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Supplementary Note 

1. Simulation extrapolation 

The idea behind simulation extrapolation (SIMEX) 1,2 is that if the bias in an estimator can be 

expressed as a function of measurement error, then an unbiased estimator can be obtained by 

setting the measurement error to zero.  Suppose we have an estimate 𝑏̂∗ for the regression slope of 

𝛽̂𝐺𝑋, which itself is an unbiased estimate of 𝛽𝐺𝑋 with measurement error being its sampling variance 

𝜎𝐺𝑋
2 .  For a scalar 𝜆 > 0 we can simulate new values 𝛽̂𝐺𝑋

(𝜆)
 by adding Gaussian noise with variance 

𝜆𝜎𝐺𝑋
2  to each observed value of 𝛽̂𝐺𝑋, and then obtain a (more biased) estimate 𝑏̂(𝜆) for the 

regression slope of 𝛽̂𝐺𝑋
(𝜆)

.    If a functional form can be fitted to 𝑏̂(𝜆) (note that 𝑏̂(0) = 𝑏̂∗) then it can 

be extrapolated to provide an unbiased estimate as 𝑏 = 𝑏̂(−1).  Usually, a limited range of values is 

considered for 𝜆, and for each value 𝑏̂(𝜆) is taken as the mean over many simulations of the  𝛽̂𝐺𝑋
(𝜆)

.  In 

our analyses we ran 10,000 simulations for each 𝜆 ranging from 0.25 to 5 in steps of 0.25. 

A linear or quadratic model is typically fitted to 𝑏̂(𝜆) 3.  However we found that these models gave a 

poor fit to our idiopathic pulmonary fibrosis (IPF) data and therefore derived a maximum likelihood 

estimator of 𝑏 from data generated by SIMEX.     From a standard result for the simple linear 

regression model 4 

𝑏 = 𝐸(𝑏̂(𝜆))
𝑣𝑎𝑟 (𝛽̂𝐺𝑋

(𝜆)
)

𝑣𝑎𝑟(𝛽𝐺𝑋)
= 𝐸(𝑏̂(𝜆)) [

𝑣𝑎𝑟(𝛽̂𝐺𝑋) + 𝜆𝜎𝐺𝑋
2

𝑣𝑎𝑟(𝛽𝐺𝑋)
] 

So 

𝐸(𝑏̂(𝜆)) = 𝑏 [1 + (1 + 𝜆)
𝜎𝐺𝑋

2

𝑣𝑎𝑟(𝛽𝐺𝑋)
]

−1

 

 (1) 

 

This is written as an expectation because the actual  𝑏̂(𝜆) obtained by SIMEX depend on the 

randomly simulated values of 𝛽̂𝐺𝑋
(𝜆)

.  To estimate the variance of 𝑏̂(𝜆) we use the Huber-White 

sandwich estimator to allow for residual heteroscedasticity, as discussed in the main text.  In general 

form this estimator is 

(𝑋𝑇𝑋)−1𝑋𝑇Σ𝑋(𝑋𝑇𝑋)−1 

where for now 𝑋 is the design matrix of the linear regression and Σ is the diagonal matrix whose 

entries are the squared residuals of the regression.  In the regression of 𝛽̂𝐺𝑌 on 𝛽̂𝐺𝑋 (Equation 3, 
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main text) the design matrix consists of one column of 1’s (for the intercept) and a second column 

consisting of the 𝛽̂𝐺𝑋 for each SNP.  The sandwich estimator is the 22 variance-covariance matrix of 

the estimated intercept and 𝑏̂(𝜆), and we want the lower right entry.  After some working out this is 

𝑣𝑎𝑟̂(𝑏̂(𝜆)) =
(∑ 𝛽̂𝐺𝑋

(𝜆)
)

