Fig S1

Fig S2. CRABPs regulation of IRESdependent translation. (A-B) Huh7 cells **CRABPs** stably expressing were electroporated with in vitro transcribed HCV subgenomic replicon (SGR) genome (GT1a H77(A) and GT2a JFH1 (B)) followed by G418 selection for 3 weeks prior to the crystal violet staining. The graph indicates the number of SGRcontaining colony numbers per 100mm tissue culture dish. *p<0.05 and **p<0.01 (C-D) Huh7 cells stably expressing transfected CRABPs with were the bicistronic vector encoding cap-dependent Renilla and HCV IRES-dependent firefly luciferase as indicated in the diagram under the bar graph. Cap-dependent protein translation (Left panel) or IRESdependent protein translation (Right panel) were assessed by the Renilla or HCV IRES-dependent firefly luciferase activity, respectively (C) or by the Renilla EMCV **IRES-dependent** firefly or luciferase activity (D). *p<0.05, **p<0.01 and ***p<0.001

Fig S3

Fig S3. CRABPs regulation of viral infection. **(A)** Cell lysates from Huh7 cells stably expressing CRABPs infected with SeV at 100 HAU/ml for 24 hours were subjected to assessment of viral genome abundance via RT-qPCR. **(B-C)** Cell lysates from Huh7 cells stably expressing CRABPs infected with DENV at MOI 0.2 for 72 hours were subjected to to immunoblotting analysis for the detection of DENV (B) and the cells were stained with DENV (red), and DAPI (blue) at 48 hours after DENV infection (C). Scale bar 50µm. **(D-E)** Huh7 cells stably expressing CRABPs were transfected with p1.3x HBV DNA encoding plasmid (HBV) or control vector (Vector;pUC19) for 48 hours, followed by ELISA for the detection of HBV e-antigen (HBeAg) (D) and hepatitis B s-antigen (HBsAg) (E) in the culture supernatants. NS: Not significant.

Fig S4

Fig S4. Cellular response to CRABPs expression. (A) Venn diagram demonstrates the number of differentially expressed genes in CRABP1 or 2-expressing Huh7 cells that were determined by the mRNA sequencing analysis shown in Fig 4A. (B) The uniquely and differentially expressed genes in Huh7-CRABP1 or 2 cells were analyzed for the disease association using IPA software. The dotted line indicates the statistical significance threshold. (C-F) Huh7 cells stably expressing CRABPs were co-transfected with firefly (FF) luciferase reporter construct that is regulated by indicated nuclear receptors along with CMV promoter regulated Renilla luciferase (RL) expression plasmid. 24 hours after the transfection, the cells were treated with the indicated agonists for 24 hours, followed by Dual Luciferase assay. RLU was calculated by the ratio of FF/RL. Agonists: ATRA (1 μ M) for RARE agonist (C), GW4064 (10 μ M) for FXRE agonist (D), WY-14643 (100 μ M) for PPRE agonist (E), and TO901317 (10 μ M) for LXRE agonist (F). *p<0.05 and ***p<0.001

Fig S5

Fig S5. Nuclear receptor pathway regulation of LD abundance. (A) Huh7 cells were cultured with indicated nuclear receptor agonists (CAR: CITCO (10 μ M), PXR: Rifampicin (10 μ M), TR: T3 (1 μ M), VDR: Vit D3 (0.1 μ M)) for 72 hours in the presence of OA (50 μ M) followed by BODIPY (green) and DAPI staining for the fluorescence microscopic analysis. Scale bar 100 μ m. (B) The abundance of LD in the NR ligands treated cells were quantified as median fluorescence intensity (MFI) of 100 representative cells. The treatment condition for the each ligand is described in Fig 5D and S5A.

Fig S6

ATRA

Fig S6. FFA regulation of HCV infection. (A-B) Huh7 cells stably expressing CRABPs were infected with HCV for 48 hours at MOI 0.1. Then, cells were stained with BODIPY (green), and DAPI (blue) to evaluate the size and abundance of LD in both uninfected and infected cells. The fluorescent microscopic image of 20 representative cells was used for the analysis of mean fluorescent intensity (MFI) per cell (A) and the mean diameter of LD (B). *p<0.05 and **p<0.01. (C) Huh7 cells stably expressing shRNA scramble or LXR-α (clone #1, 2, and 3) were subjected to RTqPCR analysis of LXR- α gene abundance. The relative abundance was normalized by GAPDH and shown in % reduction to the scramble shRNA expressing cells. (D) LXRE-Luc plasmid along with CMV-promoter driven renilla luciferase plasmid were transfected to Huh7 cells stably expressing shRNA scramble or LXR- α (clone #1, 2, and 3) followed by LXR-agonist (10µM) treatment for 24 hours. Then cell lysates were subjected to dual luciferase assay. (E) Huh7 cells stably expressing CRABPs were pretreated with OA (100µM) for 24 hours, followed by HCV infection (MOI 0.1) for 48 hours. Cell lysates were subjected to immunoblotting analysis for the detection of the indicated proteins. (F-G) Huh7 cells stably expressing CRABPs were pretreated with GSK2033 for 24 hours, followed by OA (50µM) treatment for 24 hours. The cells were stained with LD with BODIPY (green), and DAPI (blue) to evaluate LD formation. Scale bar 20µm (F). The abundance and size of LD in CRABP1-expressing cells were quantified as median fluorescence intensity (MFI) and diameter of LD in 20 representative cells (G). *p<0.05 and **p<0.01 (H) Huh7 cells transfected with bicistronic luciferase reporter plasmid (Cap-dependent Renilla- and HCV IRES-dependent firefly luciferase protein translation) for 16 hours followed by OA (100µM) treatment for an additional 48 hours. Cell lysates were subjected to dualluciferase assay. HCV-IRES activity was determined by the normalization of Firefly luciferase activity with Renilla luciferase activity. *p<0.05. (I) CRABP2-expressing Huh7 cells were co-transfected with increasing amount of CRABP1 expression plasmid (0, 25, 50, 100 ng), RARE luciferase plasmid, and Renilla luciferase reporter plasmids for 8 hours followed by ATRA (0.01µM) treatment for 40 hours. The cell lysates were subjected to dual luciferase assay for the assessment of RAR-RXR activity. **p<0.01 and ***p<0.001.

