
Supplementary Information for

Generalized Network Dismantling

Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin

Nino Antulov-Fantulin
E-mail: anino@ethz.ch

This PDF file includes:

Supplementary text
Figs. S1 to S6
Table S1
References for SI reference citations

Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin 1 of 17

Supporting Information Text

1. Objective function

Let us assume that we want to partition the network G = (V,E) into two parts such that the nodes from a set M ⊆ V are not
connected to the nodes from the complement set M = V \M . The indication of node i belonging to the set M ⊆ V is denoted
with the following vector

vi :=
{

+1 i ∈ M,

−1 i ∈ M
[1]

The classical spectral bisection of a graph aims to minimize the number of edges between the clusters M and M . However, in
this paper we propose a novel node–weighted spectral cut objective function, in which the cost of cutting the edge (i, j) is
equal to the sum of the weights of i and j. That is, for any specific edge (i, j), which separates nodes from different clusters M
and M , we define the cost of removing this edge as − 1

2 (vivj − 1)Ai,j (wi + wj). If the edge (i, j) separates the clusters, the
associated cost is wi + wj and zero otherwise.

If the cost is proportional to the degree centrality wi ∝ di, then the cost of removing a subset of nodes that are incident to
the edges that separate cluster M from cluster M is:

1
2
∑
i,j

−1
2 (vivj − 1)Ai,j (di + dj − 1) . [2]

The term (di + dj − 1) contains the element−1, in order to correct double counting of the link that connects i and j and
furthermore leads to more elegant notation in unit case scenario.

Wcut(M) = −1
4
∑
i,j

(vivj − 1)Ai,j (di + dj − 1) =

1
4
∑
i,j

(1− vivj)Ai,j (di + dj − 1) . [3]

Now, we denote the matrix Ai,j (di + dj − 1) as Bi,j .
For general weights, the matrix element Bi,j = Ai,j (wi + wj − 1), where the constant term −1 is added to all weights.

This constant term is not affecting the optimization but was added for several reasons: (i) as in specific case of unit costs leads
to simplified notation and (ii) unified notation with degree costs. In the following, we work with re-weighted adjacency matrix
Bi,j . Then objective function, can be re-written by using the re-weighted adjacency matrix Bi,j

Wcut(M) = 1
4
∑
i,j

Bi,j −
1
4
∑
i,j

vivjBi,j = 1
4
∑
i

dBi −
1
4
∑
i,j

vivjBi,j =

1
4
∑
i,j

dBi,jδi,jvivj −
1
4
∑
i,j

vivjBi,j = 1
4
∑
i,j

vi(dBi,jδi,j −Bi,j)vj , [4]

where dBi is the weighted degree of node vi from the matrix Bi,j and δi,j equals 1 when i = j and 0 otherwise.
Finally, in matrix notation

Dcut(A) := 1
4v

tLwv [5]

where Lw = DB − B, B = AW + WA − A, where D and DB are diagonal matrices with elements: (D)ii =
∑n

j=1 Aij ,
(DB)ii =

∑n

j=1 Bij respectively. If W = I, the problem becomes normal spectral partitioning as B = A. Note, that
our methodology works even if we don’t add constant term −1 to objective function, just minor modification is needed
B = AW +WA.

Now, this objective function has the same form as the classical bisection problem (1–3), where the Laplacian is replaced with
the node–weighted Laplacian matrix. Thus it is analytically solved by the second smallest eigenvector of the node–weighted
Laplacian λ2v

(2) = Lwv
(2) due to the Courant-Fisher theorem.

2. Spectral properties of weighted Laplacian

Lw is a real and symmetric matrix. Therefore it has real eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn corresponding to eigenvectors
v1, ..., vn which form an orthonormal basis of Rn. We will now show that the largest eigenvalue λn of the matrix Lw = DB −B
satisfies |λn| ≤ 4dmax(wmax + 1), where wmax is the largest cost in diagonal cost matrix W and dmax is the maximal degree
of any node of the network. For this purpose let Babs denote the matrix whose entries are the absolute values of the entries
of the matrix B. Then for vectors v with ‖v‖1 = 1, we can use the triangle inequality and the fact that the L1-norm is
submultiplicative (meaning ‖XY ‖1 ≤ ‖X‖1‖Y ‖1 for matrices X,Y with appropiate dimensions) to obtain

‖ Babsv ‖1
≤‖ A ‖1‖W ‖1 ‖v‖1+ ‖W ‖1‖ A ‖1 ‖v‖1 + ‖A‖1‖v‖1
≤ 2dmax(wmax + 1)

[6]

2 of 17 Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin

where we have also used ‖A‖1 ≤ dmax and ‖W‖1 ≤ wmax. It follows that

|λn| ≤ max
‖v‖1=1

‖(DB −B)v‖1

= max
‖v‖1=1

n∑
i=1

|vi
n∑
j=1

Bij −
n∑
j=1

vjBij |

≤ max
‖v‖1=1

n∑
i=1

n∑
j=1

|viBij |+
n∑
i=1

n∑
j=1

|vjBij |

= max
‖v‖1=1

‖Babsv‖1 + ‖Babsv‖1

≤ 4dmax(wmax + 1).

[7]

However, for simplicity we will use the following bound λn ≤ 6 · d2
max, when wmax = dmax. This bound is obtained since

this holds: 4dmax(wmax + 1) = 4d2
max + 4dmax ≤ 4d2

max + 2d2
max as for every connected network with more than 2 nodes

4dmax ≤ 2d2
max.

3. Convergence bounds

Lw has real eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn corresponding to eigenvectors v1, ..., vn which form an orthonormal basis of Rn.
From the previous section, we know that 0 = λ1 and λn ≤ 6 · d2

max, where dmax is the maximal degree of any node of the
network. So in order to compute v2 we consider the matrix L̃ = 6 · d2

max · I − Lw, which has the same eigenvectors v1, ..., vn as
Lw. Now the corresponding eigenvalues are λ̃1 = 6 · d2

max ≥ ... ≥ λ̃n = 6 · d2
max − λn ≥ 0 and in particular v1 corresponds to

the largest eigenvalue and v2 to the second largest eigenvalue.
If v is a random vector uniformly drawn from the unit sphere and we force it to be perpendicular to v1 = c · (1, ..., 1)T by

setting v ← v − vT
1 v

vT
1 v1
· v1 , then v = ψ2v2 + ...+ ψnvn and ψ2 6= 0 almost surely.

