

Fig. S1. Quantification of Bap111 expression in RNAi knockdown larvae by Western blot. Representative bands for Bap111 and the loading control gamma-tubulin (left). At least three biological replicates were quantified using image J (right). ****P*<0.001; ANOVA, Dunnett's test for multiple comparisons.

Fig. S2. Missing α and β lobes were observed at low penetrance in SWI/SNF knockdown and control MBs. Confocal projections show (A) normal MB morphology, (B) the missing α lobe phenotype, and (C) the missing β -lobe phenotype. Arrows indicate the location of normal lobes in panel A and missing lobes in panels B and C. (D) Bar chart showing the total percentage of brains exhibiting the missing α -lobe phenotype (above x-axis) and missing β lobe phenotype (below x-axis). The total number of flies analyzed for each genotype is indicated.

Fig. S3. The appearance of β-lobe fibers crossing the midline was observed at variable penetrance in both knockdown and control MBs. The β-lobe crossing phenotype was qualitatively classified into four categories to account for the observed variation in phenotype severity. Confocal projections show (A) normal MB morphology, as well as the (B) mild, (C) moderate, and (D) severe forms of the β-lobe crossing phenotype. Arrows indicate the normal β-lobe in panel A, and the β-lobe fibers crossing the midline in panels B-D. (E) Bar chart showing the total percentage of brains exhibiting normal MB morphology (white), in addition to the mild (light gray), moderate (dark gray) and severe (black) forms of the β-lobe crossing phenotype. The total number of flies analyzed for each genotype is indicated. **P*< 0.05; Fisher's exact test, Bonferroni-Dunn test for multiple comparisons.

Fig. S4. Quantification of stunted γ -lobe in SWI/SNF knockdown mushroom bodies. (A-

D) The appearance of stunted γ -lobe was qualitatively classified into four categories to account for the observed variation in phenotype severity. Confocal projections show representative images for normal MB morphology (A), as well as the mild (B), moderate (C), and severe (D) stunted γ lobe. Arrows indicate the position of the γ -lobe. (B) Bar chart showing the total percentage of brains exhibiting normal (white), mild (light gray), moderate (dark gray) and severe (black) phenotypes. The total number of mushroom bodies analyzed for each genotype is indicated. ****P*<0.001, Fisher's exact test, Bonferroni-Dunn test for multiple comparisons.

Fig. S5. Identification of extra dorsal projections with established MB γ -specific Split-Gal4 lines. *MB607B-Gal4* (A-C) and *MB009B-Gal4* (D-F) and were used to drive expression of *UAS-mCherry-RNAi* (control), *UAS-Snr1*³²³⁷², *UAS-Bap60*³²⁵⁰³, *UAS-e(y)3*³²³⁴⁶. *MB607B-Gal4* (A) is expressed in the γ d neurons while and *MB009B-Gal4* (B) is expressed in the γ main subset of MB neurons. (C and F) The severity of the extra dorsal projection phenotype was scored by blind observers. For both drivers, knockdown of Bap60 (C n=28, F n=43) and e(y)3 (C n=36, F n=38) caused a significant increase in extra dorsal projection compared to the mCherry-RNAi control (C n=24, F n=49), while Snr1 knockdown (C n=24, F n=20) did not. However, Snr1 knockdown with both drivers (B and E) caused a clear reduction on the volume of MB γ axons present. Numbers in panels B and E indicate the penetrance of the reduced volume phenotype. Scale bars in panels A and D: 50µm. Scale bars in panels C and F: 25µm. White dashed line indicates the dorsal margin of the brain in panels A, B, D, and E. (C,F). Yellow dashed box in panels C and F show the area where extra dorsal projections are observed. **P*<0.05, ***P*<0.01,*****P*<0.0001; Kruskal-Wallis test, Dunn's test for multiple comparisons.

Fig. S6. MB-specific SWI/SNF knockdown causes defects in short-term courtship memory. (A) Box plots indicating the courtship index (CI) for naïve (N) flies and flies that were trained for short-term courtship memory by exposure to sexual rejection for 1 hour (T). Trained and naive flies were tested at the same time, 1 hour after rejection. The number of flies analyzed for each condition is indicated under the box plots. *P<0.05, **P<0.01, ****P<0.0001; Kruskal Wallis test, Dunn's test for pairwise comparisons. (B) Bar chart showing the learning index (LI) for each genotype [LI = (Cl_{naive}-Cl_{trained})/Cl_{naive}]. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; randomization test, 10,000 bootstrap replicates. Grey bars indicate controls. Purple bars indicate the SWI/SNF core and ATPase subunits. Yellow bars indicate BAPspecific subunits. Red bars indicate PBAP-specific subunits.

