

Figure S1. APA regulation by export factors and CFI-68, Related to Figures 1 and 2.

- (A) The average 3'UTR length of a gene weighted over all isoforms.
- (B) Schematic of intronic APA. All intronic APA isoforms were grouped as the pPAS group, and all last exon APA isoforms were grouped as the dPAS group.
- (C) Intronic APA RED in different KD samples. RED, relative expression difference between dPAS and pPAS groups. Error bars are standard deviation based on random sampling of data for 20 times. Statistically significant level was indicated based on FDR cutoffs. (** FDR < 5%, * FDR < 10%, n.s., not significant).
- (D) Genes with 3'UTR shortening in both NXF1 KD and CFI-68 KD cells, in CFI-68 KD cells only, and in NXF1 KD cells only.

Figure S2. Overexpression of VSV-M blocked mRNA export, Related to Figure 1.

- (A) FISH analysis examining the nucleocytoplasmic distribution of polyA RNAs in control and VSV-M overexpression cells. Data are presented as mean \pm s.d..
- (B) Western blot analysis examining the purity of nuclear and cytoplasmic fractions. UAP56 and Tubulin served as nuclear and cytoplasmic markers, respectively.
- (C) RT-qPCR analysis examining nucleocytoplasmic distribution changes of indicated mRNAs upon

VSV-M overexpression. Data are presented as mean \pm s.d..

Figure S3. NXF1 directly interacts with CFI-68, Related to Figure 2.

Upper panel, Coomassie staining to detect GST-fused proteins. Lower panel, *in vitro*-translated ³⁵S-labeled CFI-68 pulled down by GST-eIF4A3, GST-NXF1 or GST as visualized by autoradiography. * indicates a nonspecific band.

G

Figure S4

Figure S4. NXF1 impacts RNP II distribution in gene sets, Related to Figures 4 and 5.

- (A) Metagene analysis of normalized RNAPII signals (log2(IP/input) along genes with low (top), medium (middle), and high (bottom) AT contents. The contribution of each gene is normalized (ChIP-seq signal of each position of a gene is divided by the signal sum of the gene).
- (B) RNAP II signals in gene body (GB) vs. transcription start site (TSS) in different AT content groups.
- (C) RNAP II signal in PAS region (PAS) vs. gene body (GB) in different AT content groups.
- (D) Schematic of different types of alternative splicing (AS) analyzed here.
- (E) Difference of RNAPII signals in PAS region vs. gene body, Δlog₂ (PAS/GB), in genes with significantly increased (red) and decreased (blue) indicated AS events in NXF1 KD cells.
- (F) AS changes in siNXF1-treated cells. Events with significant increase (red), decrease (blue), and no change (gray) are indicated. The numbers of events and ratios between events are shown.
- (G) Western analysis of the level of Flag-NXF1 in stable expression cells.

Figure S5. NXF1 promotes nuclear export of long 3'UTR isoforms, Related to Figure 6.

- (A) Examination of the localization of Flag-NXF1 in control and CFI-68 KD cells. The higher magnification shows its localization at nuclear pores.
- (B) Examination of CFI-68 localization in control and NXF1 KD cells.
- (C) Percentages of NXF1 iCLIP sites (left panel) and number of iCLIP reads (right panel) in cUTRs (blue) and aUTRs (pink) using different window sizes (none, ± 3 bp and ± 15 bp) for clustering iCLIP reads.
- (D) Normalized iCLIP reads mapped to ± 500 bp region of the first conserved (blue) and last conserved (red) 3'UTR PASs.

n.s.

3UTR-wG wG-3UTR

м С **

**

wG-1UTR wG-2UTR

wG-3UTR

МG

8

Figure S6. Inefficient nuclear export of reporter mRNAs with long 3'UTRs is not due to nuclear retention signals, Related to Figure 7.

- (A) Nuclear export efficiency of β -globin reporter mRNAs decreases as 3'UTR length increases. Top, schematic of β -globin constructs with different 3'UTR lengths. Bottom, FISH to detect the nucleocytoplasmic distribution of β -globin reporter mRNAs at 12 hr time point after transfection. DAPI staining serves as nuclear marker. The graph on the right shows nucleus/cytoplasm (N/C) ratios of different reporter mRNAs. Data are presented as mean \pm s.d..
- (B) Insertion of the same sequence in 3'UTR, but not in 5'UTR, decreased mRNA nuclear export efficiency.
 Top, schematic of β-globin constructs. Bottom, FISH to detect the nucleocytoplasmic distribution of
 β-globin reporter mRNAs at 8 hr time point after transfection. DAPI staining serves as nuclear marker.
 The graph on the right shows N/C ratios of different reporter mRNAs. Data are presented as mean ±
 s.d..

