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1 Introduction

This supplementary document provides a discussion of the deep learning model
along with the baseline models in Section 3. Then in Section 4, we demonstrate
why predicting point-wise Humphrey Visual Fields is a much harder task than
predicting the mean HVF. Finally, we derive some theoretical limits for point-
wise HVF predictions in Section 5.

2 Notation

Before we start, we will describe our data and clarify our notation. Our data
consists of 38,964 and 8,962 paired point-wise HVFs in the training and test
datasets, respectively. Each HVF has up to 54 perimetry measurements be-
cause of the HVF 24-2 SITA acquisition protocol. For notational clarity, let
{Xn

0i}54i=1 and {Xn
tni
}54i=1 denote the starting and end point-wise HVFs for the

nth paired HVFs in the training data. Then Xtni represents the ith perimetry
point, measured in decibels (dB) of sensitivity, for the nth end HVF. It is clear
that each set has 54 point-wise measurements, and that tn > 0 represents the
time-difference between the start and end HVF in the nth pair.

Furthermore, to differentiate test data from training data, we adopt the same
notation, but use Y instead of X. Next, we use the common convention of X̂
to denote a predicted value of X.

3 Models

All the models, the deep learning and baseline models, can be expressed as

Ŷtni = f(Y0i, {Y0i}54i=1, tn, θ) (1)

Here Ŷtni denotes the prediction for the ith perimetry point of the nth paired
data in the test data, given time between paired observations of tn, initial mea-
sured perimetry Y0i, the other perimetry points {Y0i}54i=1, which may provide
predictive power through the local structure of the Humphrey Visual field, and
parameters θ learnt on the training data {X} or external data. The main dif-
ferences between the models are in the functional form of f and the role of the
function parameters (Y0i, {Y0i}54i=1, tn, θ).
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3.1 Simulated ROP Model

The simplest point-wise prediction model is the ROP model, which can be
written as:

E[Ŷtni] = Y0i + β · tn (2)

V ar[Ŷtni] = σ2 · t2n (3)

Ŷtni ∼ N(Y0i + β · tn, σ · tn) (4)

Here θ = {β, σ}, where β and σ are the mean and standard deviation of pro-
gression per year, and f is a linear function in Y0i. When written in this way,
this baseline model is clearly a linear Gaussian model. It is linear in the mean
progression of the ROP (2), with the noise modeled as a Gaussian distribution
with standard deviation σ · tn (4).

Now for our first baseline, we took (4), and used β(g) = −0.36 dB / year and
σ(g) = 0.60 dB / year, which were determined in the Early Manifest Glaucoma
Trial. For notational clarity, we adopt the superscript (g) to show that these
parameters came from a general study of glaucoma patients rather than the
exponential operation, and to differentiate from our second baseline.

3.2 Empirical ROP Model

The empirical ROP model shares the same functional form as the ROP model
(4). The only difference is that instead of using β(g) and σ(g) from the Early
Manifest Glaucoma Trial, we use the empirical β(e) and σ(e) measured on our
training dataset. Specifically, we computed the mean and standard deviation of
the time-adjusted change for all point-wise HVFs, [{ 1

tn
(Xn

tni
−Xn

0i)}54i=1]N=38964
n=1

for the 38,964 paired observations in our training data.
The motivation for the empirical ROP model is that our dataset may be

internally consistent, but different from the data in the Early Manifest Glaucoma
Trial due to differing baseline real-world patient characteristics and the stringent
inclusion and exclusion criteria used in the trials.

3.3 Regressed Pointwise Model

The regression model is a generalization of the ROP Model since it can be
expressed as:

Ŷtni ∼ N(Y0i + βi · tn, σi · tn) (5)

Here the parameters βi and σi are indexed so that each perimetry point has its
own rate of progression parameters. These individual progression parameters
were found by regressing the change in {Xn

tni
− Xn

0i}N=38964
n=1 vs {tn}N=38964

n=1

for each i separately in the training data. Table 1 shows regressed coefficients.
Compared to (4), there are 160 = 54 · 3− 2 more degrees of freedom, since each
regression has an intercept, slope and standard deviation.
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Slope Intercept
-0.338 -0.339 -0.365 -0.384 0.277 0.305 0.403 0.503

-0.312 -0.267 -0.288 -0.326 -0.313 -0.337 0.222 0.161 0.191 0.299 0.299 0.361
-0.317 -0.308 -0.289 -0.279 -0.352 -0.335 -0.321 -0.312 0.212 0.246 0.226 0.178 0.316 0.311 0.322 0.336