2
∑ 𝑈2 − 2𝑚 ∑ 𝛽̂𝐺𝑋

(𝜆)
∑ 𝛽̂𝐺𝑋

(𝜆)
𝑈2 + 𝑚2 ∑ 𝛽̂𝐺𝑋

(𝜆)2
𝑈2

[𝑚 ∑ 𝛽̂𝐺𝑋
(𝜆)2

− (∑ 𝛽̂𝐺𝑋
(𝜆)

)
2

]
2  

 (2) 

where 𝑚 is the number of SNPs included in the regression of 𝛽̂𝐺𝑌 on 𝛽̂𝐺𝑋
(𝜆)

, 𝑈 is the residual from this 

regression, and the sums are over the 𝑚 SNPs, with indices supressed for brevity. 

Assume that each 𝑏̂(𝜆) generated under SIMEX is normally distributed with the mean in 

Supplementary Equation 1 and variance in Supplementary Equation 2.  If 𝑏̂(𝜆) is taken as the mean 

over many simulations, then 𝑣𝑎𝑟̂(𝑏̂(𝜆)) is correspondingly divided by the number of simulations.  

Then the log-likelihood for 𝑏 is 

𝑙 (𝑏;
𝜎𝐺𝑋

2

𝑣𝑎𝑟(𝛽𝐺𝑋)
) = ∑ log 𝜙(𝑏̂(𝜆); 𝐸(𝑏̂(𝜆)), 𝑣𝑎𝑟̂(𝑏̂(𝜆)))

𝜆

 

 (3) 

which we maximise over 𝑏 with 
𝜎𝐺𝑋

2

𝑣𝑎𝑟(𝛽𝐺𝑋)
 as a nuisance parameter.  This estimator gave a much 

better fit to our IPF data than the standard quadratic model, and a significantly different 

extrapolation (Supplementary Figure 1). 

To obtain confidence intervals for 𝑏, we profile over 
𝜎𝐺𝑋

2

𝑣𝑎𝑟(𝛽𝐺𝑋)
 as follows.  The profile log-likelihood is 

as Supplementary Equation 3 with, for each value of 𝑏, 
𝜎𝐺𝑋

2

𝑣𝑎𝑟(𝛽𝐺𝑋)
 replaced by the value that 

maximises the log-likelihood: 

𝑙𝑏(𝑏) = 𝑙 (𝑏; arg max
𝜃

𝑙(𝑏; 𝜃)) 

The (1 − 𝛼)% confidence interval can be defined as the set of values 𝑏 that are not significantly 

different from the maximum likelihood estimate 𝑏̂ML  according to a likelihood ratio test of size 𝛼.  

The confidence limits are then the solutions 𝑏 of 

2 (𝑙𝑏(𝑏) − 𝑙𝑏(𝑏̂ML)) = [Φ−1(
𝛼

2
)]

2
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Under asymptotic normality of 𝑏̂ML, its variance can be inferred by dividing the difference between 

the confidence limits by 2Φ−1(1−
𝛼

2
) which is approximately 3.92 in the usual case that 𝛼 = 0.05. 

If there is doubt over the normality of 𝑏̂ML, its empirical distribution can be estimated by simulating  

new 𝑏̂(𝜆) for each 𝜆 from the normal distribution with mean the actual 𝑏̂(𝜆) and empirical variance 

from Supplementary Equation 2.  From each set of simulated 𝑏̂(𝜆), the maximum likelihood estimate 

𝑏̂ML is obtained to generate the empirical distribution of 𝑏̂ML.  This may be combined with values of 

𝛽̂𝐺𝑌
′  and 𝛽̂𝐺𝑋 simulated from asymptotic normal distributions to obtain the empirical distribution of 

𝛽̂𝐺𝑌 = 𝛽̂𝐺𝑌
′  − 𝑏̂𝛽̂𝐺𝑋. 
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Supplementary figure 1.  SIMEX analysis of idiopathic pulmonary fibrosis data. 