Figure S7. The APA events regulated by NXF1 and CFI-68 is not highly overlapped with those

regulated by SRSF3, Related to Figure 1.

- (A) Cumulative distribution of 3'UTR RED values based on cytoplasmic RNA (dotted line) or total RNA (solid line) data from siSRSF3-treated cells.
- (B) 3'UTR APA changes in siSRSF3 cells using total RNA. Genes with significant 3'UTR lengthening

(red), 3'UTR shortening (blue) or no change (gray) are indicated. The numbers of genes in each group and ratio of number of lengthening genes to that of shortening genes are shown.

(C) Venn diagram showing overlap of genes with shortened 3'UTRs in the NXF1, CF1-68 and SRSF3 KD cells.

Sample	No. of PAS	No. of	No. of genic	No. of PASs	No. of APA
F	reads	genes	PASs	per gene	genes
siALYREF	2,294,055	11,101	25,349	2.28	6,721
siCFI-68	3,198,896	10,990	28,316	2.58	7,265
siUAP56	3,230,793	10,927	27,976	2.56	7,109
Cntl	4,027,034	11,431	29,524	2.58	7,508
siNXF1	3,828,508	11,415	32,166	2.82	7,770
siTHOC2	3,209,968	11,100	27,125	2.44	7,103

Table S1. Statistics of PAS and APA in KD and control samples, Related to Figures 1 and 2.

Table S2. Nuclear pore factors present in the NXF1 or Cntl (WDR33) immunoprecipitate, Related toFigures 4 and 5.

Cara Nama		C	ntl (WDR33	3)	NXF1		
Gene Name	MW(KD)	Peptide	Unique	Coverage	Peptide	Unique	Coverage
WDR33	145.18	55	55	45.94	0	0	0
NXF1	70.13	0	0	0	30	30	58.64
Nup210	204.98	0	0	0	35	35	24.01
Nup214	213.49	0	0	0	16	16	9.62
Nup205	227.78	0	0	0	14	14	8.8
Nup93	93.43	0	0	0	7	7	10.18
Nup98	197.46	0	0	0	7	7	4.4
Nup155	155.1	0	0	0	5	5	4.53
Nup88	83.49	0	0	0	3	3	7.15
Nup133	128.9	0	0	0	3	3	4.15
Nup160	162.02	0	0	0	3	3	2.3
Nup85	74.97	0	0	0	2	2	4.88
Nup37	36.68	0	0	0	1	1	4.6
Nup62	53.22	0	0	0	1	1	2.68
Nup43	42.12	0	0	0	1	1	2.63
Nup107	106.31	0	0	0	1	1	1.3
Nup188	195.92	0	0	0	1	1	0.74
Gle1	79.79	0	0	0	2	2	5.43
Rae1	40.94	0	0	0	1	1	7.83