Fig. S7. MB-specific SWI/SNF knockdown causes defects in long-term courtship memory. (A) Box plots indicating the courtship index (CI) for naïve (N) flies and flies that were trained for long-term courtship memory by exposure to sexual rejection for 7 hours (T). Trained and naive flies were tested at the same time, 24 hours after rejection. The number of flies analyzed for each condition is indicated under the box plots. ****P*<0.001, *****P*<0.0001; Kruskal Wallis test, Dunn's test for pairwise comparisons. (B) Bar chart showing the learning index (LI) for each genotype [LI = (Cl_{naive}-Cl_{trained})/Cl_{naive}]. **P*<0.05, ***P*<0.01, *****P*<0.0001; randomization test, 10,000 bootstrap replicates. Grey bars indicate controls. Purple bars indicate the SWI/SNF core and ATPase subunits. Yellow bars indicate BAP-specific subunits. Red bars indicate PBAP-specific subunits.

Fig. S8. SWI/SNF knockdown does not affect EcR-B1 expression in third instar larvae MBs. Confocal images showing the MB cell bodies labeled with *R14H06-Gal4* and *UAS-mCD8::GFP* in late third instar larvae (GFP). Controls expressing mCherry RNAi (A) are compared to flies expressing RNAi constructs targeting $e(y)3[UAS-e(y)3^{32346}]$ (B) and *Bap60* (*UAS-Bap60*³²⁵⁰³) (C). EcR-B1 was labeled by immunohistochemistry. Scale bar: 25µm.

Fig. S9. Expression of R14H06-Gal4 in the second instar larvae CNS. UAS-mCD8::GFP was crossed to R14H06-Gal4 and the CNS was dissected from second instar larvae. CNSs were fixed and labeled with anti-FasII antibodies and imaged by confocal microscopy. Shown here is a maximum projection of a confocal stack. The MB is clearly and specifically labeled by GFP. Some cells of the ventral nerve chord are also GFP positive. Scale bar: 50μm.

Cono	RNAi	Survival	Assay	mRNA		
Gene	Stock #	% Survival ¹	p-value ²	qPCR¹	p-value ³	
mCherry	35785	80.2 ± 8.40	< 0.0001			
Bap170	26308	1.70 ± 3.70	< 0.0001	45 ± 3.3	< 0.0001	
	34582	0.71 ± 1.15	< 0.0001	44 ± 9.3	< 0.0001	
Bap55	24703	5.00 ± 4.40	< 0.0001	NA	NA	
	31708	83.3 ± 23.3	0.99	NA	NA	
Bap60	32503	0	< 0.0001	48 ± 13	0.0003	
	33954	17.8 ± 12.4	< 0.0001	ХХ	-	
	31712	0	< 0.0001	46 ± 4.0	< 0.0001	
brm	37720	0.96 ± 0.79	< 0.0001	60 ± 3.0	0.0082	
	34520	77.8 ± 15.6	0.99	97 ± 11	0.99	
Bap111	35242	3.55 ± 0.97	< 0.0001	284 ± 13	< 0.0001	
	26218	1.41 ± 1.96	< 0.0001	85 ± 8.7	0.98	
е(у)З	105946	0	< 0.0001	35 ± 3.3	< 0.0001	
	32346	0	< 0.0001	15 ± 3.2	< 0.0001	
mor	110712	1.20 ± 1.33	< 0.0001	28 ± 2.1	< 0.0001	
	6969	0.83 ± 0.93	< 0.0001	22 ± 0.8	< 0.0001	
Snr1	32372	4.04 ± 3.92	< 0.0001	ХХ	-	
	12644	53.8 ± 18.8	0.0040	62 ± 3.7	0.017	
osa	38285	2.47 ± 1.55	< 0.0001	59 ± 8.0	0.023	
	7810	2.13 ± 0.98	< 0.0001	ХХ	-	

Table S1: Evaluation of transgenic RNAi lines using a lethality assay and qPCR.

