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1 Datasets 
In DeepGSR, we used the cDNA data of four genomes to extract both the polyadenylation signals (PAS) and translation initiation sites (TIS). For homo 
sapiens (human) genome, we used the human assembly GRCh37 (also known as hg19); and for Mus musculus (mouse) genome, we used the primary 
assembly GRCm38; the cDNA data for these genomes were downloaded from the Mammalian Gene Collection (MGC) (Strausberg, et al., 1999; Team, 
et al., 2009). For Bos taurus (bovine) genome, we used the assembly Bos_taurus_UMD_3.1.1 and the cDNA data was downloaded from Ensembl organ-
ization (Aken, et al., 2016). For Drosophila melanogaster (fruit fly) genome, we used Release_6 – annotation release Dmel_Release_6.01 and the cDNA 
data was downloaded from FlyBase (Gramates, et al., 2017).  

The data extraction workflow is depicted in Figure S1. Its automation and simplicity are the main advantage and strength for such a pipeline. In the 
following subsections, we describe the data extraction procedure in detail. 
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Fig.  S1: Data extraction workflow 
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1.1 cDNA Data Preprocessing 
cDNA data should be preprocessed to determine the region of study where signals are located. For example, in the case of PAS motifs, they are located 
in the 3’UTR, which is the region between the stop codon and the start of polyadenylation tail or (polyA tail). Sequences with 3’UTR of length less than 
nine nucleotides are excluded, since the PAS in such cases could be located in the internal exons or within introns (Tian, et al., 2007). Regarding the 
dangling polyA tail, it should be removed up to the first non-A nucleotide that represents the end of the 3’UTR. The tail should contain at least eight 
consecutive A’s, and if there is a non-A nucleotide, then it should be followed by eight consecutive A’s to be considered part of the tail, in which a non-
A nucleotide could be an error during sequencing or due to internal priming (Proudfoot, 2011). For those sequences that do not have a polyA tail, the 
latter might be removed before submitting the sequences to public cDNA/EST databases because of their low sequencing quality or low complexity; 
being consecutive A’s (Lee, et al., 2008). Then, we locate PAS, the most frequent hexamer AATAAA and the next top 11 canonical hexamers which 
differ with one base only than AATAAA, which are: ATTAAA, TATAAA, AGTAAA, AAGAAA, AATATA, AATACA, CATAAA, GATAAA, 
AATGAA, ACTAAA and AATAGA. If none of these 12 motifs are found in the 3’UTR, we check for the next four most frequent non-canonical PAS, 
which are: TTTAAA, AAAAAG, AAAACA and GGGGCT. For the cases where more than one motif variants were found within the same 3’UTR we 
considered the following two solutions: 

1) If only the same motif is found multiple times, we select the most 3’ motif. 
2) If different motifs are found in the same 3’UTR, we calculate a score for each of the candidate motifs using Equation (1) and select the one 

with the highest score. Assuming M is a motif found at location L, the resulting score is the probability of M at L multiplied by the frequency 
of M in all cDNA sequences. The score is calculated as: 

 (1) 

Our pipeline extracted in this way 20933, 18693, 12082, and 27203 PAS data in total for all 16 motifs; for human, mouse, bovine and fruit fly, respectively. 
Table S1 illustrates the detailed number of all variants of true PAS signals we extract from different genomes. 

Table S1. PAS data extracted for different genomes 

PAS variant Human Mouse Bovine Fruit fly 

AATAAA 11,302 11,393 7,862 18,641 
ATTAAA 3,016 2,447 1,604 3,510 
TATAAA 573 402 283 540 
AGTAAA 730 424 334 263 
AAGAAA 1,379 1,430 662 264 
AATATA 378 192 87 2,087 
AATACA 634 262 160 827 
CATAAA 451 227 183 303 
GATAAA 291 172 115 118 
AATGAA 641 523 136 144 
ACTAAA 288 117 61 115 
AATAGA 179 127 40 66 
TTTAAA 278 292 165 178 
AAAAAG 179 129 63 42 
AAAACA 206 212 95 100 
GGGGCT 408 344 232 5 
Total 20,933 18,693 12,082 27,203 

 
The PAS data that we extracted from four eukaryotic cDNA are located/distributed differently in the 3’UTR based on the motif type. As already known, 

PAS is located upstream of the polyadenylation cleavage sites (polyA CS), that is represented by position 0 in Figure S2, and it is located close to the end 
of the 3’UTR. However, there are some of the less common motifs located far from the polyA tail. The distribution of PAS in the 3’UTR within different 
genomes is illustrated in Figure S2. From this figure, we can observe that the same PAS variant across genomes of different organisms is located in the 
same region, with a big overlap between them.  

