Supporting Information

Elucidation of the Herbicidin Tailoring Pathway Offers New

Insights into Its Structural Diversity

Hai-Xue Pan,[†] Zhang Chen,[†] Tianfang Zeng,[‡] Wen-Bing Jin,[†] Yujie Geng,[⊥] Geng-Min Lin,[†] Juan Zhao,[†] Wei-Tao Li,[†] Zijun Xiong,[§] Sheng-Xiong Huang,[§] Xin Zhai,[‡] Hung-wen Liu,^{*,1,⊥} and Gong-Li Tang^{*,†}

[†]State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200032, China

[®]Department of Chemistry; [⊥]Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA

[‡]Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China

[§]State Key Laboratory of Phytochemistry and Plant Resources in West China, Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, CAS, Kunming, 650201, China

Table of contents

Exp	erim	ental Procedures5
	1.	Materials
	2.	Production and analysis of herbicidins and aureonuclemycin5
	3.	Identifications of the gene clusters and sequence analyses
	4.	Heterologous expression of anm cluster in <i>S. lividans</i>
	5.	Construction of gene deletion mutants of S. sp. KIB-0276
	6.	The <i>her10</i> deletion and complementation of <i>S</i> . sp. L-9-108
	7.	Isolation of herbicidins and aureonuclemycin8
	8.	Hydrolysis of herbicidin K10
	9.	Protein expression and purification10
	10.	Chemical synthesis of tiglyl-CoA and angelyl-CoA11
	11.	Biochemical assays12
	12.	Feeding study analysis of Her11 activity14
	Refe	erences14
Sup	plem	entary Tables:
	Tabl	e S1 NMR data of 10 in CD ₃ OD (500 MHz for ¹ H NMR and 125 MHz for ¹³ C NMR).15
	Tabl	e S2 Predicted functions of genes in herbicidin (hbc) biosynthetic gene cluster and the
	com	parison with aureonuclemycin (anm) cluster16
	Tabl	e S3 NMR data of 6 in CD ₃ OD (500 MHz for ¹ H NMR and 125 MHz for ¹³ C NMR) 17
	Tabl	e S4 NMR data of 8 in CD ₃ OD (500 MHz for ¹ H NMR and 125 MHz for ¹³ C NMR)18

	Table S5 NMR data of 3 in CD ₃ OD (500 MHz for ¹ H NMR and 125 MHz for ¹³ C NMR))19
	Table S6 NMR data of 5 in CD ₃ OD (500 MHz for ¹ H NMR and 125 MHz for ¹³ C NMR))20
	Table S7 NMR data of 11 in CD ₃ OD (500 MHz for ¹ H NMR and 125 MHz for ¹³ C NMR	R)22
	Table S8 Strains and plasmids used in this study	23
	Table S9 Primers used in this study	24
Sup	plementary Figures	26
	Figure S1 LC-MS analysis of S. sp KIB-027 fermentation broth.	26
	Figure S2 ¹ H NMR spectrum of 1 in CD ₃ OD	27
	Figure S3 ¹³ C NMR spectrum of 1 in CD ₃ OD	27
	Figure S4 HRMS data of 1	28
	Figure S5 ¹ H NMR spectrum of 2 in CD ₃ OD	28
	Figure S6 ¹³ C NMR spectrum of 2 in CD ₃ OD	29
	Figure S7 HRMS data of 2	29
	Figure S8 ¹ H NMR spectrum of 7 in CD ₃ OD	30
	Figure S9 ¹³ C NMR spectrum of 7 in CD ₃ OD	30
	Figure S10 HSQC spectrum of 7 in CD ₃ OD	31
	Figure S11 HMBC spectrum of 7 in CD ₃ OD	31
	Figure S12 ¹ H- ¹ H COSY spectrum of 7 in CD ₃ OD	32
	Figure S13 HRMS data of 7	32
	Figure S14 ¹ H NMR spectrum of 10 in CD ₃ OD	33
	Figure S15 ¹³ C NMR spectrum of 10 in CD ₃ OD	33
	Figure S16 DEPT90 spectrum of 10 in CD ₃ OD	34
	Figure S17 DEPT135 spectrum of 10 in CD ₃ OD	34
	Figure S18 HSQC spectrum of 10 in CD ₃ OD	35
	Figure S19 HMBC spectrum of 10 in CD ₃ OD	35
	Figure S20 ¹ H- ¹ H COSY spectrum of 10 in CD ₃ OD	36
	Figure S21 NOESY spectrum of 10 in CD ₃ OD	36
	Figure S22 HRMS data of 10	37
	Figure S23 Genetic organization of biosynthetic gene clusters for herbicidins (hbc,	her),
	aureonuclemycin (anm), and some homologous BGCs found in NCBI Genbank	38
	Figure S24 Heterologous expression of the anm cluster in S. lividans.	39
	Figure S25 ¹ H NMR spectrum of 9 in CD ₃ OD	39
	Figure S26 ¹³ C NMR spectrum of 9 in CD ₃ OD	40
	Figure S27 ¹ H NMR spectrum of 6 in CD ₃ OD	40
	Figure S28 ¹³ C NMR spectrum of 6 in CD ₃ OD	41
	Figure S29 DEPT135 spectrum of 6 in CD ₃ OD	41
	Figure S30 HSQC spectrum of 6 in CD ₃ OD	42
	Figure S31 HMBC spectrum of 6 in CD ₃ OD	42
	Figure S32 ¹ H- ¹ H COSY spectrum of 6 in CD ₃ OD	43
	Figure S33 NOESY spectrum of 6 in CD ₃ OD	43
	Figure S34 HRMS data of 6	44
	Figure S35 ¹ H NMR spectrum of 8 in CD ₃ OD	45
	Figure S36 ¹³ C NMR spectrum of 8 in CD ₃ OD	45
	Figure S37 DEPT135 spectrum of 8 in CD ₃ OD	46

Figure S38 HSQC spectrum of 8 in CD ₃ OD	46
Figure S39 HMBC spectrum of 8 in CD ₃ OD	47
Figure S40 ¹ H- ¹ H COSY spectrum of 8 in CD ₃ OD	47
Figure S41 NOESY spectrum of 8 in CD ₃ OD	48
Figure S42 HRMS data of 8	48
Figure S43 ¹ H NMR spectrum of 3 in CD ₃ OD	49
Figure S44 ¹³ C NMR spectrum of 3 in CD ₃ OD	49
Figure S45 DEPT135 spectrum of 3 in CD ₃ OD	50
Figure S46 HSQC spectrum of 3 in CD ₃ OD	50
Figure S47 HMBC spectrum of 3 in CD ₃ OD	51
Figure S48 ¹ H- ¹ H COSY spectrum of 3 in CD ₃ OD	51
Figure S49 NOESY spectrum of 3 in CD ₃ OD	52
Figure S50 HRMS data of 3	52
Figure S51 ¹ H NMR spectrum of 5 in CD ₃ OD	53
Figure S52 ¹³ C NMR spectrum of 5 in CD ₃ OD	53
Figure S53 DEPT135 spectrum of 5 in CD ₃ OD	54
Figure S54 HSQC spectrum of 5 in CD ₃ OD	54
Figure S55 HMBC spectrum of 5 in CD ₃ OD	55
Figure S56 ¹ H- ¹ H COSY spectrum of 5 in CD ₃ OD	55
Figure S57 NOESY spectrum of 5 in CD ₃ OD	56
Figure S58 HRMS data of 5	56
Figure S59 ¹ H NMR spectrum of 11 in CD ₃ OD	57
Figure S60 ¹³ C NMR spectrum of 11 in CD ₃ OD	57
Figure S61 DEPT135 spectrum of 11 in CD ₃ OD	58
Figure S62 HSQC spectrum of 11 in CD ₃ OD	58
Figure S63 HMBC spectrum of 11 in CD ₃ OD	59
Figure S64 ¹ H- ¹ H COSY spectrum of 11 in CD ₃ OD	59
Figure S65 NOESY spectrum of 11 in CD ₃ OD	60
Figure S66 HRMS data of 11	60
Figure S67 LC-MS analysis of S. sp KIB-027 derived gene knock-out mutants. ΔI	hbcG and
AhbcGI	61
Figure S68 SDS-PAGE analysis of the purified proteins HbcH (61.4 kDa), HbcF (3	33.0 kDa)
and HbcG (41.4 kDa).	61
Figure S69 <i>In vitro</i> assay of HbcF with 6 as substrate using HPLC method 2	
Figure S70 <i>In vitro</i> assay of HbcH with 9.3.2 and 10 as substrates.	
Figure S71 Chemical synthesis of tiglyl-CoA and angelyl-CoA.	
Figure S72 In vitro assay of HbcG with 3.6 and 9 as substrates	64
Figure S72 In vitro assay of HbcF with 10, 7, 3 and 8 as substrates	
Figure S74 In vitro assay of HbcH with 9 as substrate and various acvl donors	
Figure S75 Mass spectra for 12-19 and the putative structures of these compounds	
Figure S76 In vitro assay of the hydrolytic activity of HbcH with 1 as substrate	
Figure S77 In vitro assay of the hydrolytic activity of HbeH with 5 as substrate	۵۵
Figure S77 In vitro assay of the hydrolytic activity of HbcH with 8 as substrate.	
Figure S70 In vitro assay of the hydrolytic activity of HbcH with 6 as substrate.	70
righte 577 in vitro assay of the nytrorytic activity of fiberi with 0 as substitute	/1

Figure S80 In vitro assay of the hydrolytic activity of HbcH with 7 as substrate71
Figure S81. HPLC analysis method 3 and MS data of S. sp. L-9-10 wild type, ∆her10 mutant,
$\Delta her 10$ mutant complementation fermentation broth
Figure S82. SDS-PAGE analysis of the purified protein Her9 (61.0 kDa)72
Figure S83. In vitro assay of Her8, Her10 with compound 9 as substrate using HPLC analysis
method 473
Figure S84. In vitro assay of Her9 with compound 9 as substrate using HPLC analysis
method 473
Figure S85. In vitro assay of Her9 with compounds 2 and 10 as substrate using HPLC
analysis method 374
Figure S86. In vitro assay of Her8, Her10 with compound 6 as substrate using HPLC analysis
method 374
Figure S87. In vitro assay of Her10 with compound 8 as substrate using HPLC analysis
method 375
Figure S88. HPLC and MS analysis of feeding result for in vivo Her11 activity75

Experimental Procedures

1. Materials

General chemicals, media, enzymes and other molecular biological reagents were purchased from commercial sources. Specific bacterial strains and plasmids used in this study were summarized in Table S8, PCR primers were listed in Table S9.