Furthermore L̃v = λ̃2ψ2v2 + ...+ λ̃nψnvn and if we set v(k) := L̃kv, then

v(k)

‖v(k)‖
= λ̃2

k
ψ2v2 + ...+ λ̃n

k
ψnvn

‖λ̃2
k
ψ2v2 + ...+ λ̃n

k
ψnvn‖

=
ψ2v2 +

(
λ̃3
λ̃2

)k
ψ3v3 + ...+

(
λ̃n

λ̃2

)k
ψnvn

‖ψ2v2 +
(
λ̃3
λ̃2

)k
ψ3v3 + ...+

(
λ̃n

λ̃2

)k
ψnvn‖

[8]

converges with exponential speed to some eigenvector of L with eigenvalue λ2, because for every i with λi > λ2 we have
| λ̃i

λ̃2
| < 1 and therefore

(
λ̃i

λ̃2

)k
ψivi → 0 with exponential speed. Hence if λ3 > λ2, then this sequence converges to +v2 or −v2.

And if λ2 = λ3 = ... = λk < λk+1, then this sequence converges to a unit length linear combination of v2, ..., vk and is therefore
a vector which minimizes vTLwv

vT v
(which is the quantity associated to the cut-size) among all vectors which are orthogonal to

v1. More generally one can deduce from (8) that

v(k)TLwv
(k)

v(k)T v(k)
=
λ2|ψ2|2 + λ3|

(
λ̃3
λ̃2

)k
ψ3|2 + ...+ λn|

(
λ̃n

λ̃2

)k
ψn|2

|ψ2|2 + |
(
λ̃3
λ̃2

)k
ψ3|2 + ...+ |

(
λ̃n

λ̃2

)k
ψn|2

[9]

and therefore this quantity converges to λ2 with exponential speed.
From above we deduce the following algorithm.

Algorithm for computing the partition vector
Input: Network
Output: Vector v close to eigenvector v2 for which vTLwv

vT v
is close to λ2.

1. Draw v randomly with uniform distribution on the unit sphere.

2. Set v = v − vT
1 v

vT
1 v1
· v1.

3. For i = 1 to η(n)
v = L̃v

‖L̃v‖

Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin 3 of 17

Note that sampling a point p = (p1, ..., pn) from the unit sphere (4) with uniform distribution can be done by sampling
x1, ..., xn independently with standard normal distribution and setting

pi = xi√
x2

1 + ...+ x2
n

. [10]

To prove this one only needs to check ‖p‖ = 1 and that the distribution of p is rotation invariant, that is for any g ∈ SO(n)
the random vectors p and gp have the same distribution. The latter follows immediately from the rotation invariance of the
multivariate normal distribution.

Theorem 1 If v is the output of the previous algorithm, then

a)

|λ2 −
vTLwv

vT v
| ≤ 12 · d2

max · n
ψ2

2
· | λ̃3

λ̃2
|2η(n) = 12 · d2

max · n
ψ2

2
· |6 · d

2
max − λ3

6 · d2
max − λ2

|2η(n) [11]

b) If η(n) grows assymptotically faster than
11

2 log
(
| λ̃2
λ3
|
) log(n), [12]

then
E
[
|λ2 −

vTLwv

vT v
|
]
→ 0. [13]

In particular, this theorem implies that if we choose η(n) = O(log(n)1+ε) for any ε > 0, then we might expect assymptotically
good results. Here, we assume that the 1/log

(
| λ̃2
λ3
|
)
is bounded by a constant as the network grows.

In order to prove this theorem we recall that a beta random variable with parameters p, q > 0, denoted βp,q, is a random
variable which takes values in [0, 1] and whose probability density function is given by

Γ(p−1
2)Γ(q−1

2)
Γ(p+q−1

2)
xp−1(1− x)q−1, [14]

where Γ denotes the gamma function.

If x1, ..., xn are independent standard normal random variables, then

x2
i

x2
1 + ...+ x2

n
∼ β 1

2 ,
n−1

2
. [15]

Together with (10), this implies that when p = (p1, ..., pn) is uniformly distributed on the unit sphere, then

p2
i ∼ β 1

2 ,
n−1

2
. [16]

Proof: a) If v is the output of the algorithm, then we can use (9) with k = η(n) to obtain

|λ2 −
vTLwv

vT v
| = |λ2 −

λ2|λ̃2|2η(n)ψ2
2 + ...+ λn|λ̃n|2η(n)ψ2

n

|λ̃2|2η(n)ψ2
2 + ...+ |λ̃n|2η(n)ψ2

n

|

= |λ2 −
λ2ψ

2
2 + λ3| λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ λn| λ̃n

λ̃2
|2η(n)ψ2

n

ψ2
2 + | λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ | λ̃n

λ̃2
|2η(n)ψ2

n

|

≤ |λ2 −
λ2ψ

2
2

ψ2
2 + | λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ | λ̃n

λ̃2
|2η(n)ψ2

n

|+ |
λ3| λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ λn| λ̃n

λ̃2
|2η(n)ψ2

n

ψ2
2 + | λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ | λ̃n

λ̃2
|2η(n)ψ2

n

|

[17]

where in the last inequality we have used the triangle inequality. Pulling out λ2 in the first term and replacing the denominator
of the second term by ψ2

2 (which is ≤ than the denomiator that we had before and hence makes this fraction larger), we obtain

|λ2 −
vTLwv

vT v
| ≤ |λ2||

ψ2
2 + | λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ | λ̃n

λ̃2
|2η(n)ψ2

n

ψ2
2 + | λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ | λ̃n

λ̃2
|2η(n)ψ2

n

− ψ2
2

ψ2
2 + | λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ | λ̃n

λ̃2
|2η(n)ψ2

n

|

+ |
λ3| λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ λn| λ̃n

λ̃2
|2η(n)ψ2

n

ψ2
2

|

= |λ2||
| λ̃3
λ̃2
|2η(n)ψ2

3 + ...+ | λ̃n

λ̃2
|2η(n)ψ2

n

ψ2
2 + | λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ | λ̃n

λ̃2
|2η(n)ψ2

n

|+ |
λ3| λ̃3

λ̃2
|2η(n)ψ2

3 + ...+ λn| λ̃n

λ̃2
|2η(n)ψ2

n

ψ2
2

|.

