precision-Recall curves of edge adjacency recovery on low 
dimensional dataset for . 05 ≤ 𝜆 ≤	 .2  and . 001 ≤ 𝛼 ≤	 .1 . and the full range of 
algorithms and edge types.  Copula: Copula PC method; MGMCPCS: MGM-CPC_Stable; 
PCS: PC_Stable. 
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Supplementary Fig S3 Precision-Recall curves of edge direction recovery on low 
dimensional dataset for . 05 ≤ 𝜆 ≤	 .2  and . 001 ≤ 𝛼 ≤	 .1 . and the full range of 
algorithms and edge types.  Copula: Copula PC method; CPCS: CPC-Stable; MGMCPCS: 
MGM-CPC_Stable; MGMPCS: MGM-PC_Stable; PCS: PC_Stable. 

 
  

All
CC

CD
DD



 

 

Supplementary Fig S4 Running times of search algorithms on low dimensional datasets. 
Directed search steps were run in parallel on a 4-core laptop. 
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Supplementary Fig S5. Integrative analysis of omics and clinical variables in the TCGA 
breast cancer dataset. First and second neighbors of PAM50 breast cancer subtype variable. 
Variable types include mRNA (green) and clinical (red) variables. MGM-PCS parameters: 
λ = .2, α = .05.  

 
  



 

 
 

Supplementary Fig S6. Integrative analysis of omics and clinical variables in the LGRC 
dataset. First and second neighbors of clinical variables in the LGRC dataset using edges 
selected based on stability selection derived FDR < .1 . Variable types include mRNA 
(green) and clinical (red) variables. The genes connected to Gender in the bottom right of 
the graph are Y-chromosome genes. 
 
 