Fig S7. RAR-RXR pathway regulation of HCV. (A) Huh7 cells were treated with synthetic RAR agonist (EC23, 1 μ M) or RAR antagonist (IRX4310, 1 μ M) for 72 hours, followed by HCV infection at MOI 0.1 for 48 hours. Cell lysates were subjected to immunoblotting analysis for the abundance assessment of the indicated proteins. (B-C) Huh7 cells stably expressing CRABPs were either transfected with HCV PAMP (B) or treated with IFN β (C) for 24 hours followed by immunoblotting analysis for the detection of the indicated proteins.

Huh7- CRABP1			
Up	Down		
ADAMTS12	A1BG	KYNU	
ADAMTS9	ABCC3	LAMP3	
AMOT	ABHD17C	LBP	
B4GALNT4	AKR1B10	LGALS3BP	
COL26A1	ALDH3B1	MAN2C1	
COLGALT2	ALDH8A1	MICALL2	
DUSP4	ALS2CL	MMP23B	
FGFR1	ANKDD1A	MOGAT3	
FSCN1	ANKRD23	MST1	
IL1RN	ANO7	MST1L	
LINGO1	ARAP3	MST1P2	
LIPG	ATG16L2	NEURL1B	
LPAR1	BTBD8	NGEF	
LSR	CASP1	PAQR6	
LYPD6B	CCDC88B	PARP11	
MTCL1	CD47	PGC	
NFIC	CD68	PI3	
NTS	CIDEC	PLIN5	
SLC25A18	CPT1B	PNPO	
TNFSF4	DBH	PRKCZ	
UNC5B	DZIP1	RCN3	
	EFHD1	RIMKLA	
	FOXG1	SHANK3	
	FSIP2	SIMC1	
	GABRG2	SLC2A9	
	GBA3	SLC5A9	
	GOLGA8IP	SPTBN5	
	GOLGA8S	TENM1	
	GPHN	TJP3	
	GSTA1	TNFSF11	
	HK1	TYMSOS	
	HKDC1	WISP3	
	IFT27	YJEFN3	
	IL22RA1	ZNF175	
	KLHL26	ZNF337	

 Table S1. List of genes uniquely regulated by the expression of CRABP1

Huh7- CRABP2			
Up		Down	
CCDC110	PSAPL1	AK4P3	
CDH17	PTN	ATP1B2	
CDKN1A	RBP2	DNASE1L2	
CDS1	REEP1	HHIPL1	
CLDN2	RIMBP3	LDOC1	
COL12A1	SEMA6D	MAB21L2	
CREB3L1	SERPINE2	MT-RNR1	
CYP2S1	SI	MTURN	
DCHS2	SLC1A1	MYO1F	
DIO1	SPARC	NOTUM	
DMKN	SPDYE2	POTEJ	
F2RL1	SPINT1	PPP1R3A	
FMNL3	STK39	RELN	
GCNT1	TAC3	SVEP1	
GUCY2C	TFEC	VAMP1	
HEPH	TFF2	RANBP3L	
HEY1	TINAGL1	SAA1	
HSPA12A	TMEM51	SAA2	
ISX	TRIM2	SIAH3	
KIAA1671	TRIM67	SLC23A1	
LRP2	TRIM9	SLPI	
MAGEA11	UNC93A	SMPD3	
MALRD1	ZNF730	WWC3	
MITF		ZMAT4	
MUC13			
MUC3A			
MVP			
NODAL			
NOX1			
PARM1			
PLEKHB1			
PLG			
PODXL			
PPP1R14A			
PRDM1			

 Table S2. List of genes uniquely regulated by the expression of CRABP2

Huh7- CRABP1 or 2			
Up		Down	
BCL2L10	RNF144A	ASGR1	
C1orf140	RTN1	C4A	
CES1	SHE	CCNY	
CHRNA1	SLFN13	CDA	
CMPK2	SMARCA2	DBNDD2	
COL14A1	SNCAIP	EGF	
COL2A1	SRSF12	F12	
CTSE	ТМСС3	F2RL2	
DENND2A	TMEM130	FTCD	
DPYSL3	TPD52L1	GC	
EGLN3	TSPAN12	GFRA1	
ELMO1	TSPAN5	LURAP1L	
EPCAM	TUBB8P12	NEAT1	
ESRRG	TUBBP5	PLIN4	
FAM134B	TUSC3	RAB4B-	
FREM1	USP44	EGLN2	
FYN	ZNF511-	RANBP3L	
GPRIN3	PRAP1	SAA1	
HUNK		SAA2	
INHBB		SIAH3	
IP6K3		SLC23A1	
KCNJ8		SLPI	
KCNK2		SMPD3	
KIF7		WWC3	
KRT19		ZMAT4	
LFNG			
MRGPRF			
OSBPL10			
PBX1			
PDX1			
PITX2			
PLEKHA6			
PRNP			
PTPN22			

 Table S3. List of genes commonly regulated by the expression of CRABP1 or 2