2. Production and analysis of herbicidins and aureonuclemycin

Streptomyces sp. KIB-027 wild type and the mutants, as well as *S. lividans-anmBCDE* were cultured on MS agar plate (add 25 µg/mL apramycin for *S. lividans-anmBCDE*) at 30°C for 7 days. For fermentation, a piece of spore-containing medium of about 1 cm² were seeded into a 250 mL flask containing 50 mL of the fermentation medium (dextrin 4%, tomato paste 0.75%, NZ amine A 0.25%, yeast extract 0.5%, pH = 7.0) and incubated at 30°C, 220 rpm for 4 days. The fermentation broth was centrifuged to remove the precipitate and the supernatant was used for HPLC and HPLC-MS analysis. HPLC was performed using a reverse-phase column (Grac e Alltima, C18, 5 µm, 4.6 × 250 mm) with UV detection at 260 nm under the following program: gradient elution of mobile phase A (H₂O supplemented with 0.1% formic acid) and mobile phase B (CH₃OH supplemented with 0.1% formic acid) using a flow rate of 0.8 mL/min: 0-4 min, 5% phase B; 4-10 min, 5%-20% phase B; 10-20 min, 20%-80% phase B; 20-25 min, 80% phase B; 25-30 min, 80%-5% phase B.

Streptomyces sp. L-9-10 wild type and $\Delta her10$ mutant were cultured on ISP4 agar at 30 °C plate for 5 days. For fermentation, a piece of colony-containing medium about 1 cm² was seeded into a 125 mL Erlenmeyer flask containing 20 mL of TSB (tryptic soy broth) medium and this seeding culture was incubated at 28 °C, 220 rpm for 3 days. Then 1 mL of the resulting culture was seeded into 20 mL of the fermentation medium (0.5% yeast extract, 0.5% malt extract, 1.5% soytone, 1% glucose, 0.3% sodium chloride, 1.5% glycerol, and 2% 3-morpholinopropane-1-sulfonic acid (MOPS) buffer at pH 7). This production culture was incubated at 28 °C, 220 rpm for 4 days. For HPLC sample preparation, 1 mL of the fermentation broth was centrifuged (15,000 g, 10 min) to pellet the cellular material and 0.5 mL of the supernatant was extracted with 0.5 mL *n*-butanol. The *n*-butanol extract was evaporated under reduced pressure. The dried material was resuspended in 0.1 mL H₂O and filtered by Nanosep (Pall, 10K) spin filter before analysis. HPLC was performed using a C18 column (Agilent, C18, 5 μ m, 4.6 × 250 mm) with UV detection at 260 nm and the samples were eluted with mobile phase A (0.1% formic acid in water), and mobile phase B (0.1% formic acid in acetonitrile) using a flow rate of 1 mL/min: 0-5 min, 12.5% phase B; 5-20 min, 12.5-50% phase B; 20-22 min, 50%-80% phase B, 27-30 min, 80-12.5% phase B.

3. Identifications of the gene clusters and sequence analyses

Genomic sequencing of *Streptomyces* sp. KIB-027 and *S. aureus var. suzhoueusis* was performed by BGI-Shenzhen. The gene cluster for herbicidins (*hbc*) was found from the genomic sequence of *Streptomyces* sp. KIB-027 using O-methyltransferase and cytochrome P450 monooxygenase as query sequences for local BLAST search. The gene cluster for aureonuclemycin (*anm*) was found from the genomic sequence of *S. aureus var. suzhoueusis* using *hbcE* as a query sequence for local BLAST search. The genes in *hbc* and *anm* were predicted by BLAST analyses in NCBI database.

4. Heterologous expression of anm cluster in S. lividans

The *anmB-C-D-E* gene locus was amplified by PCR with genomic DNA of *S. aureus var. suzhoueusis* as a template using the primers anmBE-For and anmBE-Rev (Table S9). The PCR product was purified and ligated to pMD19-T simple vector by T-A ligation. The *Hind*III/*Xba*I fragment of the gene cassette was cloned into the *EcoRI/Xba*I sites of pSET152 with an *EcoRI/Hind*III fragment of the *ermE*p* promoter to yield the heterologous expression plasmid pSET-anmBCDE. This vector can be specifically integrated at the *attP* attachment site of *S. lividans*. Plasmid pSET-anmBCDE and the control plasmid pSET152 were transferred into *E. coli* S17-1 and then introduced into *S. lividans* through conjugation respectively. Apramycin resistant exconjugants were selected as the heterologous expression stain *S. lividans-anmBCDE* and the control strain *S. lividans-pSET152*, and the genotype of *S. lividans-anmBCDE* was verified by PCR with primers anmBE-For and anmBE-Rev.

5. Construction of gene deletion mutants of S. sp. KIB-027

For *hbcA* inactivation, a 1.8 kb *Hind*III/*Xba*I fragment (primers hbcA-L-For and hbcA-L-Rev) and a 1.8 kb *Xba*I/*EcoR*I fragment (primers hbcA-R-For and hbcA-R-Rev) were cloned into the *Hind*III/*EcoR*I sites of the plasmid pKC1139 to generate the *hbcA* deletion plasmid, pKC1139-hbcA.

For *hbcF* inactivation, a 1.8 kb *Hind*III/*Xba*I fragment (primers hbcF-L-For and hbcF-L-Rev) and a 1.8 kb *XbaI/EcoR*I fragment (primers hbcF-R-For and hbcF-R-Rev) were cloned into the *Hind*III/*EcoR*I sites of the plasmid pKC1139 to generate the *hbcF* deletion plasmid, pKC1139-hbcF.

For *hbcG* inactivation, a 1.8 kb *Hind*III/*Xho*I fragment (primers hbcG-L-For and hbcG-L-Rev) and a 1.8 kb *Xho*I/*EcoR*I fragment (primers hbcG-R-For and hbcG-R-Rev) were cloned into the *Hind*III/*EcoR*I sites of the plasmid pKC1139 to generate the *hbcG* deletion plasmid, pKC1139-hbcG.

For *hbcH* inactivation, a 1.8 kb *Hind*III/*Xba*I fragment (primers hbcH-L-For and hbcH-L-Rev) and a 1.8 kb *XbaI/EcoR*I fragment (primers hbcH-R-For and hbcH-R-Rev) were cloned into the *Hind*III/*EcoR*I sites of the plasmid pKC1139 to generate the *hbcH* deletion plasmid, pKC1139-hbcH.

For *hbcI* inactivation, a 1.6 kb *Hind*III/*Xho*I fragment (primers hbcI-L-For and hbcI-L-Rev) and a 1.6 kb *Xho*I/*Xba*I fragment (primers hbcI-R-For and hbcI-R-Rev) were cloned into the *Hind*III/*Xba*I sites of the plasmid pKC1139 to generate the *hbcI* deletion plasmid, pKC1139-hbcI.

For *hbcG* and *hbcI* double inactivation, the 1.6 kb *Hind*III/*XhoI* fragment (primers hbcI-L-For and hbcI-L-Rev) and the 1.8 kb *XhoI/EcoRI* fragment (primers hbcG-R-For and hbcG-R-Rev) were cloned into the *Hind*III/*EcoRI* sites of the plasmid pKC1139 to generate the *hbcGI* deletion plasmid, pKC1139-hbcGI.

The resulting plasmids were introduced into *Streptomyces* sp. KIB-027 through conjugation respectively, and apramycin-resistant exconjugants were selected at 30°C. These exconjugants were first grown in MS plates with apramycin at 37 °C to obtain single-crossover mutants, which were further inoculated at 30 °C in TSB media without apramycin to generate the apramycin-sensitive clones. The double-crossover mutants were selected by PCR analyses using the primers listed in Table S9 (hbcA-v-For and hbcA-v-Rev for hbcA mutants, hbcF-v-For and hbcF-v-Rev for hbcF mutants, hbcF-v-For and hbcF-v-Rev for hbcF mutants, hbcH-v-For and hbcF-v-Rev for hbcG mutants, hbcH-v-For and

hbcH-v-Rev for hbcH mutants, hbcI-v-For and hbcI-v-Rev for hbcI mutants, hbcGI-v-For and hbcGI-v-Rev for hbcGI mutants). The resulting gene deletion mutants for each gene are shown in Table S8.