siRNAs used in this	study					
Target gene		Targ	eting sequenc	e		
Luciferase		AAC	AGUCGCGU	UUGCUACUUU		
CFI-68		GAC	CGAGAUUA	CAUGGAUA		
NXF1		GCG	CCAUUCGC	GAACGAUUUU		
UAP56		AAG	GGCUUGGC	UAUCACAUUU		
URH49		AAA	GGCCUAGC	CAUCACUUUU		
THOC2		GGU	UAUGCCAA	GCUGAUUG		
ALYREF		TGG	TGGGAAACTGCTGGTGTCCAA			
CFI-25		CCU	CUUACCAA	UUAUACUU		
Cloning primers use	ed in this study					
wS-1UTR	Forward	CCGG	ATATCGTGC	ACCTGACTCCTG		
wS-1UTR	Reverse	CCGG	ATATCGTGA	TACTTGTGGGCCAG		
wS-2UTR	Forward	CCGG	ATATCGTGC	ACCTGACTCCTGAGGAGAA		
wS-2UTR	Reverse	AAGG	AAAAAAGC	GGCCGCGTGATACTTGTGG		
wS-3UTR	Forward	CTAG	FCTAGAGTG	CACCTGACTCCTGAGGAGAAGTCT		
wS-3UTR	Reverse	AGTCO	GGGCCCGTC	GATACTTGTGGG		
wS-3UTR	Forward	CCGTC	GCCTTCCTT	GACCC TGTA TGTA TGTA		
UGUA	Forward	TGTA	TGTA TGGA	AGGTGCCACTCCCA		
wS-3UTR	Dovorso	TGGG	AGTGGCACC	CTTCCATACATACATACATA		
UGUA	Keverse	CATAC	CATACAGGGTCAAGGAAGGCACGG			
wG-1UTR	Forward	CCGG	ATATCGTGC	ACCTGACTCCTG		
wG-1UTR	Reverse	CCGG	ATATCGTGA	TACTTGTGGGCCAG		
wG-2UTR	Forward	CCGG	ATATCGTGC	ACCTGACTCCTGAGGAGAA		
wG-2UTR	Reverse	AAGG	AAAAAGC	GGCCGCGTGATACTTGTGG		
wG-3UTR	Forward	CTAG	FCTAGAGTG	CACCTGACTCCTGAGGAGAAGTCT		
wG-3UTR	Reverse	AGTCO	GGGCCCGTC	GATACTTGTGGG		
1UTR-wG	Forward	CCCA	AGCTTGTGC	ACCTGACTCCTGAGGAGAAGT		
1UTR-wG	Reverse	CGGG	GTACCGTGA	TACTTGTGGGCCAGGG		
2UTR-wG	Forward	CGGG	GTACCGTGC	CACCTGACTCCTGAGGAGAAGTCTG		
2UTR-wG	Reverse	CGGG	GTACCGTGA	ATACTTGTGGGCCAGGGCA		
3UTR-wG	Forward	CCCA	AGCTTGTGC	ACCTGACTCCTGAGG		
3UTR-wG	Reverse	CCCA	AGCTTGTGA	TACTTGTGGGCCAGGG		
Flag-CFI-68	Forward	CCGG	AATTCAATG	GCGGACGGCGTGGAC		
Flag-CFI-68	Reverse	TCTGA	ATATCCTAA	CGATGACGATATTC		
Flag-NXF1 Forward (CCGGAATTCAATGGCGGACGAGGGGAAG				
Flag-NXF1 Reverse C		CGGGATCCTCACTTCATGAATGCCAC				
HAGE-Flag-NXF1 Forward (CTAGTCTAGAATGGCGGACGAGGGGGAAGTCG				
HAGE-Flag-NXF1 Reverse 0		CGCGGATCCTCACTTCATGAATGCCACTT				
HAGE-Flag-eIF4A3 Forward C		CGAC	CGACGCGTATGGCGACCACGGCCACGAT			
HAGE-Flag-eIF4A3 Reverse C		CGGG	CGGGATCCTCAGATAAGATCAGCAACGT			
GST-NXF1 Forward C		CGCG	CGCGGATCCATGGCGGACGAGGGGAAGTCG			
GST-NXF1 Reverse		ATAAGAATGCGGCCGCTCACTTCATGAATGCCACTT				
RT-qPCR primers used in this study						
Gene Name	Targeting Reg	ion	Direction	Sequence		

Table S3. siRNAs and Primers used in this study, Related to STAR Methods.