[18]

4 of 17 Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin

Using ψ2
i ≤ 1 and replacing the denomiator of the first term by ψ2

2 we obtain

|λ2 −
vTLwv

vT v
| ≤ |λ2||

| λ̃3
λ̃2
|2η(n) + ...+ | λ̃n

λ̃2
|2η(n)

ψ2
2

|+ |
λ3| λ̃3

λ̃2
|2η(n) + ...+ λn| λ̃n

λ̃2
|2η(n)

ψ2
2

|

≤ |6 · d2
max||

n · | λ̃3
λ̃2
|2η(n)

ψ2
2

|+ |
6 · d2

maxn · | λ̃3
λ̃2
|2η(n)

ψ2
2

| = 12 · d2
max · n
ψ2

2
· | λ̃3

λ̃2
|2η(n)

[19]

where the last inequality is due to | λ̃i

λ̃2
|2η(n) ≤ | λ̃3

λ̃2
|2η(n) and λi ≤ 6 · d2

max.
b) Let v0 be drawn randomly with uniform distribution of the unit sphere of Rn and make it orthogonal to v1 by setting

v0 ← v0 − vT1 v0 · v1 and let it have unit-length by setting v0 ← v0
‖v0‖

. Then for the representation

v0 = ψ2v2 + ...+ ψnvv [20]

of v0 in the basis of the eigenvectors v1, v2, ..., vn, it holds that (ψ2, ..., ψn) is distributed uniformly on the unit sphere of Rn−1.
Therefore ψ2

2 is distributed like a beta variable β 1
2 ,

n−2
2

and we have

P
(
ψ2

2 <
1
n8

)
=

Γ(1
2)Γ(n−2

2)
Γ(n−1

2)

∫ 1
n8

0
x−

1
2 (1− x)

n−4
2 dx ≤

∫ 1
n8

0
x−

1
2 dx = 2 1

n4 , [21]

where the inequality is due to (1− x)
n−4

2 ≤ 1 and Γ(1
2)Γ(n−2

2)
Γ(n−1

2)
≤ 1.

Since

E
[
|λ2 −

vTLwv

vT v
|
]

=

= P
(
ψ2

2 <
1
n8

)
E
[
|λ2 −

vTLwv

vT v
|
∣∣∣ψ2

2 <
1
n8

]
+ P

(
ψ2

2 ≥
1
n8

)
E
[
|λ2 −

vTLwv

vT v
|
∣∣∣∣ψ2

2 ≥
1
n8

]
[22]

we can use the trivial bound P
(
ψ2

2 ≥ 1
n8

)
≤ 1 and (21) to obtain

E
[
|λ2 −

vTLwv

vT v
|
]
≤ 2 1

n4 E
[
|λ2 −

vTLwv

vT v
|
∣∣∣ψ2

2 <
1
n8

]
+ E

[
|λ2 −

vTLwv

vT v
|
∣∣∣∣ψ2

2 ≥
1
n8

]
. [23]

Since 0 ≤ vTLwv
vT v

≤ 6 · d2
max ≤ 6n2 and 0 ≤ λ2 ≤ 6 · d2

max ≤ 6n2 we have

E
[
|λ2 −

vTLwv

vT v
|
∣∣∣∣ψ2

2 <
1
n8

]
≤ 6n2. [24]

From part a) we obtain

E
[
|λ2 −

vTLwv

vT v
||ψ2

2 ≥
1
n8

]
≤ E

[
12d2

maxn

ψ2
2

· | λ̃3

λ̃2
|2η(n)|ψ2

2 ≥
1
n8

]
≤ 12n11| λ̃3

λ̃2
|2η(n). [25]

Plugging these bounds into (23) we obtain

E
[
|λ2 −

vTLwv

vT v
|
]
≤ 12 1

n2 + 12n11| λ̃3

λ̃2
|2η(n). [26]

In particular

E
[
|λ2 −

vTLwv

vT v
|
]
→ 0 [27]

whenever η(n) grows assymptotically faster than

11

2 log
(
| λ̃2
λ3
|
) log(n). [28]

Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin 5 of 17

4. Run time complexity

The complexity of the spectral bisection algorithm is the complexity of computing v2 or some other vector v for which vTLwv
vT v

is close to minimal and which is orthogonal to DI where I is an identity matrix. We compute that vector with the algorithm
of appendix A.
The complexity of this algorithm equals the number of iterations η(n) times the complexity of multiplying L̃ and v. That is
O(η(n) · n · d̄) where d̄ is the average degree of the network, or equivalently O(|E| · η(n)) where |E| is the number of edges.

The complexity of running the hierarchical spectral clustering algorithm until we have |GCC| = O(1) is then given by the
sum of:

• The complexity of applying spectral bisection once on the whole network. → O(η(n) · n · d̄).

• The complexity of applying it on each of the 2 clusters that we obtained from the first application of spectral bisection
and which will have size approximately n

2 .

• The complexity of applying it on each of the 4 clusters that we obtained from the previous step and which will have size
approximately n

4 .

• . . .

• The complexity of applying it on each of the n
2 = 2log2(n)−1 clusters that we obtained from the previous step and which

will have size approximately n

2log2(n)−1 = 2.

