Supplemental Appendix For:

Social cheating in a Pseudomonas aeruginosa quorum-sensing variant

Ruiyi Chen¹, Eric Déziel², Marie-Christine Groleau², Amy L. Schaefer³ & E. P. Greenberg^{1,3}

¹Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China, ² Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec, Canada H7V 1B7 & ³Department of Microbiology, University of Washington, Seattle, WA 98195-7735

Figure S1. Growth of strain E80 in casein broth. Shown are images of casein broth cultures just after inoculation with E80 overnight culture in LB-MOPS (T0) and after approximately 2 days of growth (T2). At inoculation time the tube is clear, after 2-days growth the bacteria have proteolyzed and consumed the caseinate and the tube is turbid and blue green from production of pyocyanin during growth. When inoculation is conducted from well-developed casein broth culture to fresh casein broth, growth time is shortened to about 24 h.

Figure S2. The *rhIRI* region of the chromosome in the E80 parent and RhIRI⁻ mutant. A comparison of DNA sequences between E80 and PAO1 in the *rhIRI* region revealed several differences. Those sequence differences resulting in an amino acid change in the polypeptide are indicated in teal-colored text above the open reading frame (blue arrow); the single difference in non-coding DNA occurs 18 bases beyond the *rhIR* stop codon (pink-colored text). The 859-bp region lacking in the RhIRI⁻ mutant is indicated by the red dashed lines. The deletion includes part of the *rhII* promoter and all of the LasR/RhIR-binding site (green box) required for full transcription of the *rhII* gene (1). The transcriptional start sites are indicated by black arrows (1, 2).

Figure S3. Competition of the PqsR mutant, the RhIRI mutant and the parent strain E80 in casein broth. Performing these experiments required some modifications as RhIRI and PqsR mutants cannot grow individually in casein broth and the E80 parent does not initially grow well in casein broth when inoculated from LB-grown cultures. In order to "jump start" these competitions, we included 100 μ l of cell-free supernatant fluid from a densely grown (48 h) E80 casein culture and all inocula were prepared from log-phase LB-MOPS cultures (OD₆₀₀ 0.8). The starting percentage of the competitors was 10%. Each symbol represents the competitive index of competitor strain against the parent strain (E80 or E80-Gm) after 24 h in casein broth; the solid lines represent means for each group. The outcomes above the dashed line indicate the competitor had a fitness advantage and below indicate the parent E80 had a fitness advantage. As in the LB-MOPS competitions (Fig. 5B), the RhIRI mutant was less fit than the parent and the PqsR⁻ mutant was more fit than the parent.

Table S1. Strains used in this study

Strain	Relevant characteristic(s) ^a	Source
P. aeruginosa		
PAO1	Wildtype	(3)
PAO1 LasR ⁻	PAO1 with an unmarked in-frame <i>lasR</i> deletion	(4)
PAO1 RhIR ⁻	PAO1 with an unmarked in-frame <i>rhIR</i> deletion	(4)
E80	Isolated from CF patient sputum, $\Delta 321-324$ deletion in <i>lasR</i>	(5)
E80-Gm	E80 with a gentamicin-resistance cassette at <i>att</i> site, Gen ^R	This work
E80 RhIRI	E80 with an unmarked <i>rhIR</i> and P _{rhll} deletion (see Fig. S2)	This work
E80 RhIRI ⁻ -C	E80 RhIRI ⁻ complemented with wildtype <i>rhIRI</i> at <i>att</i> site, Gen ^R	This work
E80 PqsR⁻	E80 with an unmarked <i>pqsR</i> deletion	This work
E80 PqsR⁻-C	PqsR⁻ complemented with wildtype <i>pqsR</i> at <i>att</i> site, Gen ^R	This work
1	Evolved E80 freeloader, ∆371-374 deletion in <i>pqsR</i>	This work
2	Evolved E80 freeloader, ∆109-121 deletion in <i>pqsR</i>	This work
3	Evolved E80 freeloader, T811G substitution in <i>pqsR</i>	This work
4	Evolved E80 freeloader, C101T substitution in <i>pqsR</i>	This work
5	Evolved E80 freeloader, wildtype <i>pqsR</i>	This work
6	Evolved E80 freeloader, wildtype <i>pqsR</i>	This work
1-C	Freeloader (E80) 1 complemented with wildtype <i>pqsR</i> at <i>att</i> site	This work
2-C	Freeloader (E80) 2 complemented with wildtype <i>pqsR</i> at <i>att</i> site	This work
E. coli		
DH5a	fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	Invitrogen
S17	<i>thi, pro, hdsR, hdsM+ recA,</i> RP4-2 (Tc::Mu Km::Tn7)	(6)
MG4	C4-HSL bioassay reporter strain; Amp ^R	(7)
pECP61.5		
HB101 pRK2013	Conjugal mating helper strain, Km ^ĸ	(8)

^aResistant to gentamicin (Gen^R), ampicillin (Amp^R) or kanamycin (Kan^R)