 1 ± standard error of the mean

²ANOVA, Dunnett test for multiple comparisons

³ANOVA, Tukey test for multiple comparisons

Genetic Background Controls												
Stock name		Sto No	Stock No.		ource	Genotype		Desc	Description			
attP2(mCherry) 3		35	5785		RiP	y ¹ sc [*] v ¹ ; P{VALIUM20-		TRiP	TRiP attP2 genetic background			
						mCherry}attP2		with an mCherry-RNAi				
attP2(36303)		36	36303		RiP	y ¹ v ¹ ;P{CaryP}attP2		TRiP	TRiP attP2 genetic background			
								contr	ol			
attP40(36304)		36304		TRiP		y ¹ v ¹ ;P{CaryP}attP40		TRiP	TRiP attp40 genetic background			
								contr	ol			
VDRC-		60	60000		'DRC	W ¹¹¹⁸		Isoge	Isogenic host strain for the VDRC			
GD(60000)								GD F	GD RNAi collection			
VDRC-		60	60100		'DRC	<i>y,</i> w ¹¹¹⁸ ; <i>P</i> {att <i>P</i> ,y ⁺ , w ³ `}		Isoge	Isogenic host strain for the VDRC			
KK(60100)								KK F	KK RNAi collection			
RNAi lines												
Gene	Stock	k	Sourc	е	Genot	ype RI			Appropriate Control			
name	No.						Hairp	oin				
brm	31712	2	TRiP		y ¹ v ¹ ;UAS-brm ³¹⁷¹²		Long		attP2(36303)			
	37720	0	VDRC		w ¹¹¹⁸ ;L	JAS-brm ³⁷⁷²⁰	Long		VDRC-GD(60000)			
Bap60	32503	3	TRiP		y ¹ sc [*] v ¹	;UAS-Bap60 ³²⁵⁰³	Short		attP2 (mCherry)			
	33954	4	TRiP		y ¹ sc [*] v ¹	;UAS-Bap60 ³³⁹⁵⁴	Short		attP2 (mCherry)			
Snr1	Snr1 32372		TRiP	y ¹ sc [*] v ¹		;UAS-Snr1 ³²³⁷²	Short		attP2 (mCherry)			
12644		4	VDRC	VDRC w ¹¹		¹¹¹⁸ ;UAS-Snr1 ¹²⁶⁴⁴			VDRC-GD(60000)			
osa 38285		TRiP	y¹sc*v		;UAS-osa ³⁸²⁸⁵	Short		attP40(36304)				
7810			VDRC w ¹¹¹		w ¹¹¹⁸ ;L	¹⁸ ;UAS-osa ⁷⁸¹⁰			VDRC-GD(60000)			
<i>e(y)</i> 3 32346 T		TRiP	y ¹ sc [*] v ¹		;UAS-e(y)3 ³²³⁴⁶	Short		attP2 (mCherry)				
10594		46	VDRC	C UAS-e		e(y)3 ¹⁰⁵⁹⁴⁶	Long		VDRC-KK(60100)			
Bap170 26308 T		TRiP		y ¹ v ¹ ;U	AS-Bap170 ²⁶³⁰⁸	Long		attP2(36303)				
	34582 VDRC w ¹¹¹⁸ ;UAS-Bap170 ³⁴⁵⁸² /		JAS-Bap170 ³⁴⁵⁸² /TM3	Long		VDRC-GD(60000)						
<i>mor</i> 6969		VDRC		w ¹¹¹⁸ ;UAS-mor ⁶⁹⁶⁹		Long		VDRC-GD(60000)				
	1107	12	VDRC		UAS-n	nor ¹¹⁰⁷¹²	Long		VDRC-KK(60100)			

Table S2: RNAi stocks and genetic background controls used in this study

Movie 1. Confocal stack showing the expression domain of *R14H06-Gal4* in the adult *Drosophila*

brain. R14H06-Gal4 was used to drive expression of UAS-mCD8::GFP, shown in green. Brains were counterstained in red using the nc82 primary antibody from the Developmental Studies Hybridoma Bank (1:50 dilution) and goat anti-mouse DyLight 594 secondary antibodies (1:400 dilution).