In case of TIS data extraction, we followed the same procedure, but we determined the 5’UTR, which is the region directly upstream the start codon. 
Since the non-canonical TIS are rarely found in eukaryotic genomes (Lee, et al., 2008), The canonical TIS which is ATG variant was the focus of our 
study. Our pipeline in this way extracted 28244, 25205, 17558, and 30283 TIS data with the ATG signal for human, mouse, bovine and fruit fly, respec-
tively. In Figure S3, the distribution of TIS for human and mouse is illustrated. The TIS data distribution of bovine and fruit fly was not shown, since 
these data were extracted from annotation files not cDNA. 
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  Fig.  S2: PAS distribution in the 3’UTR across multiple genomes; homo sapiens (hs), mus musculus (mm), bos taurus (bt) and drosophila 

melanogaster (dm). 

Fig.  S3: TIS signals distribution in the 5’UTR across homo sapiens (hs) and mus musculus (mm) genomes 
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1.2 Mapping to Genome 
After mapping the 3’UTR and the 5’UTR to the DNA genome, in the case of PAS and TIS data, respectively, some post-processing of the mapped data 
is necessary. First, we identify the sequences (the 3’UTR and the 5’UTR regions) that could not be mapped because of their short sequence length, then 
map the full cDNA sequence including the coding region. Then, we exclude all sequences that are mapped to different chromosomes or were incorrectly 
mapped. After excluding these sequences, we further process these samples that have some insertion, deletion or any modifications during the mapping 
to find the correct genomic locations. However, we exclude some of those samples that have big differences in mapping and contribute to the miscalcu-
lation of the genomic locations of signals under study. Such differences between the untranslated regions in the cDNA and the genomic data is caused by 
internal introns within these regions (Cenik, et al., 2010).  

Finally, we use bedtools (Quinlan and Hall, 2010) to flank the locations of the signals with 300 bases in both upstream and downstream regions, then 
extracts the genomic sequences of each motif in fasta file format. It is worth mentioning that it is important to consider the strand where the signals are 
found during sequence extraction. 

1.3 Data Properties 
The frequency of the extracted PAS variants in the 3’UTR for human indicate different frequency-based ranking for the motifs than the published literature 
(Beaudoing, et al., 2000) (Tian, et al., 2005). This difference can be attributed to the more recent and more complete data. Despite the differences in 
ranking, all three studies recognize that AATAAA and ATTAAA are the two most frequent PAS. Table S2 and Figure S4 demonstrate the differences in 
ranking of PAS variants. 

Table S2. Rank of the most common PAS data in human 

PAS variant DeepGSR (Beaudoing, et al., 2000) (Tian, et al., 2005) 

AATAAA 1 1 1 
ATTAAA 2 2 2 
AATGAA 3 11 10 
AGTAAA 4 4 4 
AATATA 5 5 6 
TATAAA 6 3 3 
AAGAAA 7 10 5 
CATAAA 8 6 8 
AAAAAG 9 12 - 
AATACA 10 8 7 
GGGGCT 11 16 - 
GATAAA 12 7 9 
ACTAAA 13 14 12 
AATAGA 14 13 13 
TTTAAA 15 9 11 
AAAACA 16 15 - 
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2 Model structure and results 

2.1 Model structure 

Table S3. DeepGSR structure 

Layer Type of layer Output dimensions Connected to 

Convolutional 
layer 1 

Convolution 50 x 598 x 64 DNA input data 

Activation ReLU 50 x 598 x 64 Convolution 
Maxpooling  50 x 598 x 32 Activation ReLU 

Convolutional 
layer 2 

Convolution 100 x 589 x 25 Maxpooling 
Activation ReLU 100 x 589 x 25 Convolution 
Maxpooling  100 x 589 x 12 Activation ReLU 

Fully connected 
layer 

Dropout 100 x 589 x 12 Maxpooling 
Flattening 706,800 x 1 Dropout 
Activation tanh 256 x 1 Flattening 
Dropout 256 x 1 Activation tanh 