That is in total

O(η(n) · n · d̄) + 2 ·O(η(n) · n2 · d̄) + ...+ 2log2(n)−1 ·O(η(n) · n

2log2(n)−1 · d̄)

=
log2(n)−1∑

i=0

2i ·O(η(n) · n2i · d̄)

= O(η(n) · n · d̄)
log2(n)−1∑

i=0

1

= O(η(n) · n · d̄ log2(n)),

[29]

where we have made the pessimistic assumption that the number of iterations and the average degrees are in each step as large
as they were in the beginning.

The choice of the function η(n) is a little bit involved. If the initial random choice of the vector v is very unfortunate, there
may be many iterations necesary in order to have a good approximation of the eigenvector v2. In fact, if ψ2 = 0, then this
algorithm would not converge to v2 at all, however this event has probability 0.

Due to this fast convergence, one can expect assymptotically good partitions when η(n) = log(n)1+ε and ε > 0 and when the
1/log

(
| λ̃2
λ3
|
)
is bounded by a constant, giving the hierarchical spectral clustering algorithm a complexity of O(n · log2+ε(n)) for

sparse networks, where d̄ is constant. Similarly, in (5) authors state that the eigenvector can be computed in O((m+n)(logn)O(1))
time using fast Laplacian solvers.

Another condition that might slow down the computation of v2 is if some of the other eigenvalues λi, i ≥ 3 are close to λ2.
In that case λ̃i

λ̃2
would be close to 1 and therefore one can see from equation (8) that the correspoding vi might have a large

contribution in v(k) for a long time. However when λi is close to λ2, this also implies that

vTi Lwvi
vTi vi

= λi [30]

is close to
min
‖v‖6=0

vTLwv

vT v
= λ2 [31]

and therefore also provides a good partition of the network, since these are the quantities that are related to the cut-size.

5. Weighted vertex cover fine-tuning

For a network G = (V,E) that will be partitioned into two groups M and M̄ , we construct a subgraph G∗ = (V ∗, E∗), where
edge set E∗ comprises all the links between M and M̄ , node set V ∗ includes all the nodes involved in E∗. The dismantling cost
(weight) of the nodes in V ∗ is given by a diagnol matrix W , defined by wi =

∑
j
Ai,j , where Ai,j is the adjacency matrix of

6 of 17 Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin

the initial graph G = (V,E). We want to find the subset V + ⊆ V ∗ with minimal cost such that every edge e ∈ E∗ is incident
to at least one node in V +. That is, find

min
∑
i∈V ∗

wiyi [32]

subject to
yi + yj ≥ 1, ∀(i, j) ∈ E∗. [33]
yi ∈ {0, 1} ,∀i ∈ V ∗ [34]

We have used a linear time 2-approximation algorithm (6) to solve it. It means that the cost of the approximate solution∑
i∈V ∗ wiyi is at most 2 times higher than the optimal vertex cover cost Copt of V ∗, i.e.,

∑
i∈V ∗ wiyi ≤ 2Copt.

By Kőnig’s theorem, there is an equivalence between the minimum vertex cover problem in bipartite graphs and the
maximum matching problem. But our experiments, have shown that maximum matching fine-tuning is not helping us to reach
to better dismantling solution at the end.

The pseudocode of the weighted vertex cover approximation we adopted in this paper is shown in Algorithm 1.

Algorithm 1 Weighted vertex cover algorithm
1: procedure WVC(G∗,G)
2: S = ∅ . cover set
3: di =

∑
j
A∗ij . residual degree of the nodes in G∗

4: wi =
∑

j
Aij . residual weight of the nodes in G

5: while E∗ 6= ∅ do
6: Let vi be the node with minimizing wi/di
7: S ← S

⋃
{vi}

8: G∗ ← G∗ \ vi
9: G← G \ vi

10: update d,w
11: return S . return the list of nodes that should be removed

6. Pseudocode of GND algorithm

To compare the fragmentation effectiveness of different target attack algorithms, in general we plot the results like Fig. 5 of our
paper: x-axis is the ratio of the nodes that has been removed, while y-axis is the ratio of the size of GCC. Then, the area under
the curve (AUC) is usually is considered an effective method to reflect the effectiveness of the attack algorithms. Smaller value
of AUC implies that the attack has a better dismantling effect over all possible budgets(7).

For a network G = (V,E) with adjacency matrix A and node weights matrix W , the aim is to decompose the network such
that the size of GCC is smaller than a target size. Then the GND algorithm is defined as follows.

Algorithm 2 GND algorithm
1: procedure GND(A,W)
2: Agcc,Wgcc ← A,W
3: LS . the list of nodes that should be removed
4: while GCCsize > C do . C is the target size
5: B = AgccWgcc +WgccAgcc −Agcc
6: (DB)ii =

∑n

j=1 Bij
7: Lw = DB −B
8: L̃ = 6 · d2

max · I − Lw
9: v(2) ← L̃ . spectral approximation

10: Groups M, M̄ ← v(2) . partition the GCC into two groups
11: . according to the eigenvector v(2)

12: G∗ = (V ∗, E∗)←M, M̄ . construct subgraph G∗
13: S ←WV C(G∗, G) . Weighted Vertex Cover
14: G← G \ S . removing nodes from network
15: LS ← LS .append(S)
16: update GCCsize, Agcc, Wgcc

17: end while
18: return LS . return the list of nodes that should be removed

The code of the GND algorithm will be available on github (https://github.com/renxiaolong/Generalized-Network-
Dismantling) once this paper is published.

Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin 7 of 17

https://github.com/renxiaolong/Generalized-Network-Dismantling
https://github.com/renxiaolong/Generalized-Network-Dismantling

7. Generalized Network Dismantling Optimization Problem

A. Generalized Network Dismantling. In the generalized network dismantling problem, the cost of removing a node i can be
any arbitrary non-negative number wi ∈ R. More formally, for a given network G(V,E) with costs W = (w1, . . . , w|V |), we
aim to find the subset of nodes S(G,W,C) ⊆ V with the minimum cost of removal (where the cost is given by the sum of the
weights of the vertices in S(G,W,C)), which will result in a fragmentation of the network into components of size at most C
(where the size of a component is simply the cardinality). We will denote the corresponding cost of such an optimal set by
Cost(G,W,C). It is easy to see that the case W = I, the identity matrix, is the standard network dismantling problem and its
solution is related to the solution of the generalized problem by the following inequalities:

wminCost(G, I, C) ≤ Cost(G,W,C) ≤ wmaxCost(G, I, C),

where wmin, wmax denote the minimal and maximal weight over all nodes.

Generalized Network Dismantling problem GNDP(G(V,E),W,C) is NP-hard. Every instance of 3SAT can be reduced (8, 9)
to vertex cover; every instance of vertex cover can be reduced (10) to network dismantling (G(V,E), C); and every instance of
network dismantling (G(V,E), C) can be reduced to generalized network dismantling problem, trivially by setting all weights
to one, i.e., (G(V,E), I, C).

Generalized Network Dismantling problem (G(V,E),W,C) can not have fully polynomial-time approximation scheme
(FPTAS).
If we assume that generalized network dismantling problem can be approximated up to arbitrary ε in polynomial time, it
would imply that GNDP(G(V,E), I, C = 1) can also be approximated up to arbitrary ε in polynomial time. This would imply
that the vertex cover can be approximated up to arbitrary ε as GNDP(G(V,E), I, C = 1) is equivalent to vertex cover. Then
it would contradict the Dinur et. al. (2005) result "On the hardness of approximating minimum vertex cover" (11) and the
unique games conjecture (12, 13).

In section 3 of the SI, we give the convergence bounds for spectral approximation. Note, that the spectral partitioning is
related to relaxed node-weighted bisection problem. But, we are not giving approximation guarantee for the optimal solution
of the (generalized) network dismantling problem.

B. Relation to other problems. Here, we will define the relation to another similar problems and highlight their difference.
Given a graph G(V,E), finding a small separator S whose removal results in the partition to two roughly equal size sets A

and B of disconnected vertices is called a graph separator problem. In case of removing vertices it is called balanced vertex
separator, and in case of removing edges a balanced edge separator. Lipton et. al. showed that every n-vertex planar graph
has a balanced vertex separator of size O(

√
n), which can be found in polynomial time (14). However, finding the minimum

vertex or edge separator for general graphs is a NP-hard problem (15). Moreover, approximating vertex separator is at least as
hard as approximating edge separators. Based on linear programming, an algorithm that approximates the minimum edge
separator within a ratio of O(logn) was presented in (16). Next improvement (17) is based on semidefinite programming to
approximate the minimum edge separator within a ratio of O(

√
logn). In (18), the novel results for weighted vertex separator

were introduced i.e. approximation of minimum vertex separator within a ratio of O(
√

logn), again based on semidefinite
programming. In the same work (18) the approximation bound O(

√
log opt) w.r.t. to the size of optimal separator opt.

However, fast algorithms that solve semidefinite programming optimization problems for balanced separators run in Õ(n4.5)
and Õ(n3.5/ε2) run time complexity (19), where Õ(.) is the big-O notation that "ignores" logarithmic factors.

An α-separator of graph G = (V,E), separates the vertices to disjoint sets A, S and B, such that there is no edge between
A and B, and max {|A|, |B|} ≤ α|V |. This problem is generalization of the previous balanced vertex cover problem and fall to
class of parameterized graph separation problems (20).

A set S is called a C-dismantling set if the largest connected component of a network after removing set S contains at
most C nodes (21). Finding a minimum C-dismantling set was called Network Dismantling Problem (10). However, the same
problem exists under the name K-separator problem (22), where authors provide useful polynomial case algorithms for special
instances of graphs. Note, that in the network dismantling scenario, the number of partitions is not defined like in vertex or
edge separator problems.

Alternative approach to the edge separator problems is by the integer relaxation that leads to spectral partitioning (1, 2).
The detailed theoretical analysis of the quality of spectral separators can be found here (23). The problem of minimum-cut
partitioning of a network into more than two parts by means of spectral embedding is derived from first principles (3).

The term graph fragmentation (24, 25) is a general term, that describes the process of removing nodes or edges and it’s
effect on the connected components, with no specific constraints in the optimization problem. Usually, the term was mostly
used in the scenario of the ensemble of random graphs and random failures. Network attack (26–28) is a general term, which
was used to describe the fragmentation process that is not completely random but involves some kind of optimization with the
main purpose of harming the normal functioning of a system.

C. Benchmark network.

8 of 17 Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin

1

2 3

4

5

6

7

8

9

10

111213

1415

16

17

18

19

20

81

21 22

23

24

25
26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59
60

83

82

6162

63
64

65

66

67

68

69

70

71

72

73

74
75

76

7778

79

80

BPD

1

2 3

4

5

6

7

8

9

10

111213

1415

16

17

18

19

20

81

21 22

23

24

25
26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59
60

83

82

6162

63
64

65

66

67

68

69

70

71

72

73

74
75

76

7778

79

80

Min-Sum

1

2 3

4

5

6

7

8

9

10

111213

1415

16

17

18

19

20

81

21 22

23

24

25
26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59
60

83

82

6162

63
64

65

66

67

68

69

70

71

72

73

74
75

76

7778

79

80

GND

1

2 3

4

5

6

7

8

9

10

111213

1415

16

17

18

19

20

81

21 22

23

24

25
26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59
60

83

82

6162

63
64

65

66

67

68

69

70

71

72

73

74
75

76

7778

79

80

Optimal
Network

Dismantling

C=20

Fig. S1. Benchmark network G of 83 nodes and Network Dismantling Problem NDP(G, I, C) with target size C = 20 nodes, i.e., c ≈ 0.24. The network consists out of 4
groups of complete subgraphs K20: the group with nodes 1-20, the group with nodes 21-40, the group with nodes 41-60 and the group with nodes 61-80. Complete subgraphs
are connected via three nodes: node 81 with degree 8, node 82 with degree 3 and node 83 with degree 3. The removed nodes are shown in red. The optimal solution is set of
nodes S∗

