1 SUPPORTING INFORMATION

3

Figure S1. - Peak I_{Na} is saturated at a holding potential of -100 mV.

4 A.- Representative recordings of I_{Na} in a cardiomyocyte at HP of -120, -100 and -90 mV using a 10 5 mmol·L⁻¹ extracellular Na⁺ solution and test pulses to -40 mV. $I_{Na-Peak}$ was identical at HP of -120 and 6 -100 mV. A small decrease is only seen at HP = -90 mV. $I_{Na-Peak}$ density was compared in 5 7 cardiomyocytes at HP of -120 and -100 mV and yielded values of -21.8 ± 1.3 pA·pF⁻¹ and -21.9 ± 1.2

 $pA \cdot pF^{-1}$, respectively (not statistically significant; n = 5 cells isolated from 5 hearts; paired t-test). **B.-**8 9 Recordings obtained in a HEK293T cell expressing the human WT Nav1.5 channel. I_{Na} was evoked at a test potential of -20 mV. For the sake of clarity only the first 25 ms of the current recordings are 10 shown. The inset shows the last 5 ms (from 45 ms to 50 ms) of the current recording. I_{Na-Peak} density 11 was compared in 7 cells at HP of -120 and -100 mV and yielded values of $-91 \pm 12 \text{ pA} \cdot \text{pF}^{-1}$ and $-88 \pm$ 12 8 pA·pF⁻¹, respectively (not statistically significant; n = 7; paired t-test). C.- Recordings obtained in a 13 HEK293T cell expressing the human R1623Q Nav1.5 channel. I_{Na} was evoked at a test potential of -14 15 20 mV. For the sake of clarity only the first 25 ms of the current recording are shown. The inset shows the last 5 ms (from 45 ms to 50 ms) of the current recording. I_{Na-Peak} density was compared in 7 cells 16 at HP of -120 and -100 mV and yielded values of $-96 \pm 13 \text{ pA} \cdot \text{pF}^{-1}$ and $-90 \pm 10 \text{ pA} \cdot \text{pF}^{-1}$, respectively 17 (not statistically significant; n = 7; paired t-test). As expected, since $I_{Na-Peak}$ amplitudes were not 18 19 significantly different at the HP of -120 and -100 mV, availability curves obtained from HP -120 mV 20 (**D**) were not significantly different to the ones obtained from a HP of -100 mV (see Figure 6C, D). 21 The dots represent the mean \pm s.e.m. (n = 13) of the availability curve (in HEK293T cells) for WT and R1623Q in control and in the presence of 100 μ mol·L⁻¹HSP. V_{inac} and s_{inac} obtained from a HP of -120 22 23 mV were -74.4 ± 0.6 mV and 6.5 ± 0.3 mV and -76.2 ± 0.4 mV and 6.8 ± 0.3 mV in the WT and the 24 R1623Q mutant channel, respectively (not significantly different to the ones obtained from a HP of -25 100 mV). HSP significantly shifted the availability curve compared to control in both the WT and R1623Q channels. V_{inac} and s_{inac} were -80.8 \pm 0.8 mV and 6.3 \pm 0.2 mV and -88.3 \pm 0.6 mV and 5.5 \pm 26 0.3 mV in the WT and the R1623Q mutant channel, respectively (P < 0.05; paired t-test). The shifts 27 28 induced by HSP on the WT and R1623Q availability curves were not significantly different to the ones 29 obtained from a HP of -100 mV (see Figure 6C, D).