6. The *her10* deletion and complementation of S. sp. L-9-10

For *her10* in-frame deletion, a 2.1 kb *Ndel/Bgl*II fragment (primers her10-L-For and her10-L-Rev) and a 2.1 kb *BglII/Hind*III fragment (primers her10-R-For and her10-R-Rev) were cloned into the *Ndel/Hind*III sites of the plasmid pYH7 to generate the *her10* deletion plasmid, pYH7-her10.

The resulting plasmid was introduced into *S.* sp. L-9-10 through conjugation on ISP4 plate, and apramycin-resistant conjugants were selected at 30 °C. These conjugants were first grown on ISP4 plate with 50 µg/mL apramycin to obtain single-crossover mutants, which were further incubated on ISP4 plate without apramycin to generate apramycin-sensitive clones. The double-crossover mutants were selected by PCR analysis using the primers listed in Table S9 (her10-v-For and her10-v-Rev).

For $\Delta her10$ mutant complementation, her10 gene of S. sp. L-9-10 was amplified by PCR using the primer listed in Table S9 (her10-139-For and her10-139-Rev). The PCR product was ligated into pIB139 digested with *NdeI* using Gibson assembly. The resulting plasmid was introduced into S. sp. L-9-10 through conjugation to generate $\Delta her10$: her10.

7. Isolation of herbicidins and aureonuclemycin

S. sp. KIB-027 wild type and the gene deletion mutants, as well as the *anm* expression strain *S. lividans-anmBCDE* were fermented on a larger scale using the same culture procedure as described above.

To isolate compounds **1**, **2**, **7** and **10** from *S*. sp. KIB-027 wild type, a total of 3 L of culture was prepared for fermentation. The fermentation broth was centrifuged at 5000 rpm for 20 min. Then the supernatant was collected and 300 g of macro resin HP20 was added, followed by shaking at room temperature for 1 hr. The HP20 was applied to a column and eluted with H_2O/CH_3OH (90/10, 50/50, 10/90, 0/100). Four compounds were included in the eluate of H_2O/CH_3OH (10/90), which was evaporated to 30 mL and subjected to a new HP20 column eluted with H_2O/CH_3OH

(50/50, 10/9) to yield corresponding fractions. Fractions containing target components were evaporated to about 5 mL and performed HPLC semi-preparation over a 30 min gradient program. The program for compound **10**: T = 0 min, 20% B; T = 4 min, 20% B; T = 25 min, 70% B; T = 30 min, 20% B; (A = H₂O with 0.1 % TFA, B = CH₃OH, Flow rate = 3 mL/min). The program for compound **1**, **2**, **7**: T = 0 min, 35% B; T = 4 min, 35% B; T = 25 min, 85% B; T = 30 min, 35% B; (A = H₂O with 0.1 % TFA, B = CH₃OH, Flow rate = 3 mL/min). Finally, 11 mg of **1**, 18 mg of **2**, 25 mg of **7** and 8 mg of **10** were obtained.

To isolate compound **9** from *S. lividans-anmBCDE*, a total of 2 L of culture was prepared for fermentation. The fermentation broth was centrifuged at 5000 rpm for 20 min. An equal volume of methanol was added to the supernatant, and a large amount of precipitate was removed by centrifugation. The supernatant was concentrated to half volume and an equal volume of methanol was added again. The above experiments were repeated until the supernatant volume was concentrated to 50 mL in H₂O/CH₃OH (50/50). The crude concentrate was subjected to silica gel column (100-200 mesh) and eluted with H₂O/CH₃OH (50/50, 0/100). Fractions containing **9** were evaporated to about 3 mL and performed HPLC semi-preparation over a 20 min gradient program: T = 0 min, 20% B; T = 6 min, 20% B; T = 15 min, 30% B; T = 17 min, 20% B; T = 20 min, 20% B; (A = H₂O with 0.1 % TFA, B = CH₃OH, Flow rate = 3 mL/min). Finally, 12 mg of **9** was obtained.

To isolate compound **6** from *S*. sp. KIB-027-*ΔhbcF*, a total of 2 L of culture was prepared for fermentation. To isolate compounds **8** and **11** from *ΔhbcG*, a total of 3 L of culture was prepared for fermentation. To isolate compound **3** from *ΔhbcH*, a total of 2 L of culture was prepared for fermentation. To isolate compound **5** from *ΔhbcI*, a total of 2 L of culture was prepared for fermentation. The separation of these compounds is similar to that of herbicidins in the wild type. The program for HPLC semi-preparation for these compounds: T = 0 min, 20% B; T = 4 min, 20% B; T = 20 min, 80% B; T = 25 min, 20% B; T = 30 min, 20% B; $(A = H_2O \text{ with } 0.1 \% \text{ TFA}, B = CH_3OH$, Flow rate = 3 mL/min). Finally, about 10 mg of **6**, **8**, **3**, **5** and 3 mg of **11** were obtained.

Isolation of compounds 1 and 2 from S. sp. L-9-10 wild type was carried out as previously described.⁴

To isolate compounds 8 from S. sp. L-9-10 *Aher10* mutant, a 200 mL culture was prepared as

described above for fermentation. The fermentation broth was centrifuged at 4,000 *g* for 10 min. Then the supernatant was extracted by the same volume of EtOAc three times. The organic layers were combined and the solvent was evaporated to about 5 mL. HPLC semi-preparation was performed over a 30 min gradient program: T = 0 min, 10% B; T = 2 min, 10% B; T = 15 min 35% B; T = 17 min, 65 % B, T = 21 min, 65% B, T = 22 min, 10% B; $(A = H_2O)$ with 0.1% formic acid, B = acetonitrile with 0.1% formic acid). Finally, 10 mg of **8** was obtained.

To isolate compound **5** from *Streptomyces scopuliridis* RB72 wild type, a 200 mL culture was similarly prepared, except that the production culture was harvested after two days of fermentation. Compound **5** was isolated using the same extraction and HPLC methods described above. Finally, about 0.3 mg of compound **5** was obtained.

8. Hydrolysis of herbicidin K

An aqueous reaction mixture of 1 mM herbicidin K ($\mathbf{8}$) and 100 mM LiOH was incubated at room temperature for 3 hrs. The reaction was then neutralized with formic acid and the mixture was then purified using HPLC to yield compounds **6** and **9**.

9. Protein expression and purification

Protein expression

The genes encoding individual proteins HbcF, HbcG, HbcH and HbcI were amplified by PCR from genomic DNA of *S*. sp. KIB-027 respectively. The primers for the amplification are listed in Table S9. The PCR products were confirmed by sequencing. Each gene was digested with *NdeI/Hind*III and ligated with pET28a to provide the plasmids for protein expression. For HbcF, HbcG and HbcH expression, plasmids pET28a-HbcF, pET28a-HbcG and pET28a-HbcH were transformed into *E. coli* BL21 (DE3), respectively. The cells were cultured in 1000 mL LB with 100 μ g/mL kanamycin to an OD₆₀₀ of 0.6 and induced with 0.1 mM IPTG. Then the cells were cultured for 24 hrs at 16°C. For HbcI expression, expression plasmid pET28a-HbcI was transformed into *E. coli* BL21 (DE3). The cells were cultured in 500 mL LB with 100 μ g/mL kanamycin to an OD₆₀₀ of 0.6 and followed by addition of 0.1 mM IPTG, 1 mM 5-aminolevulinic acid and 0.5 mM FeSO₄. Then the cells were cultured for 24 hrs at 16°C.

Her8 and Her10 proteins encoded by her8 and her10 genes of S. sp. L-9-10 were obtained as

previously described.⁴ The gene encoding Her9 was amplified by PCR from genomic DNA of *S*. sp. L-9-10. The primers for amplification are listed in Table S9 (her9-pro-For and her9-pro-Rev). The PCR product was digested with *Ndel/Hind*III and ligated with pET28b digested with the same restriction enzymes. The resulting plasmid was confirmed by sequencing. For Her9 expression, plasmid pET28b-Her9 was transformed into *E. coli* BL21 (DE3). The cells were cultured in 2,000 mL LB with 50 μ g/mL kanamycin to an OD₆₀₀ of 0.5, followed by addition of 0.1 mM IPTG to induce protein expression. Then the cells were cultured for 24 hrs at 18 °C before purification.

Purification:

After 24 hours of incubation, cells were harvested by centrifugation (4, 000 rpm, 10 min) and resuspended in 30 mL of lysis buffer (50 mM Tris, pH 8.0, 10 mM imidazole, 500 mM NaCl). The cells are then lysed by ultra-sonication on ice. After centrifugation at 12, 000 rpm for 60 min, 3 mL of Ni-NTA resin was added to the supernatant and incubated at 4°C for 2 hrs. The Ni-NTA resin was collected by centrifugation (2, 000 rpm, 2 min) and eluted with 10 mL lysis buffer (50 mM Tris, pH 8.0, 10 mM imidazole, 500 mM NaCl). The resin was then eluted with elution buffers containing different concentrations of imidazole. The target protein was collected and concentrated to 2.5 mL and then exchanged into storage buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10% glycerol).

For Her9 purification, cells after 24 hrs of incubation were harvested by centrifugation (4,000 *g*, 10 min) and resuspended in 60 mL of lysis buffer (50 mM HEPES, pH 7.5, 10 mM imidazole, 150 mM NaCl, 20% glycerol). The cells are then lysed by ultra-sonication on ice. After centrifugation at 13,000 *g* for 60 min, 2 mL of Ni-NTA resin was added to the supernatant and incubated at 4 °C for 2 hrs. The mixture was packed into a column. The flowthrough was discarded, and the resin was washed by 10 mL of wash buffer (50 mM HEPES, pH 7.5, 20 mM imidazole, 150 mM NaCl, 20% glycerol) twice. Her9 protein was then eluted by 10 mL of elution buffer (50 mM HEPES, pH 7.5, 250 mM imidazole, 150 mM NaCl, 20% glycerol), dialyzed against storage buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 20% glycerol), and concentrated to 3 mL.

