Biophysical Journal, Volume 116

Supplemental Information

Structure and Conformation of Wild-Type Bacterial Lipopolysaccharide

Layers at Air-Water Interfaces

Samantha Micciulla, Yuri Gerelli, and Emanuel Schneck

Supporting Information for "Structure and conformation of wild-type bacterial lipopolysaccharide monolayers at air/water interfaces"

S. Micciulla, Y. Gerelli, E. Schneck

Wild-type LPS monolayer stability on Ca²⁺-free subphase

Figure S1a shows the pressure versus area isotherms for subsequent compression/expansion cycles of a wild-type LPS monolayer spread onto Ca^{2+} -free subphase. Similar to the behavior of this monolayer onto Ca^{2+} -loaded subphase reported in the manuscript, there is a clear evidence of hysteresis at each cycle, with a relative reduction of the specific area at the highest pressure ($\pi = 45 \text{ mN/M}$) per cycle between $\approx 3\%$ and $\approx 8\%$.

As for Ca^{2+} -loaded LPS, the kinetics of the area reduction shows a dependence on the applied lateral pressure (Figure S1b and c): at an initial pressure of $\pi = 15 \text{ mN/m}$ and constant surface area, the pressure decreases with $d\Pi/dt \approx 0.04 \text{ mN/(m min)}$, while for initial $\pi = 30 \text{ mN/m}$, the pressure decreases about four times as fast ($d\Pi/dt \approx 0.16 \text{ mN/(m min)}$).

Figure S1: (a): Repeating compression cycles of wild-type LPS monolayers on Ca^{2+} -free subphase. (b, c): Evolution of surface pressure over time at constant area starting with an initial surface pressure of about 15 mN/m (b) and about 30 mN/m (c).

Table S1: Best-fit parameters obtained from the analysis of the reflectivity data. The roughness σ for the HC refers to the air/HC interface, while the value for IOS refers to the IOS/water interface. The symbols n,x indicate the different contrasts (neutron and X-ray); the symbols f,l represent the *free* and *loaded* subphase, respectively.

Parameter	HC	IOS	OSC
$\rho_{i,f}^{n,D_2O} \left[\mathrm{\AA}^{-2} \right]$	$0.4 \ge 10^{-6}$	$2.60 \ge 10^{-6}$	$2.16 \ge 10^{-6}$
$\rho_{i,l}^{n,D_2O} \; [\mathrm{\AA}^{-2}]$	$0.4 \ge 10^{-6}$	$2.56 \ge 10^{-6}$	$2.12 \ge 10^{-6}$
$\rho_{i,f}^{n,ACMW} \left[\mathrm{\AA}^{-2} \right]$	$0.4 \ge 10^{-6}$	$-0.041 \ge 10^{-6}$	$-0.034 \ge 10^{-6}$
$\rho_{i,l}^{n,ACMW} \; [\mathrm{\AA}^{-2}]$	$0.4 \ge 10^{-6}$	$-0.139 \ge 10^{-6}$	$-0.011 \ge 10^{-6}$
$ ho_i^x \left[\mathrm{\AA}^{-2} ight]$	$8.0x \ 10^{-6}$	$15.2 \ge 10^{-6}$	$14.2 \ge 10^{-6}$
\mathbf{d}_f [Å]	20(1)	20(1)	-
d_l [Å]	15(1)	17(2)	-
λ_f [Å]	-	-	119(10)
$\lambda_l \; [{ m \AA}]$	-	-	130(10)
\mathbf{n}_{f}	-	-	1.4 (0.1)
n_l	-	-	$1.3 \ (0.1)$
σ_f [Å]	3(1)	7(2)	-
σ_l [Å]	3(1)	14 (2)	-