Output layer Activation softmax 2 x 1 Dropout 

Fig.  S4: Rank of the most common PAS data in human Fig.  S4: Rank of the most common PAS data in human 
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2.2 Effect of data representation on model performance 
Deep learning considerably relies on the proper representation of the raw data, for this, we considered different approaches to represent the data and 
assessed them using a simplified CNN structure with fixed parameters. The DeepGSR represents each sequence in a two-dimensional (2D) space to mimic 
images as the most common input of CNN. We used one-hot vector representation that is corresponding to k-mer where k=1, 2 or 3; individually. 
Moreover, we could exploit the biological information represented in the mono/di/tri nucleotides. As such, instead of using the one-hot vector, the electron 
ion interaction pseudo potentials (EIIP) (Nair and Sreenadhan, 2006) of nucleotides can be used to substitute the numeric value of the corresponding 
nucleotide as such, nucleotides A, G, C, and T are replaced by 0.1260, 0.0806, 0.1340, and 0.1335, respectively. Similarly, we could use thermodynamic 
feature (Friedel, et al., 2009) or the base stacking (BS) energy values (Abeel, et al., 2008) or both for dinucleotides numerical representation. The results 
of the different data representation for 2D-CNN is depicted in Figure S5.  

Moreover, we also considered a 1D-CNN model with word embedding. For this, we divided each sequence into ‘words’ of different number of nucle-
otides. The size of the words may vary, but they are overlapped to avoid missing some internal information in the sequence. Figure S6 shows the results 
obtained with the different word sizes for 1D-CNN. 

Based on our experiments, we confirmed that there is a significant positive correlation between the proper data representation and the model capability 
to learn directly from data. Some of these data representations prevented network to learn at all in which cases the performance accuracy was similar to 
random prediction, e.g., thermodynamic feature and base stacking. 

 

 

 

Fig.  S6: 1D-CNN with word embedding performance on PAS data (AATAAA) variant using various word sizes 

83.51%

83.97%
84.25%

83.58%

80%

82%

84%

86%

1 2 3 4

Ac
cu
ra
cy

Different	word	sizes

82.80% 82.14%
84.62%

49.58% 49.58% 50.42%

70.48%

85.40%

40%

50%

60%

70%

80%

90%

mononucle
otid

e
EIIP

dinucle
otid

es

Therm
odynamic

Base
 sta

cking

Therm
odynamic +

 Base
 sta

cking

trin
ucle

otid
es b

ase sta
cking

trin
ucle

otid
es

Ac
cu

ra
cy

Different data representations

Fig.  S5: 2D-CNN performance on PAS data (AATAAA) variant using various data representation 

 
Fig.  S5: 2D-CNN performance on PAS data (AATAAA) variant using various data representation 
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2.3 GSR recognition and cross-organism conservation detailed results 

Table S4. Human_AATAAA_DeepGSR and Human_ATG_DeepGSR were used to test genomes of other organisms (cross-organism tests) 

Testing data Se(%) Sp(%) Acc(%) AUPR(%) 

Human PAS_AATAAA 87.08 86.80 86.94 90.10 
PAS_all* 65.87 74.49 70.18 77.91 
TIS_ATG 94.76 93.89 94.32 95.89 

Mouse PAS_AATAAA 80.25 78.63 79.44 84.62 
PAS_all 76.36 78.03 77.19 82.88 
TIS_ATG 90.04 92.53 91.28 93.27 

Bovine PAS_AATAAA 81.63 77.87 79.75 84.92 
PAS_all 80.69 76.91 78.80 84.19 
TIS_ATG 91.71 88.63 90.17 92.88 

Fruit fly PAS_AATAAA 37.63 80.47 59.05 73.28 
PAS_all 40.07 79.25 59.66 73.28 
TIS_ATG 81.12 76.96 79.04 84.39 

*For human data only, PAS_all represents all variants except AATAAA + only the testing portion of AATAAA (25%) that was not included in the training. 

Table S5. The results on PAS data using Human_pooled-PAS_DeepGSR for predicting PAS in other organisms 

Testing data Se(%) Sp(%) Acc(%) AUPR(%) 

Human PAS_all* 82.75 84.67 83.71 87.72 
Mouse PAS_AATAAA 78.23 77.07 77.65 83.25 

PAS_all 76.65 77.15 76.90 82.67 
Bovine PAS_AATAAAg 79.30 77.25 78.27 83.74 

PAS_all 79.65 76.40 78.02 83.58 
Fruit fly PAS_AATAAA 42.72 78.89 60.81 73.69 

PAS_all 46.43 77.80 62.11 74.06 

*For human data only, PAS_all represents the testing portion (25%) of all PAS variants 

Table S6. The results for PAS and TIS data using DeepGSR organism specific models 