10. Chemical synthesis of tiglyl-CoA and angelyl-CoA

The reactions were conducted under strictly anaerobic conditions. 8.0 mg of Tiglic acid (1 eq) was dissolved in 8 mL of oxygen-free THF and was transferred into the round-bottom flask

PvBOP containing 31.2 mg of (Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate) (1 eq) and 8.28 mg of K_2CO_3 (1 eq), then 46 mg of CoASH (1 eq) was dissolved in 4 mL of oxygen-free H₂O and was added into the mixture described above. After stirring at room temperature for 3.5 hours, the reaction solvent was removed by rotary evaporation and the residue was dissolved in 4 mL of H₂O, Tiglic-CoA was detected when this aqueous solution was subjected to LC-MS with reversed-phase column (Syncronis aQ Dim, 250×4.6 mm). The column was equilibrated with 97% solvent A (H₂O + 1‰ TFA)/3% solvent B (CH₃CN + 1‰ TFA) for 5 min, the gradient of elution was as follows: 0-5 min: 97% A/3% B, 5-20 min: a linear gradient increase to 80% A/20% B, 20-22 min: a linear gradient increase to 40% A/60% B, 22-24 min: a linear gradient increase to 10% A/90% B, 24-26 min: maintain at the ratio of 10% A/90% B, 26-28 min: a linear gradient decrease to 97% A/3% B, 28-30 min: 97% A/3% B. Flow rate was of 1 mL•min⁻¹ and detection wavelength was 210 nm. LC-MS of $C_{26}H_{43}N_7O_{17}P_3S^+$ ([M]⁺), calculated 402.1633, found 402.1633. The produced Tiglic-CoA dissolved in H₂O was then subjected to reverse silica gel column chromatography for purification by elution with the mixture of H₂O and MeOH in different ratios, the radio of H₂O: MeOH gradient changes as $8:2\rightarrow6:4\rightarrow4:6\rightarrow2:8\rightarrow100\%$ MeOH, the eluent was detected by LC-MS and Tiglic-CoA was eluted during ratio of $6:4\rightarrow4:6\rightarrow2:8\rightarrow100\%$ MeOH. The eluent was then subjected to lyophilization to get 42 mg of Tiglic-CoA in white powder.

Synthesis and purification of Angelic-CoA was conducted in the similar procedure.

11.Biochemical assays

For HbcF and HbcG-catalyzed methylation reactions, assays were performed in 50 μ L reaction mixtures containing 50 mM PBS (pH 7.0), 2 mM SAM, 0.5 mM substrates. The reactions were initiated by adding 10 μ M HbcF or HbcG. The enzymatic reactions were carried out at 30 °C for 8 hrs and quenched with 100 μ L MeOH and stored at -80 °C until they would be subjected to analyses. After centrifugation at 12, 000 rpm for 10 min, the protein precipitate was removed and the supernatant was subjected to HPLC analysis using an analytic C18 column (Acclaim 120 C18, 5 μ m, 4.6 × 250 mm) with UV detection at 260 nm under the following program: gradient elution of mobile phase A (H₂O supplemented with 0.1% formic acid) and mobile phase B (CH₃OH) using a flow rate of 0.8 mL/min: 0-4 min, 4% phase B; 4-25 min, 4%-80% phase B; 25-28 min, 80%

phase B; 28-30 min, 4% phase B. For HPLC-ESI-MS analysis, conditions are the same as HPLC analysis, and the extracted ion chromatograms (EICs) of molecular weight for the compounds were shown in the results.

For HbcH-catalyzed acylation reactions, assays were performed in 50 μ L reaction mixtures containing 50 mM PBS (pH 7.0), 3 mM acyl donors, 0.5 mM substrates. The reactions were initiated by adding 10 μ M HbcH. The enzymatic reactions were carried out at 30 °C for 8 hrs and quenched with 100 μ L MeOH and stored at -80 °C until they would be subjected to analyses. After centrifugation at 12, 000 rpm for 10 min, the protein precipitate was removed and the supernatant was subjected to HPLC and LC-MS analysis using the same conditions as above.

For HbcH-catalyzed hydrolytic reactions, assays were performed in 50 μ L reaction mixtures containing 50 mM PBS (pH 7.0), 0.5 mM substrates. The reactions were initiated by adding 10 μ M HbcH, or 10 μ M HbcH and 2 mM HSCoA, or protein storage buffer. The enzymatic reactions were carried out at 30 °C for 8 hrs and quenched with 100 μ L MeOH and stored at -80 °C until they would be subjected to analyses. After centrifugation at 12, 000 rpm for 10 min, the protein precipitate was removed and the supernatant was subjected to HPLC and LC-MS analysis using the same conditions as above.

For Her8 and Her10-catalyzed methylation reactions, assays were performed in 100 μ L reaction mixture containing 50 mM Tris-HCl (pH 7.5), 0.5 mM SAM, 0.1 mM substrates, and 1 μ M enzyme. The reaction was carried out at room temperature (about 24 °C) for 24 hrs, and the enzyme was subsequently removed using a 10 kD MW cut off spin filter. The filtrate were then subjected to HPLC analysis using a reverse-phase column (Agilent, C18, 5 μ m, 4.6 × 250 mm) with a two-phase elution system of mobile phase A (0.1% formic acid in water), and mobile phase B (0.1% formic acid in acetonitrile) using a flow rate of 1 mL/min: 0-5 min, 12.5% phase B; 5-20 min, 12.5-50% phase B; 20-22 min, 50-80% phase B; 27-30 min, 80-12.5% phase B. When compound **9** was used as the substrate, HPLC analysis was carried out using a flow rate of 1 mL/min: 0-5 min, 5% phase B; 5-20 min, 5-50% phase B; 20-22 min, 50-80% phase B; 20-22 min, 50-80% phase B; 20-23 min, 80-5% phase B.

For Her9-catalyzed acylation reactions, assays were performed in 100 μ L reaction mixture containing 50 mM Tris-HCl (pH 7.5), 1 mM tiglyl-CoA, 0.1 mM substrates, and 1 μ M Her9. The

reactions were carried out at 30 °C for 16 hrs. Workup and analysis were the same as described above.

12. Feeding study analysis of Her11 activity

For pIB139-her11 construction, *her11* gene of S. sp. L-9-10 was amplified by PCR using the primer listed in Table S9 (her11-139-For and her11-139-Rev). The PCR product was ligated into pIB139 digested with NdeI using Gibson assembly. pIB139 empty vector and pIB139-her11 was introduced into Streptomyces albus J1074 by conjugation to generate J1074-pIB139 and J1074-pIB139-her11, respectively. For feeding study, 100 µL J1074-pIB139-her11 mycelia cell stock was seeded into 20 mL of TSB medium, and the culture was incubated at 28 °C, 220 rpm for 3 days. Then 0.3 mL of the seeding culture was used to inoculate 5 mL of the fermentation medium (0.5% yeast extract, 0.5% malt extract, soytone, 1% glucose, 0.3% sodium chloride, 1.5% glycerol, and 2% 1.5% 3-morpholinopropane-1-sulfonic acid (MOPS) buffer at pH 7), and cultured at 28 °C, 220 rpm for 3 days. Herbicidin F was subsequently added to the cultures to a final concentration of 0.05 mM, and the cultures were incubated at 28 °C, 220 rpm for additional 2 days. The resulting cultures were prepared for HPLC analysis using the same method as described for S. sp. L-9-10 wild type production analysis. Control with J1074-pIB139 was performed in parallel.

References

1. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York., 1989.

2. Bierman, M.; Logan, R.; O'Brien, K.; E. Seno, T.; R. Rao, N.; Schoner, B. E. Gene, 1992, 116, 43–49.

3. Kieser, T.; Bibb, M. J.; Buttner, M. J.; Chater, K. F.; Hopwood, D. A. Practical Streptomyces Genetics, The John Innes Foundation, Norwich, UK, 2001.