30

31

34 Figure S2. - Absence of I_{Na-Late} in rat ventricular cardiomyocytes.

A.- I_{Na} recorded at -40 mV in a cardiomyocyte clamped at a HP of -100 mV; extracellular Na⁺ 35 36 concentration was 10 mmol·L⁻¹. Recordings were obtained under control condition and in the presence of tetrodotoxin (TTX, 50 μ mol·L⁻¹; n = 5). Note that I_{Na} was completely blocked by TTX and that the 37 38 current level at the end of the voltage-clamp pulse was the same in both conditions. This indicates that 39 there was no late steady-state inward current at the end of the pulse in control condition. B.- I_{Na} 40 recorded at different test potentials from a HP of -100 mV. Extracellular Na⁺ was 10 mmol·L⁻¹. Note that not only at -40 mV but also at more depolarized test potentials (-30 and -20 mV), no I_{Na-Late} was 41 42 observed (n = 5). Instead, a small steady outward current was more evident at these potentials. C.- In

43	order to rule out any influence of the low extracellular Na^+ concentration on the presence or not of I_{Na-}
44	L_{Late} , we performed I_{Na} recordings in rat ventricular cardiomyocytes at 117 mmol·L ⁻¹ extracellular Na ⁺
45	concentration. Although there was no voltage control under this condition, no $I_{Na-Late}$ could be recorded
46	at test potentials between -40 and -20 mV ($n = 5$). The inset shows the last 5 ms (from 45 ms to 50 ms)
47	of the current recording. In cardiomyocytes, the steady outward current at the end of the voltage-clamp
48	pulse is related to the electrogenic Na ⁺ -Ca ²⁺ X current, which at the Na ⁺ and Ca ²⁺ concentrations used
49	for cardiomyocytes has a reversal potential around -60 mV. Therefore, at more depolarized potentials
50	the Na ⁺ -Ca ²⁺ exchanger exhibits a small outward current.

73 Figure S3. - Voltage dependency of inactivation time constants of I_{Na}.

Inactivation time constants τ_{fast} and τ_{slow} in control conditions and in the presence of HSP (100 µmol·L⁻ ¹) in HEK293T cells expressing WT (**A**) and R1623Q (**B**) channels. HSP significantly decreased τ_{fast} only in the R1623Q mutant but significantly decreased τ_{slow} in both WT and mutant channels although the decrease in τ_{slow} was more marked in the mutant. * P < 0.05 with respect to control; n = 12; oneway ANOVA with Tukey's post hoc test. Note that the effects of HSP on inactivation time constants were not voltage-dependent and the reduction by HSP was proportional at all voltages studied.

- 80
- 81
- 82
- 83
- 84
- 85

Figure S4. - Tonic and use-dependent block of hesperetin on I_{Na} in WT and R1623Q mutant hNav1.5 channels.

89 A to F.- Normalized peak I_{Na} at different frequencies of stimulation. The cells were clamped at -100 90 mV and test pulses to -20 mV were applied at the control frequency (0.25 Hz). Then, stimulation was stopped for 1 min and HSP (100 μ mol·L⁻¹) was perfused during and after this rest period. Subsequently, 91 92 stimulation was resumed (still in the presence of HSP) at the frequencies shown (A and B: 0.25 Hz; C 93 and D: 1 Hz; E and F: 5 Hz). A first pulse (tonic) block of I_{Na} by HSP (not shown) occurred when 94 stimulation was resumed and was followed by a clear but small use-dependent block at 1 Hz. The tonic 95 block amounted to 94.8 ± 1.8 % and 95.9 ± 1.6 % of total block for WT and R1623O, respectively, at the lowest frequency (0.25 Hz panels A and B). At 1 Hz the tonic block was 93.3 ± 0.8 % and $90.7 \pm$ 96 97 2.7 % of total block for WT and R1623Q, respectively, due to the small use-dependent block (6.8 \pm 98 0.7 % for WT and 9.8 ± 2.9 % for R1623Q; panels C and D). However, at 5 Hz a use-dependent block 99 of HSP on WT and R1623O hNav1.5 channels becomes more evident. At this frequency, the tonic 100 block of I_{Na} by HSP was reduced to 72.4 ± 5.3 % and 72.7 ± 5.1 % of total block for WT and R1623Q, 101 respectively, while use-dependent block amounted to 27.7 ± 1.5 % and 27.4 ± 2.9 % of total block for WT and R1623Q, respectively (panels E and F). I_{Na} was normalized by dividing peak current at each 102 103 pulse by the peak current amplitude at the first pulse after resuming stimulation. The dots represent the 104 mean \pm s.e.m. of 6 different cells in each condition. The insets show the corresponding current traces at the 1st and 15th voltage-clamp pulse for both control (black dots) and in the presence of HSP 100 105 μ mol·L⁻¹; for clarity, only the first 15 ms of the current traces are shown. The 3-ms scale bar shown in 106 107 panel A is scalable to all current traces in all panels.