NDP = {81, 82, 83} and has an overall dismantling Cost(G, I, C) = 3, i.e. three nodes need to be removed such that the largest connected component has at
most C = 20 size or≈ 0.24 of the original GCC size. On this benchmark network, the best performing state-of-the-art algorithms BPD (29), Min-Sum (10) and the proposed
GND algorithm have following cost, Cost(BPD)= 11, Cost(Min-Sum)= 12 and Cost(GND)= 4. We observe that the loops make problems for Min-Sum and BPD algorithm,
but not for GND algorithm. The EGP algorithm (30) on this benchmark had the cost much larger than BPD and Min-Sum, so it was omitted.

Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin 9 of 17

1

2 3

4

5

6

7

8

9

10

111213

1415

16

17

18

19

20

81

21 22

23

24

25
26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59
60

83

82

6162

63
64

65

66

67

68

69

70

71

72

73

74
75

76

7778

79

80

GND

1

2 3

4

5

6

7

8

9

10

111213

1415

16

17

18

19

20

81

21 22

23

24

25
26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59
60

83

82

6162

63
64

65

66

67

68

69

70

71

72

73

74
75

76

7778

79

80

Optimal
Generalized
Network

Dismantling

C=20

Fig. S2. Benchmark network G of 83 nodes and Generalized Network Dismantling Problem GNDP(G, W, C) with target size C = 20 nodes, i.e., c ≈ 0.24. See
network description in Fig. S1. Removing cost weights are equal to the degree of a node, e.g. w81 = 8, w82 = 3, w3 = 19, w66 = 19, etc. The optimal solution for
GNDP(G, W, C) with target size C = 20 nodes is set of nodes S∗

GNDP = {81, 82, 83} with the overall cost Cost(G, W, C) = 14. The proposed GND algorithm in
this case finds the optimal solution. Note that in the case of C = 20, the GNDP and NDP problems have the same optimal solution, i.e. S∗

GNDP = S∗
NDP , see Fig. S1.

Furthermore, the inequality wminCost(G, I, C) ≤ Cost(G, W, C) ≤ wmaxCost(G, I, C) connects the unit and non-unit case, where wmin = 3, wmax = 20,
Cost(G, I, C) = 3 and Cost(G, W, C) = 14.

10 of 17 Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin

1

2 3

4

5

6

7

8

9

10

111213

1415

16

17

18

19

20

81

21 22

23

24

25
26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59
60

83

82

6162

63
64

65

66

67

68

69

70

71

72

73

74
75

76

7778

79

80

Optimal
Network

Dismantling

C=43

1

2 3

4

5

6

7

8

9

10

111213

1415

16

17

18

19

20

81

21 22

23

24

25
26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59
60

83

82

6162

63
64

65

66

67

68

69

70

71

72

73

74
75

76

7778

79

80

Optimal
Generalized

Network
Dismantling

C=43

Fig. S3. Benchmark network G of GCC size 83 nodes and comparison of optimal Generalized Network Dismantling Problem and Network Dismantling Problem for
target size C = 43, i.e. c ≈ 0.52. See Fig. S2 and S1 for more details on network. The optimal solution for non-unit problem GNDP(G, W, C) with target size C = 43
nodes is set of nodes S∗

GNDP = {82, 83} with the overall cost Cost(G, W, C = 43) = 6. The optimal solution for unit problem NDP(G, I, C) with target size C = 43
nodes is the set of nodes S∗

NDP = {81} with the overall cost Cost(G, I, C = 43) = 1. Note that, in the case of C = 43 the GNDP and NDP problems have different
optimal solutions, i.e. S∗

GNDP 6= S∗
NDP . Furthermore, the inequality wminCost(G, I, C) ≤ Cost(G, W, C) ≤ wmaxCost(G, I, C) connects the unit and non-unit

case, where wmin = 3, wmax = 20, Cost(G, I, C = 43) = 1 and Cost(G, W, C = 43) = 6.

Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin 11 of 17

8. More comparison of different network removal approaches on more networks

Fig. S4 provides a supplementary to Fig. 3 of the main paper with two more algorithms: Collective Influence (CI) (31) and
CoreHD (32). Fig. S5 provides a supplementary to Fig. 4 of the main paper with two more algorithms (CI and CoreHD) and
two more networks. Fig. S6 presents the performance of different algorithms on six more networks for the unit costs case.
Table S1 summarizes the results for different algorithms for different target sizes c in unit cost and non-unit cost cases. The
results show that the proposed GNDR algorithm has a better performance over all situations.

0 0.2 0.4 0.6 0.8 1

Dismantling cost (degree-based)

(a) Crime

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

EGP-W

CI

CoreHD

Min-Sum-W

BPD-W

GND

GNDR

0 0.2 0.4 0.6 0.8 1

Dismantling cost (degree-based)

(b) Corruption

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

0 0.2 0.4 0.6 0.8 1

Dismantling cost (degree-based)

(C) Petster-hamster

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

0 0.2 0.4 0.6 0.8

Dismantling cost (degree-based)

(d) Power-Grid

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

Fig. S4. The comparison of the GND and GNDR algorithms with more existing algorithms for degree-based costs case. In the Fig 3 of our main paper, only part of
the existed algorithms were compared. Here we also present the comparison of GND and GNDR algorithm with CI and CoreHD algorithm. The dismantling curve shows the
process of reducing the giant connected component (GCC) of a network with number of the removed nodes. The strategy with a lower area under the curve implies better
dismantling. The performances of the algorithms when the cost of removing a node is equal for all nodes (unit costs) on (a) Crime network (33), (b) Corruption network (34),
(c) Petster-hamster (35) online social network and (d) Power-Grid (36) network. We observe that for the case of degree-based costs with different target size, the proposed
methodology (GND and GNDR) can always provide good solutions.