4. Lin, G.-M.; Romo, A. J.; Liem, P. H.; Chen, Z.; Liu, H.-w. J. Am. Chem. Soc., 2017, 139, 16450–16453

Supplementary Tables:

Table S1 NMR data of 10 in CD₃OD (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR)

Herbicidin M 10

No.	δ_C [ppm]	δ_H [ppm]	HSQC	COSY	HMBC	NOESY
2	146.65	8.38 (s)	C-2	-	C-4, C-6	
4	149.77	-	-	-	-	
5	119.37	-	-	-	-	
6	152.53	-	-	-	-	
8	144.84	8.88 (s)	C-8	-	C-4, C-5	H-1', H-2', H-6'
1'	89.34	6.21 (d)	C-1'	H-2'	C-4, C-8, C-2'	H-2', H-4', H-8, 2'-OC <u>H</u> 3
2'	91.96	4.02 (s)	C-2'	H-1'	2'-O <u>C</u> H ₃ , C-3', C-4'	H-1', H-8, H-3', 2'-OC <u>H</u> 3
3'	74.08	4.46 (d)	C-3'	H-4'	C-1', C-4'	H-2', H-4', 2'-OC <u>H</u> 3
4'	80.19	4.45 (m)	C-4'	H-3', H-5'	C-6'	H-5', H-3', H-1'
5'	26.32	2.25-2.20 (m)	C-5'	H-4', H-6'	C-4', C-6', C-7'	Н-4', Н-6',
6'	65.23	4.66 (dd)	C-6'	H-5'		H-5', H-8
7'	94.75	-	-	-	-	-
8'	71.42	3.71 (d)	C-8'	Н-9'	C-7', C-10'	H-9'
9'	73.74	4.38 (dd)	C-9'	H-8'	C-8', C-7'	H-8', H-10'
10'	78.01	4.31 (br s)	C-10'		C-6', C-8', C-9', C-11'	Н-9'
11'	173.08	-	-	-	-	
2'-OCH ₃	58.42	3.47 (s)	2'-O <u>C</u> H ₃	-	C-2'	H-1', H-2', H-3',

Gene	Amino	Protein homolog by BLAST	Predicted function	Gene in
in <i>hbc</i>	acids			anm (size,
				identity)
hbcR1	215	TetR family transcriptional regulator	Regulator	
hbcR2	43	XRE family transcriptional regulator	Regulator	
hbcR3	103	XRE family transcriptional regulator	Regulator	
hbcJ	123	short-chain dehydrogenase (incomplete)	Unknown	
hbcA	328	ketoacyl-ACP synthase III	acyltransferase	
hbcB	552	hypothetical protein /	oxidoreductase	anmB (556,
		S-adenosyl-L-homocysteine (SAH)		56%)
		hydrolase		
hbcC	365	ABC transporter ATP-binding protein	oxidoreductase	anmC (366,
		/ oxidoreductase, NAD-binding		48%)
		domain protein		
hbcE	435	B12-dependent radical SAM enzyme	skeleton	anmE (421,
			formation	56%)
hbcD	375	gfo/Idh/MocA family oxidoreductase	oxidoreductase	anmD
				(372, 62%)
hbcF	285	SAM-dependent methyltransferases	methyltransferase	
hbcH	544	serine hydrolase	hydrolase	
hbcG	368	SAM-dependent methyltransferases	methyltransferase	
hbcI	375	cytochrome P450	hydroxylase	
hbcR4	940	transcriptional regulator, LuxR family	Regulator	
hbcR5	420	silent information regulator protein Sir2	Regulator	

 Table S2 Predicted functions of genes in herbicidin (*hbc*) biosynthetic gene cluster and the

 comparison with aureonuclemycin (*anm*) cluster

	$\begin{array}{c} OH \\ OH \\ H^{T} \\ OH \\ H^{T} \\ OH \\ O$									
3"	2" 5"									
4"	He	rbicidin G 6								
No.	δ_C [ppm]	δ_H [ppm]	HSQC	COSY	HMBC	NOESY				
2	153.90	8.19 (s)	C-2		C-4, C-6					
4	150.64	-								
5	119.80	-								
6	157.37	-								
8	140.66	7.96 (s)	C-8		C-4, C-5	H-3", H-5", H-1', H-2', H-6'				
1'	91.13	5.97 (d)	C-1'	H-2'	C-4, C-8, C-2'	H-2', H-4', H-8				
2'	82.61	4.33 (br d)	C-2'	H-1'	C-3', C-1'	H-1', H-8				
3'	77.86	4.33 (br d)	C-3'	H-4'	C-2', C-4'	H-5' _b , H-4'				
4'	78.94	4.46 (m)	C-4'	H-3', H-5' _{a,} H-5' _b	C-6'	H-5'a, H-5' _b , H-3', H-1'				
5'a	26.66	2.34 (m)	C-5'	H-4', H-6' , H-5' _b	C-3', C-4', C-6', C-7'	H-5' _b , H-4', H-6'				
5'b	26.66	2.19 (m)	C-5'	H-4', H-6' , H-5' _a	C-6'	H-5' _a , H-4'				
6'	66.12	4.63 (dd)	C-6'	H-5' _a , H-5' _b	C-5'	H-5'a, H-3", H-8				
7'	93.57									
8'	72.04	4.99 (d)	C-8'	Н-9'	C-6', C-7', C-9', C-10', C-1''	Н-9'				
9'	70.94	4.42 (dd)	C-9'	H-8', H-10',	C-8', C-7'	H-8', H-10'				
10'	79.35	4.25 (br s)	C-10'	Н-9'	C-6', C-8', C-9', C-11'	Н-9'				
11'	173.75									
1"	168.04									
2"	128.33									
3"	141.98	6.84 (q)	C-3"	H-4"	C-4", C-5", C-1"	H-4", H-6', H-8				
4"	15.13	1.87 (m)	C-4"	H-3"	C-2", C-3"	H-3"				
5"	12.38	1.85 (m)	C-5"		C-1", C-2", C-3"	H-8				

Table S3 NMR data of 6 in CD₃OD (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR)

Table S4 NMR data of 8 in CD ₃ OD (500 MHz for	¹ H NMR and 125 MHz for	¹³ C NMR)
---	------------------------------------	----------------------

0 9 HO ³¹¹ 8 0 2 ¹¹		NH_{2} $N-5$ N_{1} N_{9} N_{3}				
3" 4"	Herbid	cidin K 8				
No.	δ_C [ppm]	δ_H [ppm]	HSQC	COSY	HMBC	NOESY
2	154.05	8.20 (s)	C-2		C-4, C-6	
4	150.68	-	-	-	-	
5	119.79	-	-	-	-	
б	157.41	-	-	-	-	
8	140.56	7.95 (s)	C-8		C-4, C-5	H-3", H-5", H-1', H-2', H-6'
1'	91.05	5.98 (d)	C-1'	H-2'	C-4, C-8, C-2'	H-2', H-4', H-8
2'	82.40	4.38 (d)	C-2'	H-1'	C-3', C-4'	H-1', H-8
3'	77.86	4.35 (d)	C-3'	H-4'	C-1', C-2', C-4'	H-5', H-4'
4'	78.90	4.49 (m)	C-4'	H-3', H-5'	C-3', C-5', C-6'	H-5', H-3', H-1'
5'	26.69	2.26 (m)	C-5'	H-4', H-6'	C-3', C-4', C-6', C-7'	H-4', H-3', H-6',
6'	66.64	4.51 (dd)	C-6'	H-5'	C-5'	H-5', H-3", H-8
7'	93.23	-	-	-	-	-
8'	71.90	4.98 (d)	C-8'	H-9'	C-7' C-9', C-10', C-1''	Н-9'
9'	70.45	4.31 (dd)	C-9'	H-8', H-10'	C-7', C-8', C-10'	H-8', H-10', 11'-OC <u>H</u> 3
10'	78.26	4.44 (br s)	C-10'	Н-9'	C-6', C-8', C-9', C-11'	Н-9'
11'	171.21	-	-	-	-	-
1"	167.19	-	-	-	-	-
2"	128.37	-	-	-	-	-
3"	141.69	6.65 (q)	C-3"	H-4"	C-1", C-4", C-5"	H-4", H-6', H-8, 11'-OC <u>H</u> 3
4"	15.01	1.86 (d)	C-4"	H-3"	C-2", C-3"	H-3"
5"	12.29	1.84 (s)	C-5"	-	C-1", C-2", C-3"	H-8, 11'-OC <u>H</u> 3
11'-OCH ₃	52.65	3.59 (s)	11'-OCH ₃	_	C-11'	H-9', H-3", H-5"

$HO^{(1)} H = H = H = H = H = H = H = H = H = H $									
	Herbici	din C 3							
No.	δ_C [ppm]	δ_H [ppm]	HSQC	COSY	HMBC	NOESY			
2	153.87	8.20 (s)	H-2		C-4, C-5, C-6				
4	150.37	-							
5	119.38	-							
6	157.15	-							
8	142.56	8.68 (s)	H-8		C-4, C-5	Н-2', Н-6'			
1'	91.63	6.09 (d)	H-1'	H-2'	C-4, C-8, C-2'	H-2', H-4', H-8			
2'	82.78	4.32 (br d)	H-2'	H-1'	C-3', C-4'	H-1', H-8			
3'	77.32	4.30 (d)	Н-3'	H-4'	C-1', C-2', C-4'	H-5', H-4'			
4'	79.72	4.53 (m)	H-4'	H-3', H-5'	C-6'	H-5', H-3', H-1'			
5'	26.52	2.24-2.21 (dd)	H-5'	H-4', H-6'	C-3', C-4', C-6', C-7'	H-4', H-3', H-6',			
6'	65.57	4.65 (dd)	Н-6'	H-5'	C-5'	H-5', H-8			
7'	94.51	-				-			
8'	71.21	3.69 (d)	H-8'	H-9'	C-6', C-7', C-9', C-10'	H-9'			
9'	73.81	4.33 (dd)	Н-9'	H-8'	C-7', C-8'	H-8', 11'-OC <u>H</u> 3			
10'	78.01	4.35 (br, s)	H-10'		C-6', C-8', C-9', C-11'				
11'	171.81	-							
11'-OCH ₃	52.32	3.70 (s)	2'-O <u>C</u> H ₃		C-11'	H-9'			

Table S5 NMR data of 3 in CD₃OD (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR)