-0.404 -0.361 -0.317 -0.335 -0.350 -0.287 -0.341 -0.330 -0.269 0.389 0.296 0.179 0.228 0.167 0.218 0.367 0.338 0.295
-0.417 -0.357 -0.330 -0.314 -0.325 -0.254 -0.331 -0.275 0.360 0.269 0.15 0.119 0.144 0.162 0.281 0.270

-0.376 -0.296 -0.325 -0.343 -0.362 -0.338 -0.315 -0.266 0.298 0.172 0.136 0.116 0.172 0.212 0.344 0.222
-0.36 -0.296 -0.307 -0.287 -0.296 -0.356 0.213 0.153 0.125 0.185 0.208 0.382

-0.346 -0.331 -0.303 -0.355 0.295 0.297 0.203 0.312

Table 1: Parameters for regressed pointwise model

3.4 Deep Learning Model

The baseline models are simplistic models that only consider linear rate of pro-
gression for the HVF. Moreover in these baseline models, the perimetry points
were considered independently of each other. Clearly this does not leverage
local HVF structure where one would expect neighbouring perimetry values to
be correlated to each other, with the correlation highest for neighbouring points
and lower for points more distant from each other. The deep learning model
is able to capture this structure since its function is the most general form (1).
Moreover, not only does it take into account neighbouring points, it also natu-
rally fits non-linear functions to all this data to make point-wise predictions.

4 Theoretical limits of point-wise prediction mod-
els

This is one of the first papers to predict point-wise HVFs. We note that making
point-wise predictions are much harder than predicting the mean HVF. Let the
metric for prediction accuracy be the mean absolute error (MAE). Then the
point-wise MAE (PMAE) for predictions on the test dataset can be expressed
as:

PMAE =
1

N

N∑
n=1

1

54

54∑
i=1

|Ŷ n
tni − Y

n
tni|

=
1

N

1

54
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|Ŷ n
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n
tni| (6)

On the other hand the MAE for the mean HVF is:
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Then by Jensen’s Inequality:

1

N

1

54

N∑
n=1

∣∣∣∣∣
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i=1

(Ŷ n
tni − Y

n
tni)
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=⇒ MMAE ≤ PMAE

The equality condition is only reached if and only if (Ŷ n
tni
−Y n

tni
) = |Ŷ n

tni
−Y n

tni
|

for every term. Therefore the MMAE for the predicted mean HVF is a lower
limit for the PMAE of the point-wise HVF predictions.

4.1 Relationship of MMAE to change in mean deviation

The MMAE may be more familiar to clinicians as the mean predicted change
in mean deviation (MD). To show this, we first express the mean deviation in
our notation. For patient n, the mean deviation is:

MDn =
1

54

54∑
i=1

(Y n
i − ai), (9)

where ai is the population age-adjusted standard for perimetry point i. Then
the change in MD over time tn for patient n, with ai cancelling each other, is:

∆MDn
tn = MDn

tn −MDn
0 (10)

This is the change in MD for realized observations. The MMAE is the mean
predicted change in MD since it is M̂D

n

tn instead of MDn
tn in Equation (10), and

it is averaged over all patients:

MMAE ∝ 1

N

N∑
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(M̂D
n
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1

N
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1

54

54∑
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(Ŷ n
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n
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5 Measuring lower limit for point-wise predic-
tion models

Having established that the MMAE is the lower limit of the PMAE, we proceed
to determine the value of this limit. Obviously the limit will be the smallest
MMAE for the test data. Since the MMAE is the mean of the absolute difference
in predicted mean vs observed mean HVFs, it depends on how accurately the
mean HVF is predicted on the test data. A natural model for predicting mean
HVF is: ̂̄Y tn ∼ N(Ȳ0 + β · tn, σ · tn) (12)

This is similar to Equation (4), except here mean Ȳtn is being predicted.
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Then given this mean HVF prediction model (12), the lowest MMAE is
determined by finding the optimal rate of progression parameter, βopt on the
test data. Specifically, we gridded candidate β from −1,−.99,−.98, ..., .99, 1.
The standard deviation was fixed to be the standard deviation of the test data,
σ = 0.56. Then predicted using Equation (12), and computed the MMAE with
Equation (7).

The optimal βopt was found to be −0.17. This yields a MMAE of 2.32 dB,
which is the lower limit for the PMAE. For comparison, the PMAE of our deep
learning method was 2.45 dB. In contrast, the PMAE of the baseline linear
models were 3.77 dB, 3.96 dB and 3.29 dB. This shows that our deep learning
predictions approach this lower limit.
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