Circles give the mean coefficient of the regression of 𝛽̂𝐺𝑌 on the simulated 𝛽̂𝐺𝑋
(𝜆)

.  The regression on 

the actual 𝛽̂𝐺𝑋 is shown at (1 + 𝜆) = 1.  Dotted line shows the quadratic fit obtained from standard 

software 3, which extrapolates to 𝑏̂(−1) = −0.0316.  Solid line shows our maximum likelihood fit, 

which extrapolates to 𝑏̂(−1) = −65.63 (95% CI: -65.88, -5.68).    



6 
 

 

2. Collider bias through selection on a subsequent trait 

Under the directed acyclic graph of figure 2, we estimate the effect of 𝐺 on 𝑋 conditional on 𝑌 as 

[
𝛽𝐺𝑋

′

𝛽𝑌𝑋
′ ] = [

𝑣𝑎𝑟(𝐺) 𝑐𝑜𝑣(𝐺, 𝑌)

𝑐𝑜𝑣(𝐺, 𝑌) 𝑣𝑎𝑟(𝑌)
]

−1

[
𝑐𝑜𝑣(𝐺, 𝑋)

𝑐𝑜𝑣(𝑋, 𝑌)
]  

=
1

𝑣𝑎𝑟(𝐺)𝑣𝑎𝑟(𝑌)−𝑐𝑜𝑣(𝐺,𝑌)2 [
𝑣𝑎𝑟(𝑌) −𝑐𝑜𝑣(𝐺, 𝑌)

−𝑐𝑜𝑣(𝐺, 𝑌) 𝑣𝑎𝑟(𝐺)
] [

𝑐𝑜𝑣(𝐺, 𝑋)

𝑐𝑜𝑣(𝑋, 𝑌)
]  

Using the covariances given in the Methods, this yields 

𝛽𝐺𝑋
′ =

𝑣𝑎𝑟(𝑈)(𝛽𝑈𝑌+𝛽𝑈𝑋𝛽𝑋𝑌)𝛽𝑈𝑌+𝑣𝑎𝑟(𝐸𝑌)

𝑣𝑎𝑟(𝑈)(𝛽𝑈𝑌+𝛽𝑈𝑋𝛽𝑋𝑌)2+𝑣𝑎𝑟(𝐸𝑋)𝛽𝑋𝑌
2 +𝑣𝑎𝑟(𝐸𝑌)

𝛽𝐺𝑋 −
𝑣𝑎𝑟(𝑈)(𝛽𝑈𝑌+𝛽𝑈𝑋𝛽𝑋𝑌)𝛽𝑈𝑋+𝑣𝑎𝑟(𝐸𝑋)𝛽𝑋𝑌

𝑣𝑎𝑟(𝑈)(𝛽𝑈𝑌+𝛽𝑈𝑋𝛽𝑋𝑌)2+𝑣𝑎𝑟(𝐸𝑋)𝛽𝑋𝑌
2 +𝑣𝑎𝑟(𝐸𝑌)

𝛽𝐺𝑌  

While the bias is still linear in 𝛽𝐺𝑌 with a slope that could be estimated from data, recovery of 𝛽𝐺𝑋 

requires knowledge of the confounder effects as well as the direct effect of 𝑋 on 𝑌.  Note however 

that if there is no such direct effect, then figure 1 and figure 2 are equivalent, and the above reduces 

to 

𝛽𝐺𝑋
′ = 𝛽𝐺𝑋 −

𝑣𝑎𝑟(𝑈)𝛽𝑈𝑌𝛽𝑈𝑋

𝑣𝑎𝑟(𝑈)𝛽𝑈𝑌
2+𝑣𝑎𝑟(𝐸𝑌)

𝛽𝐺𝑌  

analogous to Equation 3 in the main text. 
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Supplementary tables 

 

Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs 0.011 0.012 0.011 0.011 0.011 0.011 0.011 0.013 0.011 0.013 

All SNPs affecting 

incidence 

5.4e-3 2.4e-3 7.4e-3 4.7e-3 9.3e-3 7.5e-3 3.6e-3 4.8e-3 2.5e-3 7.4e-3 

 

Supplementary Table 1.  Absolute bias for quantitative incidence and prognosis with non-genetic 

confounding. 