0 11' 10' 0 6' HO'''' 8' 0 0 1'' 3'' 5''	H 5' H 8 7 H 8 7 H 7 1 O H 1 2 O H H O	NH_2 $N_{9}^{7} N_{9}^{-6} N_1$ $N_{9}^{4} N_{3}^{-2}$ din F 5				
No.	δ_C [ppm]	δ_{H} [ppm]	HSOC	COSY	HMBC	NOESY
2	154.04	8.22 (s)	C-2		C-4, C-6	
4	150.59	-	-	-	-	
5	119.89	-	-	-	-	
6	157.40	-	-	-	-	
8	140.64	7.95 (s)	C-8		C-4, C-5	H-5", H-1', H-2', H-3', H-3", H-6'
1'	88.87	6.05 (d)	C-1'	H-2'	C-4, C-8, C-2'	H-2', H-4', H-8, 2'-OC <u>H</u> 3
2'	91.83	4.07 (d)	C-2'	H-1'	C-3', C-4', 2'-O <u>C</u> H ₃	H-1', H-8, H-3', 2'-OC <u>H</u> 3
3'	74.77	4.50 (d)	C-3'	H-4'	C-1', C-2', C-4'	H-5', H-2', H-4', 2'-OC <u>H</u> 3
4'	79.06	4.40 (m)	C-4'	H-3', H-5'	C-6'	H-5', H-3', H-1'
5'	26.68	2.25-2.27 (m)	C-5'	H-4', H-6'	C-3', C-4', C-6', C-7'	H-4', H-3', H-6'
6'	66.72	4.52 (dd)	C-6'	H-5'	C-5'	H-5', H-3", H-8
7'	93.47	-	-	-	-	-
8'	72.00	5.00 (d)	C-8'	Н-9'	C-6', C-7', C-9', C-10', C-1''	Н-9'
9'	70.60	4.33 (dd)	C-9'	H-8', H-10'	C-7', C-8'	H-8', H-10'
10'	78.40	4.47 (br s)	C-10'	Н-9'	C-6', C-8', C-9', C-11'	H-9'
11'	171.41	-	-	-	-	-
1"	167.35	-	-	-	-	-
2"	128.58	-	-	-	-	-
3"	141.88	6.70 (q)	C-3"	H-4"	C-1", C-4", C-5"	H-4", H-6', H-8, 11'-OC <u>H</u> 3

Table S6 NMR data of 5 in CD₃OD (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR)

4"	15.19	1.89 (br d)	C-4"	H-3"	C-2", C-3"	Н-3"
5"	12.44	1.86 (m)	C-5"	-	C-1", C-2", C-3"	H-8, 11'-OC <u>H</u> 3
2'-OCH ₃	58.52	3.41 (s)	2'-O <u>C</u> H ₃	-	C-2'	H-1', H-2', H-3'
11'-OCH ₃	52.87	3.62 (s)	11'-O <u>C</u> H ₃	-	C-11'	Н-5", Н-3"
HCOOH (Contam.)	165.36	8.13	Н <u>С</u> ООН			
CH ₃ OH (Contam.)	50.00	3.35	<u>C</u> H₃OH			

0 11' 10' O H 0 9' 8' 10' O H 0 11' 10' O H 0 11' 10' O H 0 0 11' 10' O H 0 0 0 0 0 0 0 0 0 0 0 0 0	5' H 0' H 0' H 0' H 0' H 0' H 0' H 0' H 0	l₂ N₁ ↓2				
No	Herbicidin N 11	δu [ppm]	HSOC	COSY	HMBC	NOFSY
2	154 16	8.22 (s)	C-?	0001	C-4 C-6	NOLDI
4	150.68	-	-	_	-	
5	119.50 (by HMBC)	-	-	-	-	
6	157.37	-	-	-	-	
8	141.04	8.01 (s)	C-8		C-4, C-5	H-3", H-6', H-2'
1'	90.82	6.01 (d)	C-1'	H-2'	C-8, C-2'	H-2', H-4'
2'	82.32	4.38 (br d)	C-2'	H-1'	C-3', C-4'	H-8, H-1'
3'	77.70	4.36 (d)	C-3'	H-4'	C-1', C-2', C-4'	H-4'
4'	79.06	4.52 (m)	C-4'	Н-3', Н-5'	C-6'	H-1', H-5', H-3'
5'	26.62	2.25 (m)	C-5'	H-4', H-6'	C-4', C-6'	H-4'
6'	66.59	4.53 (m)	C-6'	H-5'		H-8, H-3"
7'	93.27	-	-	-		
8'	71.94	5.06 (d)	C-8'	H-9'	C-7'	Н-9'
9'	70.62	4.33 (dd)	C-9'	H-8', H-10'		H-8', H-10'
10'	78.31	4.46 (s)	C-10'	Н-9'	C-6', C-8', C-9', C-11'	H-9'
11'	171.39	-	-	-	-	
1"	166.14	-	-	-	-	
2"	132.44	-	-	-	-	
3"	145.69	6.74 (q)	C-3"	H-4"	C-1", C-2", C-5", C-4"	H-8, H-6', H-4", H-11'-OC <u>H</u> 3
4"	14.99	1.96 (d)	C-4"	Н-3"	C-2", C-3"	H-3", H-5", H-11'-OC <u>H</u> 3
5"	56.34	4.41 (d)	C-5"	-	C-1", C-2", C-3"	H-4"
11'-OCH ₃	52.82	3.62 (s)	11'-O <u>C</u> H ₃	-	C-11'	Н-3", Н-4"

Table S7 NMR data of 11 in CD₃OD (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR)

Table S8 Strains and	plasmids u	ised in	this	study
----------------------	------------	---------	------	-------

Strains/Plasmids	Characteristics*	Reference /source	
Strains			
<i>E. coli</i> DH5α	Host for general cloning	Invitrogen	
E. coli BL21 (DE3)	Host for protein expression	Invitrogen	
E. coli S17-1	Donor strain for conjugation	1	
E. coli ET12567/pUZ8002	Donor strain for conjugation	Gift from Dr. Wenjun	
		Zhang	
Streptomyces lividans 1326	Host for heterologous expression of anm cluster	1	
Streptomyces sp. KIB-027	Herbicidins-producing strain, wild type	This work	
Streptomyces aureus var.	Aureonuclemycin-producing strain, wild type	2	
suzhoueusis			
Streptomyces sp. L-9-10	Herbicidin producing strain, wild type	3	
Streptomyces. scopuliridis	Herbicidin producing strain, wild type	4	
RB72			
S. lividans-anmBCDE	Heterologous expression strain of anm cluster	This work	
S. sp. ∆hbcA	<i>hbcA</i> gene deletion mutant	This work	
S. sp. ∆hbcF	<i>hbcF</i> gene deletion mutant	This work	
S. sp. ∆hbcG	<i>hbcG</i> gene deletion mutant	This work	
S. sp. ∆hbcH	<i>hbcH</i> gene deletion mutant	This work	
S. sp. ∆hbcI	<i>hbcI</i> gene deletion mutant	This work	
S. sp. ∆hbcGI	<i>hbcG</i> and <i>hbcI</i> double deletion mutant	This work	
S. sp. ⊿her10	her10 gene deletion mutant	This work	
∆her10: her10	her10 gene deletion mutant transformed with pIB139-her10	This work	
Streptomyces albus J1074	Host for <i>her11</i> expression	Gift from Dr. Ben Shen	
J1074-pIB139	Streptomyces albus J1074 with empty pIB139 vector	This work	
J1074-pIB139-her11	Streptomyces albus J1074 with pIB139-her11 plasmid	This work	
Plasmids			
pMD19-T simple	Ap ^R , E. coli TA cloning vector	TaKaRa	
pMD19-T	Ap ^R , E. coli TA cloning vector	TaKaRa	
pET28a	Km ^R , protein expression vector in E. coli	Invitrogen	
pET37b	<i>Km^R</i> , protein expression vector in <i>E. coli</i>	Invitrogen	
pET28b	Km ^R , protein expression vector in E. coli	Invitrogen	
pIB139	Am ^R , E. coli-Streptomyces shuttle vector for gene complementation	Gift from Dr. Yuhui Sun	
	and heterologous expression		
pYH7	Am ^R , Ap ^R , E. coli-Streptomyces shuttle vector for gene inactivation	5	
pSET152	Am ^R , E. coli-Streptomyces shuttle vector for gene complementation	1	
	and heterologous expression		
pKC1139	Am ^R , E. coli-Streptomyces shuttle vector for gene inactivation	1	
pSET-anmBCDE	pSET152 derivative for heterologous expression of anmB-E	This work	
pKC1139-hbcA	pKC1139 derivative for in-frame gene deletion of <i>hbcA</i>	This work	
pKC1139-hbcF	pKC1139 derivative for in-frame gene deletion of <i>hbcF</i>	This work	
pKC1139-hbcG	pKC1139 derivative for in-frame gene deletion of <i>hbcG</i>	This work	

pKC1139-hbcH	pKC1139 derivative for in-frame gene deletion of <i>hbcH</i>	This work
pKC1139-hbcI	pKC1139 derivative for in-frame gene deletion of <i>hbcI</i>	This work
pKC1139-hbcGI	pKC1139 derivative for gene deletion of <i>hbcG</i> and <i>hbcI</i>	This work
pET28a-HbcF	pET28a derivative containing $hbcF$ gene for protein expression	This work
pET28a-HbcG	pET28a derivative containing $hbcG$ gene for protein expression	This work
pET28a-HbcH	pET28a derivative containing <i>hbcH</i> gene for protein expression	This work
pET28a-HbcI	pET28a derivative containing hbcI gene for protein expression	This work
pYH7-her10	pYH7 derivative for in-frame gene deletion of her10	This work
pIB139-her10	pIB139 derivative for S. sp. L-9-10 <i>Aher10</i> complementation	This work
pIB139-her11	pIB139 derivative for heterologous expression of Her11	This work
pET28b-Her9	pET28b derivative containing her9 gene for protein expression	This work

Abbreviations: Ap^R , ampicillin resistance; Km^R , kanamycin resistance; Am^R , apramycin resistance.