12 of 17 Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin

0 0.05 0.1 0.15 0.2
Dismantling cost (unit costs)

(a) Crime

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

EGP

CI

CoreHD

Min-Sum-W

BPD- W

GND

GNDR

0 0.2 0.4 0.6 0.8

Dismantling cost (unit costs)

(b) Corruption

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

0 0.1 0.2 0.3 0.4 0.5

Dismantling cost (unit costs)

(c) Petster-hamster

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

0 0.05 0.1 0.15 0.2 0.25

Dismantling cost (unit costs)

(d) Power-Grid

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

Fig. S5. The comparison of the GND and GNDR algorithms with more existing algorithms for unit cost case. In the Fig 4 of our main paper, only part of the existing
algorithms were compared and only on two networks. Here we also present the comparison of GND and GNDR algorithm with CI and CoreHD algorithm on four networks.
Size of the GCC versus unit-based dismantling cost for the four different networks: (a) Crime network (33), (b) Corruption network (34), (c) Petster-hamster (35) online social
network and (d) Power-Grid (36) network. The dismantling represents creating firewalls for stopping the spread of disinformation, malicious cyber data, quarantines for epidemic
and computer virus spreading, engineered breaking points for criminal and corruption networks, etc. The dismantling cost is measured with the fraction of the removed nodes,
i.e., unit costs.

Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin 13 of 17

0 0.1 0.2 0.3 0.4

Fraction of removed node

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
iz

e
 o

f
th

e
 G

C
C

Authors network

CoreHD

BPD

Min-Sum

GND

GNDR

EGP

0 0.1 0.2 0.3 0.4

Fraction of removed node

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
iz

e
 o

f
th

e
 G

C
C

PPI network

CoreHD

BPD

Min-Sum

GND

GNDR

EGP

0 0.1 0.2 0.3 0.4 0.5
Dismantling cost (unit costs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
C

C
 S

iz
e

Road EU network

EGP
CoreHD
Min-Sum
BPD
GND
GNDR

0 0.01 0.02 0.03 0.04
Dismantling cost (unit costs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
C

C
 S

iz
e

IntNetl

EGP
CoreHD
Min-Sum
BPD
GND
GNDR

0 0.005 0.01 0.015
Dismantling cost (unit costs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
C

C
 S

iz
e

Email network

CoreHD
Min-Sum
BPD
GND
GNDR

0 0.2 0.4 0.6
Dismantling cost (unit costs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
C

C
 S

iz
e

Citation network

EGP
CoreHD
Min-Sum
BPD
GND
GNDR

Fig. S6. Comparison of the performances of different algorithms for unit cost case on six more networks, including Authors network (N=21363, M=91286), PPI network
(N=2224, M=6609), Road EU network (N=1039, M=1305), IntNet1 network (N=6474, M=12572), Email network (N=224832, M=339925), and Citation network (N=34401,
M=420784) (32).

14 of 17 Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin

UNIT CASE
PPI network

c φc(Min-Sum) φc(BPD) φc(GNDR)
0.8 0.0341 0.0341 0.0404
0.6 0.0876 0.1079 0.0867
0.4 0.1276 0.1200 0.1092
0.2 0.1357 0.1326 0.1492

Grid network
c φc(Min-Sum) φc(BPD) φc(GNDR)

0.8 0.0036 0.0123 0.0070
0.6 0.0036 0.0123 0.0082
0.4 0.0103 0.0131 0.0087
0.2 0.0190 0.0184 0.0097

Authors network
c φc(Min-Sum) φc(BPD) φc(GNDR)

0.8 0.0724 0.0711 0.0578
0.6 0.0954 0.0928 0.0737
0.4 0.1084 0.1063 0.1057
0.2 0.1140 0.1129 0.1247

NON-UNIT CASE (degree-based cost)
PPI network

c φc(Min-Sum-W) φc(BPD-W) φc(GNDR)
0.8 0.3166 0.3304 0.1202
0.6 0.6159 0.6725 0.2914
0.4 0.7415 0.7079 0.4944
0.2 0.7606 0.7515 0.6448

Grid network
c φc(Min-Sum-W) φc(BPD-W) φc(GNDR)

0.8 0.0175 0.0636 0.0048
0.6 0.0175 0.0636 0.0048
0.4 0.0468 0.0677 0.0394
0.2 0.0912 0.0905 0.1507

Authors network
c φc(Min-Sum-W) φc(BPD-W) φc(GNDR)

0.8 0.4339 0.4356 0.1144
0.6 0.5383 0.5288 0.3057
0.4 0.5807 0.5724 0.4609
0.2 0.5973 0.5953 0.5091

Table S1. Comparison of results for different algorithms for different target sizes c in unit cost and non-unit cost cases. The corresponding
overall dismantling cost is φc, i.e., the ratio of the removed cost. In each computational experiment, the best case is shown in bold. We
observe that the proposed GNDR algorithm has a better performance over all situations.

Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin 15 of 17

9. Ethics

The method presented in this paper aims at offering a possible solution for emergencies where cutting a dysfunctional network
into pieces can restore its functionality. However, we also warn of potential misuses or dual uses. When not applied in
appropriate contexts and ways, the use of the dismantling approach may undermine the proper functionality of networks.
Therefore, we point out that related ethical issues must be sufficiently, appropriately, and transparently addressed when
the method is applied. The method must be restricted to legitimate uses and actors. It may be justified to stop harmful
cascading problems such as deadly epidemics and the spreading of disruptive computer malware, or to dismantle criminal
organizations or corruption networks. The method may also be used to identify more resilient system designs and network
operations. Note, however, that the use of dismantling strategies to contain misinformation can be potentially problematic, as
it may result in censorship if a government, company, news agency or other institution decides what is misinformation or not.
Stopping the spread of true information can seriously obstruct the societal evolution towards better insights and solutions.
Also note that, if public discourse is shaped by a few people only, this may promote the misuse of power, corruption and crime.
In order to contain fake news, dis- and misinformation, we recommend a suitable combination of the use of AI, collective
intelligence (such as Wikipedia and crowd-sourced fact checking), reputation systems for messages and information sources,
elected community moderators, complaint mechanisms, qualification mechanisms, quality-based message ranking and reach, as
well as verification/measurement-based approaches.