Testing data Se(%) Sp(%) Acc(%) AUPR(%) 

Human PAS_AATAAA 87.08 86.80 86.94 90.10 
PAS_all 82.75 84.67 83.71 87.72 
TIS_ATG 94.76 93.89 94.32 95.89 

Mouse PAS_AATAAA 84.18 84.40 84.29 87.88 
PAS_all 88.77 76.75 82.79 87.70 
TIS_ATG 94.78 93.90 94.34 95.82 

Bovine PAS_AATAAA 83.75 82.50 83.12 87.41 
PAS_all 84.81 82.08 83.44 87.79 
TIS_ATG 92.01 93.33 92.67 94.39 

Fruit fly PAS_AATAAA 87.05 87.43 87.23 89.93 
PAS_all 88.50 87.38 87.94 91.03 
TIS_ATG 94.07 92.25 93.16 95.04 

*PAS_AATAAA means the model was trained on the AATAAA variant only. PAS_All means the model was trained on all PAS variant data pooled together. TIS_ATG 

means the model was trained on TIS data of the canonical signal ATG. 
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2.4 An analysis of robustness of the results to the order of the trinucleotides in the data representation 

In order to assess the robustness of the DeepGSR model when considering different ordering for the input data, we shuffled the trinucleotide ordering for both PAS and TIS in 

the human genome. Results shown in Table S7 demonstrate that DeepGSR was able produce comparable results for the different ordering of the input data. We attribute these 

results to the similarity of the abstract features extracted from the input data.  

Table S7. Results for human PAS and TIS data using DeepGSR with random trinucleotides ordering. 

Model 

Alphabetical order Random shuffling 1 Random shuffling 2 Random shuffling 3 

Se 

(%) 

Sp 

(%) 

Acc 

(%) 

AUPR 

(%) 

Se 

(%) 

Sp 

(%) 

Acc 

(%) 

AUPR 

(%) 

Se 

(%) 

Sp 

(%) 

Acc 

(%) 

AUPR 

(%) 

Se 

(%) 

Sp 

(%) 

Acc 

(%) 

AUPR 

(%) 

Human 

PAS_AATAAA 87.08 86.80 86.94 90.10 86.09 85.92 86.01 89.19 85.88 84.75 85.33 88.71 86.33 85.18 85.76 89.05 

PAS_all 82.75 84.67 83.71 87.72 83.27 85.43 84.33 87.83 88.17 79.32 83.83 88.02 86.18 81.39 83.83 87.75 

TIS_ATG 94.76 93.89 94.32 95.89 94.77 93.37 94.07 95.75 94.58 93.35 93.96 95.65 94.14 94.05 94.09 95.64 
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3 Computational Validation 
To prove the efficacy of our deep learning approach presented in DeepGSR, we derived some DNA hand-crafted features in an attempt to have a unified 
framework using traditional machine learning techniques. The workflow of this approach is shown in Figure S7. 
 

After engineering a large number of features, we used an artificial neural network (ANN) for assessing the performance of each of these hand-crafted 
features individually. Then, we conducted several experiments with different feature combinations and selected the top three best performing features and 
feature combinations. We then used stacked auto-encoders (AE) as an aid to choose the suitable number of hidden nodes in each layer of the deep artificial 
neural network (DANN). The number of neurons in each layer is a proportional function of the number of neurons in the previous layer, for example, the 
number of neurons in the first hidden layer of the AE was a percentage of the number of neurons in the input layer (number of features); this percent 
ranges from 20 to 90. The same considerations were considered to determine the number of neurons of the second hidden layer of the AE but relative to 
the number of neurons of the first hidden layer. Thus, we had 64 combinations of the number of neurons in the two-layers AE. For the output layer that 
is used for classification, we applied both ANN and softmax layer. We used MATLAB for this implementation and reported the results using a 3-folds 
cross-validation. 

The best results of all the features tested individually and in combination are illustrated in Figure S8 and Figure S9, respectively. Finally, Figure S10 
shows the comparison of the results obtained by the best performing ANN and AE. 
 

 

Fig. S7: Workflow of hand-crafted features approach Fig. S7: Workflow of hand-crafted features approach 
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Fig. S8: ANN performance on PAS data (AATAAA) variant using different hand-crafted features calculated from different regions of the sequence 

 

Fig. S9: ANN performance on PAS data (AATAAA) variant using different feature combination 
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Fig. S10: Performance comparison on PAS data (AATAAA) variant between ANN and AE on the best performing features and feature combinations  
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