- 108
- 109
- 110
- 111
- 112

114 Figure S5. – HSP does not affect the voltage-dependence of channel activation.

115 Normalised current-to-voltage relationships of I_{Na} in WT (**A**) and R1623Q (**B**) under control condition 116 (black) and in the presence of HSP 100 μ mol·L⁻¹ (grey). The dots represent the mean \pm s.e.m. (n = 117 13). The similar shape in both curves suggests that HSP does not affect the voltage-dependence of 118 channel activation.

Experimental model	IC ₅₀ (μmol·L ⁻¹)	Hill number	Inhibition at maximal concentration tested (%)
Aortic rings (pre-contracted by KCl)	21 ± 11	0.8 ± 0.2	78 ± 13
Aortic rings (pre-contracted by PE)	26 ± 16	0.8 ± 0.4	45 ± 9
Cardiomyocytes I _{Na}	100 ± 14	0.9 ± 0.1	95 ± 3
hNav1.5 WT I _{Na-Peak}	130 ± 10	0.8 ± 0.1	87 ± 1
hNav1.5 WT I _{Na-10ms}	54 ± 9	0.6 ± 0.1	89 ± 3
hNav1.5 WT I _{Na-50ms}	49 ± 5	0.5 ± 0.1	85 ± 1
hNav1.5 WT I _{Na-500ms}	56 ± 9	0.6 ± 0.1	86 ± 2
hNav1.5 R1623Q I _{Na-Peak}	136 ± 17	0.8 ± 0.1	90 ± 3
hNav1.5 R1623Q I _{Na-10ms}	35 ± 4	0.6 ± 0.1	95 ± 2
hNav1.5 R1623Q I _{Na-50ms}	31 ± 4	0.5 ± 0.1	88 ± 1
hNav1.5 R1623Q I _{Na-500ms}	32 ± 4	0.6 ± 0.1	93 ± 1
hNav1.5 F1760A INa-Peak	N. D.	N. D.	19 ± 2

- 119 Table 1: Summary table comparing the inhibition potency of hesperetin on the different
- 120 experimental models studied.

121 (N. D.) Not determined. The accuracy of this IC₅₀ estimation is compromised due to the very small

122 maximal inhibition.

123

124

126 Table 2: Summary table comparing the values of the parameters obtained from the modified

Experimental model	Vact (mV)	Sact (mV)	Vinac (mV)	Sinac (mV)
Cardiomyocytes I _{Na} (Control)	-37.1 ± 0.6	4.4 ± 0.5	-71.1 ± 0.2	7.3 ± 0.2
Cardiomyocytes I_{Na} (HSP 100 µmol·L ⁻¹)	-36.4 ± 0.5	4.9 ± 0.2	-75.1 ± 0.1*	6.9 ± 0.2
hNav1.5 WT I _{Na} (Control)	-34.7 ± 0.4	4.6 ± 0.3	-74.8 ± 0.3	6.9 ± 0.3
hNa _V 1.5 WT I _{Na} (HSP 100 μmol·L ⁻¹)	-34.6 ± 0.4	4.3 ± 0.3	$-80.6 \pm 0.4*$	6.4 ± 0.4
hNav1.5 R1623Q I _{Na} (Control)	-33.9 ± 0.2	5.5 ± 0.2	-75.4 ± 0.5	7.5 ± 0.4
hNa _V 1.5 R1623Q I _{Na} (HSP 100 μmol·L ⁻¹)	-33.5 ± 0.3	5.6 ± 0.2	$-87.4 \pm 0.8*$	5.6 ± 0.7
hNav1.5 F1760A I _{Na} (Control)	-34.3 ± 0.6	6.4 ± 0.4	-73.2 ± 0.3	6.5 ± 0.3
hNav1.5 F1760A I _{Na} (HSP 1 mmol·L ⁻¹)	-35.2 ± 0.4	6.6 ± 0.3	-74.7 ± 0.4	6.8 ± 0.3

127 Boltzmann fit of the I-V relationships on the different experimental models studied.

- 128 * P < 0.05 with respect to control condition; paired t-test.
- 129
- 130

131 Table 3: Summary table comparing the effects of hesperetin on the I_{Na} activation and availability

132 curves on the different experimental models studied.