[1] T. Kieser, M. J. Bibb, M. J. Buttner, K. F Chater, D. A. Hopwood, *Practical Streptomyces Genetics*, The John Innes Foundation, Norwich, UK, 2001.

[2] X. Dai, G. Li, Z. Wu, D. Lu, H. Wang, Z. Li, L. Zhou, X. Chen, W., Chen, Chem. Abstr. 1989, 111, 230661f.

[3] X. Chai, U. J. Youn, D. Sun, J. Dai, P. Williams, T. P. Kondratyuk, R. P. Borris, J. Davies, I. G. Villanueva, J. M. Pezzuto, L. C. Chang, *J. Nat. Prod.* **2014**, 77, 227–233

[4] M. H. Farris, C. Duffy, R. H. Findlay, J. B. Olson, Int. J. Syst. Evol. Microbiol. 2011, 61, 2112-2116

[5] Y. Sun, X. He, J. Liang, X. Zhou, Z. Deng, Appl. Microbiol. Biotechnol. 2009, 82, 303–310.

Table S9 Primers used in this study

Primer	Sequence
anmBE-For	TAAAAGCTTATCGGGTCAATGCCAAGTCG (HindIII)
anmBE-Rev	TAATCTAGAGCCCAGTAGAGGAGGAGGAGAAGG (XbaI)
hbcA-L-For	AAGCTTGACATGCGCGCTGTCACAG (HindIII)
hbcA-L-Rev	TCTAGACCATTCCGACGTGGTGAGC (XbaI)
hbcA-R-For	TCTAGAAGCCACCCAGTCTTCCGGAG (XbaI)
hbcA-R-Rev	GAATTCGCTGGACCTCGTGATGGAC (EcoRI)
hbcA-v-For	TGATGACATCGTGGAGTTC
hbcA-v-Rev	GGGCTCATAGGGGTTGTAG
hbcF-L-For	AAGCTTTTCGACTGCGCTCAGCAAG (HindIII)
hbcF-L-Rev	TCTAGAGAACTGGACTCCCTCAAG (XbaI)
hbcF-R-For	TCTAGACCCGACCCGTTCGTAGGTC (XbaI)
hbcF-R-Rev	GAATTCGGGTGATCGCCGAAGTGGAG (EcoRI)
hbcF-v-For	TCAGGATGTCGAGCGCGTC
hbcF-v-Rev	GGACCGCATCGGCCTGCTG
hbcG-L-For	AAGCTTCTGTCTTGAGTGCGCAGAG (HindIII)
hbcG-L-Rev	CTCGAGCCCGAATACATGGTCGTC (XhoI)
hbcG-R-For	CTCGAGGATCGCGTGTGGAGATCC (XhoI)
hbcG-R-Rev	GAATTCGGAACTGGACTCCCTCAAG (EcoRI)
hbcG-v-For	CGGTCGCCGGTCGGCGCGAGCACA
hbcG-v-Rev	ACACGGCCTTCAGCCAATACGCCT
hbcH-L-For	AAGCTTCCAGTACCTGGCAGATCGTC (HindIII)
hbcH-L-Rev	TCTAGATACGGACTATGGACGTCCGTG (XbaI)
hbcH-R-For	TCTAGACGGCGAGAACAGTGCGTAC (XbaI)

hbcH-R-Rev	GAATTCGACGCCGTCCTGCTGTGCAC (EcoRI)
hbcH-v-For	TCCGCGACTGAGTCATTC
hbcH-v-Rev	TCACCATGACCTCGAAAG
hbcI-L-For	AAGCTTAGCTCCCTCATCTCCATG (HindIII)
hbcI-L-Rev	CTCGAGGCACTGGAAGAACTGGTC (XhoI)
hbcI-R-For	CTCGAGGTGACGAGCCAGAGACGGT (XhoI)
hbcI-R-Rev	TCTAGACCTCGGCAAGGAGTACAC (XbaI)
hbcI-v-For	GAGAAATTACAGGCCAAAT
hbcI-v-Rev	GAAATCAGGCGGTTGCCGC
hbcGI-v-For	AACAGACGTCGCCGCCGCGAAGA
hbcGI-v-Rev	ACACGGCCTTCAGCCAATACGCCT
hbcF-pro-For	CATATGAGCGACGTCATGCACTAC (NdeI)
hbcF-pro-Rev	AAGCTTTTACTCGAGGGACCTCTTGGCCAGAGTG (XhoI Hind]]])
hbcG-pro-For	CATATGACTCAGTCGCGGAATG (NdeI)
hbcG-pro-Rev	AAGCTTTTACTCGAGTTTGACGCCGACGACCATG (XhoI HindIII)
hbcH-pro-For	CATATGGGGACGGCTCCCGCCAGGA (NdeI)
hbcH-pro-Rev	AAGCTTTTACTCGAGCACAAGGCCGAGATCGTGA (XhoI HindIII)
hbcI-pro-For	CATATGCTCCCCTACCTCCCAC (NdeI)
hbcI-pro-Rev	AAGCTTTTACTCGAGCCAGGACACCGGGAGAGTG (XhoI HindIII)
her10-L-For	GGGCATATGAGGCCGGTTCGGGGGTGTCCTGGTGG (NdeI)
her10-L-Rev	GGGAGATCTGTCGATGATGGCGTGTGGAGATCCG (Bg/II)
her10-R-For	GGGAGATCTGCCCAGTGCCGGGACTGGCTGACCG (BglII)
her10-R-Rev	GGGAAGCTTCACCGCAATCCGAACCTCGTGGTTA (HindIII)
her10-v-For	CGGCAAGGAGTACACAGCATT
her10-v-Rev	ACACGCACCACGTCCGGTAC
her9-pro-For	CACCATATGATGGGGACGGCTCCCGCCAG (NdeI)
her9-pro-Rev	CACAAGCTTTCACGCAAGGCCGAGATCGT (HindIII)
her10-139-For	TTGGTAGGATCCACATATGACTCAGCCGCGGAATGACGCCG
her10-139-Rev	AGGATCCCCAACATACTACTTGACGCCGACGACCATGTAC
her11-139-For	TTGGTAGGATCCACATATGACGACCGACGAAGGCGAG
her11-139-Rev	AGGATCCCCAACATATCACCATGACACGGGGAGAGT

Supplementary Figures

Figure S1 LC-MS analysis of *S*. sp KIB-027 fermentation broth.

A) HPLC profile; B) Mass spectra for compounds 1, 2, 7 and 10; C) UV spectra for compounds 1, 2, 7 and 10.

Figure S2 ¹H NMR spectrum of 1 in CD₃OD

Figure S3 ¹³C NMR spectrum of 1 in CD₃OD

Figure S4 HRMS data of 1

Figure S5 ¹H NMR spectrum of 2 in CD₃OD

Figure S6¹³C NMR spectrum of 2 in CD₃OD

Figure S7 HRMS data of 2

Figure S8 ¹H NMR spectrum of 7 in CD₃OD

Figure S9¹³C NMR spectrum of 7 in CD₃OD

Figure S10 HSQC spectrum of 7 in CD₃OD

Figure S11 HMBC spectrum of 7 in CD₃OD

Figure S12 ¹H-¹H COSY spectrum of 7 in CD₃OD

Figure S13 HRMS data of 7

Figure S14 ¹H NMR spectrum of 10 in CD₃OD

Figure S15¹³C NMR spectrum of 10 in CD₃OD

Figure S16 DEPT90 spectrum of 10 in CD₃OD

Figure S17 DEPT135 spectrum of 10 in CD₃OD

fî (ppm)

Figure S18 HSQC spectrum of 10 in CD₃OD

Figure S19 HMBC spectrum of 10 in CD₃OD

Figure S20 ¹H-¹H COSY spectrum of 10 in CD₃OD

Figure S21 NOESY spectrum of 10 in CD₃OD

Figure S22 HRMS data of 10

Figure S23 Genetic organization of biosynthetic gene clusters for herbicidins (*hbc, her*), aureonuclemycin (*anm*), and some homologous BGCs found in NCBI Genbank

Figure S24 Heterologous expression of the *anm* cluster in *S. lividans*.

A) HPLC analysis of the *anm* expression strain *S. lividans-anmBCDE* and the control strain *S. lividans-pSET152*, B) Mass spectrum for compound 9.