TMCC1	Common	Forward	GTGAAGGTGTGGTGGATA
TMCC1	Common	Reverse	CGAATGAGTGAGGCAATC
TMCC1	aUTR	Forward	GTCGCATAACCAGTTCCA
TMCC1	aUTR	Reverse	CACAGAATGAGGCTAAGAGG
SIAH2	Common	Forward	AATACCGTCCCTACTCCT
SIAH2	Common	Reverse	GAAGGGTGGTAATGCTCT
SIAH2	aUTR	Forward	GACTGTCAGCAGATTCCT
SIAH2	aUTR	Reverse	CTATTAGCCAGCCATCCA
MARCH5	Common	Reverse	GAGCCGACCATTATTCCT
MARCH5	Common	Forward	AACAGTACAGCCAGAGTG
MARCH5	aUTR	Forward	CAGAATCAGCAACTCAAGG
MARCH5	aUTR	Reverse	GGACATCACATGGGTTAAAG
NFKB1	Common	Forward	GAAGATGTGGTGGAGGAT
NFKB1	Common	Reverse	GGGTGGTCAAGAAGTAGT
NFKB1	aUTR	Forward	GCATTCCTTCTGACCACA
NFKB1	aUTR	Reverse	GGCACATCAAGTGACTCT
JMY	Common	Forward	GTGGGAGAAGGAAGAGTC
JMY	Common	Reverse	GAGGCAGTTCAGAGGTAA
JMY	aUTR	Forward	AAGTCTCTCAACCCATCC
JMY	aUTR	Reverse	CTGCCAACAATACTCTGC
UBTD2	Common	Forward	GCACAGACACAGTATTCC
UBTD2	Common	Reverse	CACAGGTTGGCTCACTAT
UBTD2	aUTR	Forward	CACCCTTCTGGAACACTA
UBTD2	aUTR	Reverse	GACCTTCTAAGCCTGGAT
SGMS2	Common	Forward	ATAGTGGGACGCAGATTC
SGMS2	Common	Reverse	CAGGCACAGGTAGAGTAG
SGMS2	aUTR	Forward	GGAAGTGTGAGAAGGAGT
SGMS2	aUTR	Reverse	GCAACTGAGTCAAAGGAG
RPL22	Common	Forward	TGTTAGCAACTACGCGCAAC
RPL22	Common	Reverse	GACCATCGAAAGGAGCAAGA
RPL22	aUTR	Forward	TCAATGCTCAGTCCTACC
RPL22	aUTR	Reverse	TGACGGCAGAGAAGAAAT
NHP2L1	Common	Forward	CTGAGGCTGATGTGAATCC
NHP2L1	Common	Reverse	ATGACTGCTGAACGAGGT
NHP2L1	aUTR	Forward	AACAGAGATGGTGGAGTC
NHP2L1	aUTR	Reverse	GGATGCTCACAAGAATGG
RAB10	Common	Forward	CACCATCACAACCTCCTA
RAB10	Common	Reverse	GTCGTCCATATCACACTTG
RAB10	aUTR	Forward	GAGGCTGAGTTTAGGACA
RAB10	aUTR	Reverse	TATGTGAGCCAAGAGGTC
NFAT5	Common	Forward	CTGTTGTTGCTGCTGGAT
NFAT5	Common	Reverse	GGCTGGAAGAGGTGGTAA
NFAT5	aUTR	Forward	TGACCTGTTCATCTGTGG
NFAT5	aUTR	Reverse	GAGCAAAGACTGAATGGC
TATDN3	Common	Forward	TCCACCAGAAGACCAAAG
TATDN3	Common	Reverse	TCTAGTCCAACCTCTCCA
TATDN3	aUTR	Forward	CCGAGTTCTGGCAGGATA
TATDN3	aUTR	Reverse	TCAGTTCAGGTGGTGGTT