Estimates shown over 1000 simulations of100,000 independent SNPs.  5000 SNPs have effects on 

incidence only, 5000 on prognosis only and 5000 on both incidence and prognosis.  Heritability of 

both incidence and prognosis is 50% with the genetic correlation shown over all SNPs.  Common 

non-genetic factors explain 40% of variation in both incidence and prognosis. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs 2.4e-4 2.7e-4 2.4e-4 2.5e-4 2.4e-4 2.4e-4 2.3e-4 3.1e-4 2.4e-4 3.4e-4 

All SNPs affecting 

incidence 

2.5e-4 2.5e-4 2.8e-4 2.3e-4 3.2e-4 2.7e-4 2.4e-4 3.4e-4 2.4e-4 4.3e-4 

 

Supplementary Table 2.  Mean square error for quantitative incidence and prognosis with non-

genetic confounding. 

Parameters as in Supplementary Table 1. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.013 0.011 0.011 

All SNPs affecting 

incidence 

2.4e-3 2.4e-3 3.4e-3 4.6e-3 4.7e-3 7.0e-3 3.4e-3 4.4e-3 4.7e-3 6.9e-3 

 

Supplementary Table 3.  Absolute bias for quantitative incidence and prognosis without non-genetic 

confounding. 

Parameters are as in supplementary table 1 except that there are no common non-genetic factors of 

incidence and prognosis. 

  



10 
 

Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs 2.4e-4 2.4e-4 2.4e-4 2.5e-4 2.3e-4 2.5e-4 2.4e-4 2.4e-4 2.3e-4 2.4e-4 

All SNPs affecting 

incidence 

2.5e-4 2.5e-4 2.6e-4 2.8e-4 2.7e-4 3.4e-4 2.6e-4 2.7e-4 2.7e-4 3.3e-4 

 

Supplementary Table 4.  Mean square error for quantitative incidence and prognosis without non-

genetic confounding. 

Parameters are as in supplementary table 3. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs 0.037 0.038 0.041 0.041 0.046 0.046 0.035 0.036 0.034 0.036 

All SNPs affecting 

incidence 

0.021 0.018 0.021 0.020 0.021 0.021 0.020 0.018 0.019 0.017 

 

Supplementary Table 5.  Absolute bias for binary incidence and prognosis with non-genetic 

confounding. 

Parameters as in Supplementary Table 1 with cases defined as subjects in the top 20th percentile of 

the incidence trait, and poor prognosis as cases in the top 50th percentile of the prognosis trait.  

Common non-genetic factors explain 40% of variation in both incidence and prognosis.  Prognosis is 

analysed in cases only. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs 2.6e-3 2.7e-3 3.1e-3 3.2e-3 4.0e-3 4.0e-3 2.3e-3 2.5e-3 2.2e-3 2.4e-3 

All SNPs affecting 

incidence 

3.5e-3 3.6e-3 4.0e-3 4.1e-3 4.7e-3 4.8e-3 3.2e-3 3.2e-3 3.1e-3 2.9e-3 

 

Supplementary Table 6.  Mean square error for binary incidence and prognosis with non-genetic 

confounding. 

Parameters as in Supplementary Table 5. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs 0.033 0.033 0.033 0.033 0.034 0.035 0.033 0.033 0.034 0.034 

All SNPs affecting 

incidence 

0.017 0.017 0.017 0.018 0.017 0.017 0.017 0.018 0.017 0.017 

 

Supplementary Table 7.  Absolute bias for binary incidence and prognosis without non-genetic 

confounding. 