Table S2. Plasmids and primers used in this study

Plasmid or primer	Relevant characteristic(s) ^a	Source
Plasmids		
pTNS2	Source of transposase, Amp ^R	(9)
pFLP2	Source of Flp recombinase, Amp ^R /Cb ^R	(9)
pUC18-mini- Tn7T-Gm	mini-Tn7 chromosomal gene integration vector, Amp ^R /Gen ^R	(9)
pEXG2	Suicide vector, Gen ^R	(10)
pEXG2-rhIRI	Plasmid for RhIRI-mutant strain construction (see Fig. S2), Gen ^R	This work
pEXG2-pqsR	Plasmid for PqsR-mutant strain construction (-90 to +730 bp), Gen ^R	This work
Tn7-pqsR	mini-Tn7 containing DNA from 255 upstream of the <i>pqsR</i> start codon to 136 bp downstream of the <i>pqsR</i> stop codon for complementation, Amp ^R /Gen ^R	This work
Tn7-rhIRI	mini-Tn7 containing DNA from 129 bp upstream of the <i>rhIR</i> start codon to 154 bp downstream of the <i>rhII</i> stop codon for complementation, Amp ^R /Gen ^R	This work
Primers		
rhIRI-KO-UP-F	5'-ACGAACTGCAACGCTTTCT-3'	This work
rhIRI-KO-UP-R	5'-TCATGGCAACCCTATCTGTTAT-3'	This work
rhIRI-KO-DN-F	5'-CTCATGTGTGTGCTGGTATGT-3'	This work
rhIRI-KO-DN-R	5'-GTCGAACTGGTCGAATTCCT-3'	This work
pqsR-KO-UP-F	5'-GCCTGTACCAGGAGTCGTTC-3'	This work
pqdR-KO-UP-R	5'-ACTGTGGAAGAAGCGTCGAG-3'	This work
pqsR-KO-DN-F	5'-TCAGCGAACTCTACGAACCG-3'	This work
pqsR-KO-DN-R	5'-GGCAACCTCGATACCAGCAT-3'	This work
rhIRI-CompI-F	5'-CCTGAACGGTGCTGGCATAACA-3'	This work
rhIRI-CompI-R	5'-GGACGAGATGGCGGAATGAC-3'	This work
pqsR-Compl-F	5'-TCACCTCCAAAACGACGACT-3'	This work
pqsR-Compl-R	5'-CGGAAGGTTTCGACTGCCTG-3'	This work

^aResistant to ampicillin (Amp^R), carbenicillin (Cb^R), or gentamicin (Gen^R)

SUPPLEMENTAL REFERENCES

- 1. de Kievit, T. R., Kakai, Y., Register, J. K., Pesci, E. C. & Iglewski, B. H. (2002) Role of the *Pseudomonas aeruginosa las* and *rhll* quorum-sensing systems in *rhll* regulation. *FEMS Microbiol Lett* 18:101-106.
- Wurtzel, O., Yoder-Himes, D. R., Han, K., Dandekar, A. A., Edelheit, S., Greenberg, E. P., Sorek, R. & Lory, S. (2012) The single-nucleotide resolution of *Pseudomonas aeruginosa* grown in body temperature. *PLoS Pathog* 8:e1002945.
- 3. Stover, C. K. & et al. (2000) Complete genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. *Nature* 406: 959-964.
- 4. Wang, M., Schaefer, A. L., Dandekar, A. A. & Greenberg, E. P. (2015) Quorum sensing and policing of *Pseudomonas aeruginosa* social cheaters. *Proc Natl Acad Sci USA* 112: 2187-2191.
- Feltner, J. B., Wolter, D. J., Pope, C. E., Groleau, M. C., Smalley, N. E., Greenberg, E. P., Mayer-Hamblett, N., Burns, J., Deziel, E., Hoffman, L. R. & Dandekar, A. A. (2016) LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierachy in *Pseudomonas aeruginosa. MBio* 4:01513-01516.
- Simon, R., Priefer, U. & Puhler, A. (1983) A broad range mobilization system for in vivo engineering: transposon mutagenesis in gram negative bacteria. *Nature Biotechnol* 1: 784-791.
- 7. Pearson, J. P., Pesci, E. P. & Iglewski, B. H. (1997) Roles of *Pseudomonas aeruginosa las* and *rhl* quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. *J Bacteriol* 179: 5756-5767.
- 8. Figurski, D. & Helinski, D. R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided *in trans. Proc Natl Acad Sci USA* 76:1648-1652.
- 9. Choi, K.-H. & Schweizer, H. P. (2006) mini-Tn7 insertion in bacteria with single attTn7 sites: example *Pseudomonas aeruginosa*. *Nat Protocols* 1:153-161.
- 10. Rietsch, A., Vallet-Gely, I., Dove, S. L. & Mekalanos, J. J. (2005) ExsE, a secreted regulator of type III secretion genes in *Pseudomonas aeruginosa*. *Proc Natl Acad Sci USA* 102: 8006-8011.