DD1(10	C			F 1		
	Comr	Common		Porward		
				Keverse		
RDW10 aUIK		<u> </u>		Forward		
RBM18 aUTR			Reverse	CATTACAGTCTTGGTGCC		
3' end RT-qPCR p	3' end RT-qPCR primers					
3' END RT PCR Pri	mer	Reverse	CA	AGCAGAAGA	ACGGCATACGAGA	
D7 million		Dovers				
r / primer		Forward		AGCAGAAGA		
NFKB1 short		Forward		TCCTATTT		
NFKBI long		Forward	AA			
SIAH2 SHOR		Forward				
SIAH2 long		Forward	AG	TAGCIGGIG	JIGAAAGAC	
Chip deck primer	S	F 1				
		Porward	AG	CCAACCAAC		
		Keverse				
KAB102		Forward		AGGAAGCIC		
KABIU 2		Keverse	AG	GUIGGAAIC		
KAB10.3		Forward	GC	AGCAGIATC		
KAB10.3		Keverse	GG	GGCCAAACTGTACCAATGGC		
KABI04		Forward	ACGCCCGTAATCCTGACATC			
RAB10 4		Keverse				
RAB10 5		Forward	GG	<u>argerere</u>		
RAB10 5		Keverse	TG	GCTGATTGG		
KABI06		Forward	AT	GCCAGGAAA		
RABI0 6		Reverse	AC	AACTACAAT	CACAGGAGA	
TMCC1 1		Forward				
TMCC1 1		Reverse				
TMCC1 2		Forward	GCCCAGCCATGTCCAAGTAA			
TMCC1 2		Reverse	AG	GGACACCTC	JTGGTAGAGT	
TMCC1 3		Forward	GT	TGATGGGCT	CACCACTGA	
TMCC1 3		Reverse	CT	TGTGCATGC	TCTCTTGCC	
TMCC1 4		Forward	CC	TCAACCCTG	ACCTCACAG	
TMCC1 4		Reverse	CA	GATTTGGCA	AGGGAGGTGT	
TMCC1 5		Forward	GG	ATCAAACGA	AGTGCTGTGC	
TMCC1 5		Reverse	AG	ACCAGAGTO	CTCCAGGCAT	
TMCC1 6		Forward	GT	GCTCTTCCC	TCAGACACC	
TMCC1 6		Reverse	CC	TCGCTGCTA	AGGTGACAT	
TMCC1 7		Forward	TCCTGGGCTAAGTGCATGTG			
TMCC1 7		Reverse	GCCCAAGACCATCTGCCTAA			
TMCC1 8		Forward	TGGATCTCTCTGGCTTTC			
TMCC1 8		Reverse	ACTGTAGTAGGACTGTGC			
In		Forward	AATCCAGGTGAGCCTGCTTC			
In		Reverse	AACCAAGTGGTGAGGTTGGG			

Sample	Туре	Raw reads	Uniquely mapped	PAS reads
siALYREF, replicate 1	Total RNA	57,435,571	13,010,769	2,294,055
siCFI-68, replicate 2	Total RNA	40,261,637	9,518,029	3,198,896
siUAP56, replicate 1	Total RNA	35,440,912	8,376,341	3,230,793
siCntl, replicate 1	Total RNA	60,610,165	15,131,137	4,027,034
siNXF1, replicate 1	Total RNA	40,360,020	9,955,632	3,828,508
siTHOC2, replicate 1	Total RNA	45,878,421	10,945,403	3,209,968
siCFI-68, Cyto, replicate 1	Cytoplasmic RNA	21,152,231	14,408,786	6,693,981
siCFI-68, Nucl, replicate 1	Nuclear RNA	31,482,862	23,230,027	11,179,827
siCntl_Cyto, replicate 1	Cytoplasmic RNA	16,677,137	13,148,681	7,777,427
siCntl, Nucl, replicate 1	Nuclear RNA	21,250,652	15,294,373	7,060,556
siCntl, Cyto, replicate 2	Cytoplasmic RNA	44,042,288	29,539,173	14,419,979
siCntl, Nucl, replicate 2	Nuclear RNA	29,716,185	20,024,422	9,538,146
siNXF1, Cyto, replicate 1	Cytoplasmic RNA	25,206,878	18,596,275	9,921,956
siNXF1, Nucl, replicate 1	Nuclear RNA	24,514,576	17,891,038	9,093,806
siCFI-68, replicate 2	Total RNA	13,367,780	10,824,155	4,936,959
siCntl, replicate 2	Total RNA	12,001,518	10,089,105	4,672,731
siNXF1, replicate 2	Total RNA	12,774,551	10,615,251	5,188,485

 Table S4. Statistics of 3'READS+ data, Related to STAR Methods.

Table S5. Statistics of ChIP-seq data, Related to STAR Methods.

Sample	Raw reads	Uniquely mapped reads
siCntl_input	57,598,942	51,347,503
siCntl_RNAPII IP	35,997,408	26,629,189
siNXF1_input	53,163,456	47,202,800
siNXF1_RNAPII_IP	51,981,394	15,667,833

Sample	Raw Reads	Uniquely mapped reads	Unique 3' ends
siCntl	100,354,084	47,701,646	17,669,456
siNXF1	128,379,794	75,903,155	32,446,571

Table S6. Statistics of nascent RNA-seq data, Related to STAR Methods.

Unique 3' ends are unique genomic positions corresponding to the 3' ends of reads.

Table S7. Statistics of total RNA RNA-seq data, Related to STAR Methods.

Sample	Raw reads	Uniquely mapped reads
siCntl	20,176,630	17,447,827
siNXF1	24,891,840	21,766,043