Parameters as in Supplementary Table 5 except that there are no common non-genetic factors of 

incidence and prognosis. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs 2.1e-3 2.1e-3 2.1e-3 2.1e-3 2.2e-3 2.3e-3 2.1e-3 2.1e-3 2.2e-3 2.2e-3 

All SNPs affecting 

incidence 

2.8e-3 2.8e-3 2.9e-3 2.8e-3 2.9e-3 2.8e-3 2.8e-3 2.8e-3 2.9e-3 2.8e-3 

 

Supplementary Table 8.  Mean square error for binary incidence and prognosis without non-genetic 

confounding. 

Parameters as in Supplementary Table 7. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs Case only 5.03 5.00 5.07 5.03 5.11 5.08 5.01 5.02 5.00 5.05 

Case/control 5.04 5.00 5.07 5.02 5.11 5.09 5.02 5.02 5.01 5.05 

All SNPs 

affecting 

incidence 

Case only 5.66 5.09 6.24 5.58 7.00 6.60 5.27 5.38 5.12 6.04 

Case/control 5.64 5.02 6.25 5.46 7.00 6.67 5.27 5.29 5.10 5.89 

SNP with 

highest 

error 

Case only 15.0 6.80 23.5 12.9 37.4 30.4 9.90 10.2 8.00 15.9 

Case/control 13.5 7.80 22.3 11.6 30.4 26.9 10.0 9.10 7.80 17.7 

Family-

wise error 

Case only 8.70 5.30 13.0 9.70 21.2 17.8 5.00 5.60 5.20 10.9 

Case/control 9.50 5.10 12.7 7.70 22.6 19.2 6.50 5.90 5.90 11.3 

 

Supplementary Table 9.  Type-1 error for binary incidence and quantitative prognosis with non-

genetic confounding. 

Type-1 error shown as % at 𝑃 < 0.05.  Parameters as in Supplementary Table 1 and cases defined as 

subjects in the top 20th percentile of the incidence trait.  Common non-genetic factors explain 40% of 

variation in both incidence and prognosis.  Case only, prognosis analysed by linear regression among 

cases only.  Case/control, prognosis set to zero for controls and analysed by linear regression in full 

sample with adjustment for case/control status. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs Case only 12.1 11.3 11.7 11.7 10.8 11.0 12.2 10.0 11.9 8.43 

Case/control 12.1 11.4 11.7 11.7 10.8 11.0 12.1 10.1 11.9 8.57 

All SNPs 

affecting 

incidence 

Case only 12.3 11.3 10.8 11.0 8.04 8.56 13.0 9.62 12.8 7.02 

Case/control 12.4 11.3 10.6 10.9 8.01 8.34 12.9 9.54 12.6 7.06 

SNP with 

greatest 

increase 

in power 

Case only 27.4 45.0 30.1 43.4 29.4 36.6 10.7 23.1 6.30 11.0 

Case/control 30.4 47.8 26.1 39.1 39.6 45.3 19.8 34.6 8.50 12.3 

SNP with 

greatest 

decrease 

in power 

Case only 64.2 35.7 33.1 20.5 22.2 20.6 74.2 22.2 94.7 38.0 

Case/control 52.0 25.6 32.9 22.0 11.3 9.90 65.1 20.7 72.9 17.5 

 

Supplementary Table 10.  Power for binary incidence and quantitative prognosis with non-genetic 

confounding. 

Power shown as % at 𝑃 < 0.05. Parameters as in Supplementary Table 9. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs Case only 5.00 5.00 5.00 5.02 5.01 5.06 5.00 5.01 5.01 5.06 

Case/control 5.00 5.00 5.00 5.02 5.01 5.06 5.00 5.01 5.01 5.06 

All SNPs 

affecting 

incidence 

Case only 5.01 5.03 5.05 5.35 5.19 6.13 5.06 5.33 5.20 6.10 

Case/control 5.01 5.03 5.05 5.35 5.18 6.13 5.06 5.33 5.20 6.09 

SNP with 

highest 

error 

Case only 7.70 7.80 7.60 10.6 8.20 19.2 7.50 10.6 8.70 21.4 

Case/control 7.70 7.90 8.00 10.3 8.30 19.2 7.50 10.5 8.60 21.4 

Family-

wise error 

Case only 4.80 4.90 5.30 7.00 5.30 12.6 5.20 5.90 3.60 8.70 

Case/control 5.00 4.80 4.80 7.40 5.50 12.2 5.20 5.80 3.80 9.10 

 

Supplementary Table 11.  Type-1 error for binary incidence and quantitative prognosis without non-

genetic confounding. 