References

1. Fiedler M (1973) Algebraic connectivity of graphs. Czechoslovak Math J 23(2):298–305.
2. Pothen A, Simon HD, Liou KP (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM J Matrix Anal

Appl 11(3):430–452.
3. Riolo MA, Newman MEJ (2014) First-principles multiway spectral partitioning of graphs. J Complex Networks 2(2):121–140.
4. Muller ME (1959) A note on a method for generating points uniformly on n-dimensional spheres. Commun. ACM

2(4):19–20.
5. Benson AR, Gleich DF, Leskovec J (2016) Higher-order organization of complex networks. Science 353(6295):163–166.
6. Bar-Yehuda R, Even S (1981) A linear-time approximation algorithm for the weighted vertex cover problem. Journal of

Algorithms 2(2):198 – 203.
7. Ren XL, Gleinig N, Tolić D, Antulov-Fantulin N (2018) Underestimated cost of targeted attacks on complex networks.

Complexity 2018.
8. Karp R (1972) Reducibility among combinatorial problems in Complexity of Computer Computations, eds. Miller R,

Thatcher J. (Plenum Press), pp. 85–103.
9. Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. (W. H. Freeman

& Co., New York, NY, USA).
10. Braunstein A, Dall’Asta L, Semerjian G, Zdeborová L (2016) Network dismantling. Proc Natl Acad Sci USA 113(44):12368–

12373.
11. Dinur I, Safra S (2004) On the hardness of approximating minimum vertex cover. Annals of Mathematics 162:2005.
12. Khot S, Regev O (2008) Vertex cover might be hard to approximate to within 2-ε. Journal of Computer and System

Sciences 74(3):335–349.
13. Dinur I, Khot S, Kindler G, Minzer D, Safra M (2018) Towards a proof of the 2-to-1 games conjecture? in Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing - STOC 2018. (ACM Press).
14. Lipton RJ, Tarjan RE (1979) A Separator Theorem for Planar Graphs. SIAM Journal on Applied Mathematics 36(2):177–

189.
15. Bui TN, Jones C (1992) Finding good approximate vertex and edge partitions is NP-hard. Information Processing Letters

42(3):153–159.
16. Leighton T, Rao S (1999) Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms.

Journal of the ACM 46(6):787–832.
17. Arora S, Rao S, Vazirani U (2004) Expander flows, geometric embeddings and graph partitioning in Proceedings of the

thirty-sixth annual ACM symposium on Theory of computing - STOC '04. (ACM Press).
18. Feige U, Hajiaghayi M, Lee JR (2008) Improved approximation algorithms for minimum weight vertex separators. SIAM

Journal on Computing 38(2):629–657.
19. Arora S, Hazan E, Kale S (2005) Fast algorithms for approximate semidefinite programming using the multiplicative

weights update method in 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05). (IEEE).
20. Marx D (2006) Parameterized graph separation problems. Theoretical Computer Science 351(3):394–406.
21. Janson S, Thomason A (2008) Dismantling sparse random graphs. Combin Probab Comput 17(2):259–264.
22. Ben-Ameur W, Mohamed-Sidi MA, Neto J (2013) The k-separator problem in Computing and Combinatorics, eds. Du DZ,

Zhang G. (Springer Berlin Heidelberg, Berlin, Heidelberg), pp. 337–348.
23. Guattery S, Miller GL (1998) On the quality of spectral separators. SIAM Journal on Matrix Analysis and Applications

19(3):701–719.
24. Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Structures Algorithms

6(2/3):161–179.

16 of 17 Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin

25. Cohen R, Erez K, ben Avraham D, Havlin S (2000) Resilience of the internet to random breakdowns. Phys Rev Lett
85(21):4626–4628.

26. Tanizawa T, Paul G, Cohen R, Havlin S, Stanley HE (2005) Optimization of network robustness to waves of targeted and
random attacks. Phys Rev E 71(4).

27. Schneider CM, Moreira AA, Andrade JS, Havlin S, Herrmann HJ (2011) Mitigation of malicious attacks on networks.
Proc Natl Acad Sci USA 108(10):3838–3841.

28. Dong G, et al. (2013) Robustness of network of networks under targeted attack. Phys Rev E 87(5):052804.
29. Mugisha S, Zhou HJ (2016) Identifying optimal targets of network attack by belief propagation. Phys Rev E 94(1):012305.
30. Chen Y, Paul G, Havlin S, Liljeros F, Stanley HE (2008) Finding a better immunization strategy. Phys Rev Lett

101(5):58701.
31. Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65–

68.
32. Zdeborová L, Zhang P, Zhou HJ (2016) Fast and simple decycling and dismantling of networks. Scientific Reports 6.
33. Kunegis J (2013) KONECT – The Koblenz Network Collection in Proc. Int. Conf. on World Wide Web Companion. pp.

1343–1350.
34. Ribeiro HV, Alves LGA, Martins AF, Lenzi EK, Perc M (2018) The dynamical structure of political corruption networks.

Journal of Complex Networks pp. cny002–cny002.
35. Kunegis J (2013) The koblenz network collection in Proceedings of the International Web Observatory Workshop. pp.

1343–1350.
36. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442.

Xiao-Long Ren, Niels Gleinig, Dirk Helbing and Nino Antulov-Fantulin 17 of 17

	Objective function
	Spectral properties of weighted Laplacian
	Convergence bounds
	Run time complexity
	Weighted vertex cover fine-tuning
	Pseudocode of GND algorithm
	Generalized Network Dismantling Optimization Problem
	Generalized Network Dismantling
	Relation to other problems
	Benchmark network

	More comparison of different network removal approaches on more networks
	Ethics