Experimental model	Vact (mV)	s (mV)	Gmax (nS·pF ⁻¹)	V _{Na} (mV)
Cardiomyocytes I _{Na} (Control)	-39.5 ± 0.5	-5.8 ± 0.6	1.2 ± 0.2	-2.2 ± 0.3
Cardiomyocytes I_{Na} (HSP 100 µmol·L ⁻¹)	-38.0 ± 0.2	-5.2 ± 0.5	$0.8 \pm 0.1*$	-2.9 ± 0.5
hNav1.5 WT I _{Na} (Control)	-36.7 ± 1.2	-4.5 ± 0.3	1.3 ± 0.1	42.0 ± 0.6
hNav1.5 WT I _{Na} (HSP 100 µmol·L ⁻¹)	-33.2 ± 3.3	-4.7 ± 0.7	$0.8 \pm 0.1*$	41.3 ± 0.7
hNav1.5 R1623Q I _{Na} (Control)	-36.4 ± 1.3	-4.8 ± 0.3	1.5 ± 0.2	40.9 ± 1.3
hNav1.5 R1623Q I _{Na} (HSP 100 μmol·L ⁻¹)	-32.4 ± 2.4	-5.4 ± 0.6	$1.0 \pm 0.1*$	38.4 ± 1.7
hNav1.5 F1760A I _{Na} (Control)	-41.0 ± 1.3	-5.1 ± 0.4	1.8 ± 0.2	42.7 ± 1.1
hNav1.5 F1760A I _{Na} (HSP 1 mmol·L ⁻¹)	-39.2 ± 0.7	-4.6 ± 0.4	1.8 ± 0.1	42.2 ± 1.2

133 * P < 0.05 with respect to control condition; paired t-test.

134

136 Table 4: Summary table comparing the effects of hesperetin on the time course of the inactivation

Experimental model	τ _{fast} (ms)	τ _{slow} (ms)	Relative Aslow (%)
Cardiomyocytes I _{Na} (Control)	1.30 ± 0.06	9.3 ± 0.3	2.6 ± 0.1
Cardiomyocytes I _{Na} (HSP 100 µmol·L ⁻¹)	1.27 ± 0.06	$8.9 \pm 0.3*$	$2.0 \pm 0.1*$
hNav1.5 WT I _{Na} (Control)	0.46 ± 0.02	3.6 ± 0.1	3.2 ± 0.1
$hNa_V 1.5 WT I_{Na} (HSP 100 \ \mu mol \cdot L^{-1})$	0.41 ± 0.04	$2.8 \pm 0.1*$	$2.2 \pm 0.1*$
hNav1.5 R1623Q I _{Na} (Control)	2.9 ± 0.1	10.2 ± 0.4	7.2 ± 0.4
hNa _V 1.5 R1623Q I _{Na} (HSP 100 μmol·L ⁻¹)	$1.4 \pm 0.2*$	$5.3 \pm 0.3*$	$1.9 \pm 0.1*$
hNav1.5 F1760A I _{Na} (Control)	0.78 ± 0.02	7.9 ± 0.1	1.3 ± 0.1
$hNav1.5 F1760A I_{Na} (HSP 1 mmol \cdot L^{-1})$	0.78 ± 0.01	8.2 ± 0.4	1.4 ± 0.1

137 phase of the I_{Na} traces evoked at -40 mV (cardiomyocytes) or -20 mV (hNav1.5).

138 * P < 0.05 with respect to control condition; paired t-test.

139