 Type-1 error shown as % at 𝑃 < 0.05.  Parameters as in Supplementary Table 9 except that there 

are no common non-genetic factors of incidence and prognosis. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs Case only 11.0 10.9 10.8 10.4 10.3 9.16 10.8 10.4 10.3 9.20 

Case/control 11.0 10.9 10.8 10.4 10.3 9.16 10.8 10.4 10.3 9.20 

All SNPs 

affecting 

incidence 

Case only 10.9 10.9 10.4 9.76 9.37 7.32 10.4 9.81 9.38 7.40 

Case/control 10.9 10.9 10.4 9.76 9.37 7.33 10.4 9.81 9.37 7.41 

SNP with 

greatest 

increase 

in power 

Case only 13.3 15.1 13.8 20.2 7.40 10.2 9.50 15.6 4.80 7.50 

Case/control 13.3 15.4 19.6 25.9 7.50 10.1 9.50 15.6 4.80 7.50 

SNP with 

greatest 

decrease 

in power 

Case only 31.7 30.2 50.3 37.2 68.8 40.0 55.4 42.8 65.3 38.2 

Case/control 29.3 27.7 33.7 21.1 69.0 39.8 55.4 42.7 65.0 38.5 

 

Supplementary Table 12.  Power for binary incidence and quantitative prognosis without non-

genetic confounding. 

Power shown as % at 𝑃 < 0.05. Parameters as in Supplementary Table 11. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs 5.01 5.00 5.01 5.00 5.01 5.00 5.00 5.00 5.00 5.00 

All SNPs affecting incidence 5.11 5.25 5.12 5.27 5.13 5.29 5.09 5.23 5.10 5.22 

SNP with highest error  7.90 8.70 8.20 9.10 7.70 10.4 8.00 8.90 8.80 8.60 

Family-wise error 7.50 7.70 7.90 7.90 7.10 6.90 7.10 7.20 8.70 8.10 

 

Supplementary Table 13.  Type-1 error for binary incidence and survival prognosis with non-genetic 

confounding. 

Type-1 error shown as % at 𝑃 < 0.05.  Parameters as in Supplementary Table 1 with cases defined 

as subjects in the top 20th percentile of the incidence trait, and survival time simulated from the 

exponential model with the prognosis trait as the log hazard.  Common non-genetic factors explain 

40% of variation in both incidence and prognosis. 
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Genetic correlation 0 0.25 0.45 -0.25 -0.45 

Adjustment No Yes No Yes No Yes No Yes No Yes 

All SNPs 5.00 5.00 5.01 5.00 5.01 5.00 5.00 5.00 5.00 5.00 

All SNPs affecting incidence 5.09 5.23 5.09 5.26 5.11 5.27 5.09 5.23 5.07 5.22 

SNP with highest error  7.60 9.50 8.50 9.40 7.80 9.40 7.90 8.60 7.50 8.30 

Family-wise error 7.80 7.70 8.40 7.40 9.50 7.50 8.50 7.50 7.70 8.10 

 

Supplementary Table 14.  Type-1 error for binary incidence and survival prognosis without non-

genetic confounding. 

Type-1 error shown as % at 𝑃 < 0.05.  Parameters as in Supplementary Table 3 with cases defined 

as subjects in the top 20th percentile of the incidence trait, and survival time simulated from the 

exponential model with the prognosis trait as the log hazard.  There are no common non-genetic 

factors of incidence and prognosis. 
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