Figure S25 ¹H NMR spectrum of 9 in CD₃OD

Figure S26 ¹³C NMR spectrum of 9 in CD₃OD

Figure S27 ¹H NMR spectrum of 6 in CD₃OD

Figure S28 ¹³C NMR spectrum of 6 in CD₃OD

Figure S29 DEPT135 spectrum of 6 in CD₃OD

Figure S30 HSQC spectrum of 6 in CD₃OD

Figure S31 HMBC spectrum of 6 in CD₃OD

Figure S32 ¹H-¹H COSY spectrum of 6 in CD₃OD

Figure S33 NOESY spectrum of 6 in CD₃OD

Mass Spectrum SmartFormula Report

Analysis Info Analysis Name D:\Data\SHUJVFENXI\tanggongli-group\2005015Her_RE Method 20150915.m Sample Name 2005015Her Comment						Acqu	uisition Da	ate 12/21	12/21/2016 4:13:31 AM		
					015Her_RB4	_01_728 Opei Instri	1_7280.d Operator Instrument / Ser#		.@DE s 4G	2124	0
Acquisition Par Source Type Focus Scan Begin Scan End	meter ESI Not active 50 m/z 1500 m/z		lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF		Positive 4000 V -500 V 600 0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		ulizer Heater Gas rt Valve	1 0 Bar 220 °C 6.0 l/min Waste		
Intens. x10 ⁵ 1.25-										+MS, 1.2r	min #69
1.00							1+ (A) 552 1320)			
0.75					1+ (B) 508.1681	1+ (C) 530 1498 	3				
0.25	7 384 3000	1				ļ	ļ	574,1133	e	10 0898	
0.00 ¹	400		450	450 500			, النبيب, 550		600)	
Meas. m	/z #	Formula		Score	m/z	err [ppm]	Mean err [nnm]	mSig ma	rdb	e ⁻ Conf	N R ule
508.168	31 1 2 3 4	C 21 H 26 N 5 C 20 H 23 N 9 C 24 H 27 N 3 C 22 H 22 N 9	0 10 Na O 6 Na O 8 D 6	100 00 49 90 81 12 91 99	508 1674 508 1664 508 1690 508 1688	-13 -34 1.9 13	-1 1 -3 2 2.1 1 6	3 9 6.5 7.1 8.5	11.5 13.5 12.5 16.5	even even even even	ok ok ok
	5 6 7 8	C 21 H 19 N 13 C 19 H 14 N 19 C 36 H 23 N Na C 38 H 22 N O	Na O 2	98 02 82 25 15 67 6 94	508 1677 508 1674 508 1672 508 1696	-08 -13 -18 30	-06 -12 -15 33	12.3 14.3 69.2 80.7	18.5 22.5 25.5 28.5	even even even even	ok ak ak ok
530.149	8 1 2 3 4	C 19 H 20 N 11 C 21 H 25 N 5 f C 18 H 17 N 15 C 22 H 28 N O	08 Na 010 Na 04 14	88 75 100 00 44 84 83.41	530 1491 530 1494 530.1480 530.1504	-13 -0.8 -3.3 1.2	-12 -06 -32 1.3	2 4 3.5 4.0 7.3	15.5 11.5 17.5 9.5	even even even	ak ok ok ok
	5 6 7 8	C 23 H 24 N 5 C C 22 H 21 N 9 N C 20 H 16 N 15 C 20 H 29 N Na	0 10 Va 0 6 0 4 0 14	32.78 65.79 76.09 38.18 79.22	530.1518 530 1507 530.1504 530.1480	3.8 1.7 1.2 -3.3	4 0 1.9 1.3 -3.2	12.1 12.3 12.5 13.2	14.5 16.5 20.5 6.5	even even even even	ok ok ok
	9 10 11 12	C 19 H 13 N 19 C 21 H 12 N 19 C 35 H 20 N 3 C C 38 H 21 N Na	Na 03 0	79.32 23.89 17.87 4.34	530.1494 530.1518 530.1499 530.1515	-0.8 3.7 0.3 3.3	-0.7 3.8 0.5 3.6	15.7 27.3 72.1 84.7	22.5 25.5 27.5 28.5	even even even even	ok ok ok

Figure S34 HRMS data of 6

Figure S35 ¹H NMR spectrum of 8 in CD₃OD

Figure S36¹³C NMR spectrum of 8 in CD₃OD

Figure S37 DEPT135 spectrum of 8 in CD₃OD

Figure S38 HSQC spectrum of 8 in CD₃OD

Figure S39 HMBC spectrum of 8 in CD₃OD

Figure S40 ¹H-¹H COSY spectrum of 8 in CD₃OD

Figure S41 NOESY spectrum of 8 in CD₃OD

Figure S42 HRMS data of 8

Figure S43 ¹H NMR spectrum of 3 in CD₃OD

Figure S44 ¹³C NMR spectrum of 3 in CD₃OD

Figure S45 DEPT135 spectrum of 3 in CD₃OD

Figure S46 HSQC spectrum of 3 in CD₃OD

Figure S47 HMBC spectrum of 3 in CD₃OD

Figure S48 ¹H-¹H COSY spectrum of 3 in CD₃OD

Figure S49 NOESY spectrum of 3 in CD₃OD

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : E170045

Sample Serial Number: ZTF440b

Operator :zhufj Date: 2016/12/16

Operation Mode: DART Positive

Elemental composition search on mass 440.14

m/z = 435.	14-445.14			
m/z	Theo.	Delta	RDB	Composition
	Mass	(ppm)	equiv.	-
440.1417	440.1412	1.06	9.5	C 17 H 22 O 9 N 5

Figure S50 HRMS data of 3

Figure S51 ¹H NMR spectrum of 5 in CD₃OD

Figure S52 ¹³C NMR spectrum of 5 in CD₃OD

Figure S53 DEPT135 spectrum of 5 in CD₃OD

Figure S54 HSQC spectrum of 5 in CD₃OD

Figure S55 HMBC spectrum of 5 in CD₃OD

Figure S56 ¹H-¹H COSY spectrum of 5 in CD₃OD

Figure S57 NOESY spectrum of 5 in CD₃OD

Figure S58 HRMS data of 5

Figure S59 ¹H NMR spectrum of 11 in CD₃OD

Figure S60 ¹³C NMR spectrum of 11 in CD₃OD

Figure S61 DEPT135 spectrum of 11 in CD₃OD

Figure S62 HSQC spectrum of 11 in CD₃OD

Figure S63 HMBC spectrum of 11 in CD₃OD

Figure S64 ¹H-¹H COSY spectrum of 11 in CD₃OD

Figure S65 NOESY spectrum of 11 in CD₃OD

Figure S66 HRMS data of 11

Figure S67 LC-MS analysis of S. sp KIB-027 derived gene knock-out mutants, $\Delta hbcG$ and $\Delta hbcGI$.

Figure S68 SDS-PAGE analysis of the purified proteins HbcH (61.4 kDa), HbcF (33.0 kDa) and HbcG (41.4 kDa).

Figure S69 *In vitro* assay of HbcF with 6 as substrate using HPLC method 2 (0.8 mL/min, 260 nm, T = 0 min, 4% B; T = 4 min, 4 % B; T = 25 min, 80% B; T = 28 min, 80% B; T = 30 min, 4% B; (A = H2O, B = CH3OH).

(Note: Using the common HPLC method for *in vitro* experiments, 6 was co-eluted with 5'-deoxy-5'-methylthioadenosine (MTA), see Figure 3, i)

Figure S70 In vitro assay of HbcH with 9, 3, 2 and 10 as substrates.

Figure S71 Chemical synthesis of tiglyl-CoA and angelyl-CoA.

Figure S72 In vitro assay of HbcG with 3, 6 and 9 as substrates.

Figure S73 In vitro assay of HbcF with 10, 7, 3 and 8 as substrates.

Figure S74 *In vitro* assay of HbcH with 9 as substrate and various acyl donors including: i) acetyl-CoA, ii) propionyl-CoA, iii) butyryl-CoA, iv) isovaleryl-CoA, v) benzoyl-CoA, vi) angelyl-CoA, and vii) malonyl-CoA. viii) control reaction.

Figure S75 Mass spectra for 12-19 and the putative structures of these compounds.

Figure S76 In vitro assay of the hydrolytic activity of HbcH with 1 as substrate.

Figure S77 *In vitro* assay of the hydrolytic activity of HbcH with 5 as substrate.

Figure S78 *In vitro* assay of the hydrolytic activity of HbcH with 8 as substrate.

Figure S79 In vitro assay of the hydrolytic activity of HbcH with 6 as substrate.

Figure S80 *In vitro* assay of the hydrolytic activity of HbcH with 7 as substrate.

Figure S81. HPLC analysis method 3 and MS data of S. sp. L-9-10 wild type, $\Delta her10$ mutant, $\Delta her10$ mutant complementation fermentation broth

A) HPLC profile; B) MS data for compounds 1, 2 and 8.

(HPLC method 3: 1 mL/min: T = 0 min, 12.5% B; T = 5 min, 12.5% phase B; T = 20 min, 50% B; T = 22 min, 80% phase B, T = 27 min, 80% B; T = 30 min, 12.5% phase B; A = H₂O with 0.1% formic acid, B = acetonitrile with 0.1% formic acid).

Figure S82. SDS-PAGE analysis of the purified protein Her9 (61.0 kDa) L: whole-cell lysate, S: soluble fraction, E: purified proteins

Figure S83. *In vitro* assay of Her8, Her10 with compound 9 as substrate using HPLC analysis method 4

(HPLC Method 4: 1 mL/min: T = 0 min, 5% B; T = 5 min, 5% phase B; T = 20 min, 50% B; T = 22 min, 80% phase B, T = 27 min, 80% B; T = 30 min, 5% phase B; A = H₂O with 0.1% formic acid, B = acetonitrile with 0.1% formic acid).

Figure S84. *In vitro* assay of Her9 with compound 9 as substrate using HPLC analysis method 4

Figure S85. *In vitro* assay of Her9 with compounds 2 and 10 as substrate using HPLC analysis method 3

Figure S86. *In vitro* assay of Her8, Her10 with compound 6 as substrate using HPLC analysis method 3

Figure S87. *In vitro* assay of Her10 with compound 8 as substrate using HPLC analysis method 3

Figure S88. HPLC and MS analysis of feeding result for *in vivo* Her11 activity A) HPLC profile; B) MS data for compounds 1 and 5