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I. THE MINIMUM LENGTH FUNCTION `min

CONTROLS THE MATERIAL BEHAVIOR

A. System energy in terms of average and
standard deviation of the rescaled spring lengths

Here we derive Eqs. (2) and (5) in the main text, start-
ing from Eq. (1), which we restate here:

es2D =
∑
i

(li − l0i)2. (S1)

To derive Eq. (2), we first introduce the mean rescaled
spring rest length `0, together with the rescaled spring
lengths `i and the weights wi:

`0 =

[
1

N

∑
i

l20i

]1/2
(S2)

`i = `0
li
l0i

(S3)

wi =

[
l0i
`0

]2
. (S4)

In this subsection, all sums are over all springs i in the
network. The rescaled spring length `i is the actual
spring length measured relative to its rest lengths and
rescaled by `0. Combining Eqs. (S1), (S3), and (S4), we
obtain Eq. (2) in the main text:

es2D =
∑
i

wi(`i − `0)2. (S5)

We now need to show that Eq. (S5) is the same as
Eq. (5) in the main text, which reads:

es2D = N
[
(¯̀− `0)2 + σ2

`

]
(S6)

with the following definitions for the (weighted) average
and standard deviation of the rescaled spring lengths `i:

¯̀=
1

N

∑
i

wi`i (S7)

σ` =

[
1

N

∑
i

wi(`i − ¯̀)2

]1/2
. (S8)

To this end, we first use Eqs. (S4) and (S2) to obtain:∑
i

wi = N . (S9)

This relation is then used to transform σ2
` by expanding

the square inside of the sum:

σ2
` =

1

N

∑
i

wi`
2
i − 2¯̀ 1

N

∑
i

wi`i + ¯̀2, (S10)

and with Eq. (S7):

σ2
` =

1

N

∑
i

wi`
2
i − ¯̀2. (S11)
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Adding (¯̀− `0)2 on both sides yields

(¯̀− `0)2 + σ2
` =

1

N

∑
i

wi`
2
i − 2¯̀̀

0 + `20, (S12)

and using again Eq. (S7):

(¯̀− `0)2 + σ2
` =

1

N

∑
i

wi(`i − `0)2. (S13)

Hence, Eqs. (2) and (5) in the main text are equivalent.

B. The coefficients a` and aa are properties of a
self-stress

Here we show that the coefficients a` and aa are closely
related to the self-stress t that is created at the onset of
geometric incompatibility, at `0 = `∗0 [1]. To this end, we
start here by focusing on the case without area term, and
where all weights are wi = 1 (cf. Eq. (2) in main text). At
the end, we explain how to include both heterogeneous
weights and area terms. Also, we assume for simplicity
that close to the transition point there is only a single
self-stress, which is the self-stress created by the onset of
geometric incompatibility. However, while some models
can only exhibit at most a single self-stress (Section III),
we have convinced ourselves that our derivation can also
be generalized to the case where several self-stresses are
present at `∗0. Finally, we assume here that there are no
prestresses in the floppy regime, which implies that all
lengths attain their preferred value right at the transi-
tion point. At the end of this section, we briefly discuss
exceptions to this assumption. For clarity, we set γ = 0
throughout this section.

A self-stress t is defined by

t ·C = 0, (S14)

where C is the compatibility matrix with components
Cin = ∂`i/∂rn, with i = 1, . . . , N running over all gen-
eralized springs with lengths `i, and n running over all
degrees of freedom rn.

We show here that the creation of a self-stress t at the
transition implies a linear scaling of the minimal average
length ¯̀with σ`. Moreover, it even implies such a scaling
for each individual spring length `i. To show this, we first
note that – up to a prefactor – any vector t can always
be written as:

t = e+ a`mt, (S15)

where e = (1, . . . , 1) and mt is some vector normalized
such that m2

t = N that is perpendicular to e: e ·mt = 0.
Thus, the coefficient a` represents here the ratio between
standard deviation and average of the components ti.

Given the existence of this self-stress, we are interested
in the minimal possible average length ¯̀ for fixed σ`.

FIG. S1. Schematic illustrating the relation between the mini-
mal length ¯̀

min hyper-surface (blue surface) and the self-stress
t (thick blue arrow) that is created at the onset of geomet-
ric incompatibility. Here, we show a 3D representation of
the N -dimensional hyperspace containing all rescaled spring
lengths ` = (`1, . . . , `N ). The space is rotated such that the
axis pointing up corresponds to the average spring length, i.e.
it is parallel to the vector e = (1, . . . , 1) (black arrow). The
horizontal plane in the image represents the remaining N − 1
dimensions in the ` space. The blue ¯̀

min surface separates a
geometrically possible region above it from a region of geo-
metrically impossible spring length combinations ` below it.
Setting the spring rest lengths to the latter combinations will
thus lead to geometric incompatibility and thus potentially
rigidify the network. Close to the transition point (green
sphere), the ¯̀

min surface is perpendicular to the self-stress
t (blue arrow), as expressed by Eq. (S18). The black sphere
marks the point where all spring lengths are zero, and at the
transition point (green sphere), all springs attain the same
length ` = `∗0e. The distance from the line connecting both
black and green points corresponds to the standard deviation
of the spring lengths σ` (with a prefactor of

√
N). Hence,

to obtain the minimal average length ¯̀
min for given σ`, we

need to cut the mantle of a cylinder with radius
√
Nσ` (red

cylinder) with the ¯̀
min surface. As we show via Eq. (S19),

the resulting ellipse has its lowest point where m` ↑↑ mt.
This figure corresponds to the case without area term. Also,
this discussion relates to a local environment of one transition
point. We expect that large displacements of the degrees of
freedom r will affect this diagram by changing the direction
of mt (and by slightly altering the values of `∗0 and a`).

Similar to t, we express the vector ` containing all spring
lengths as:

` = ¯̀e+ σ`m`, (S16)

where againm` is a vector perpendicular to e normalized
such that m2

` = N . Right at the transition point `0 = `∗0,
all lengths attain their preferred value ` = `∗0e. As we
slightly decrease the control parameter `0 by δ`0, and
thus move into the rigid regime, the degrees of freedom
will change by δr. To first order in δ`0 this creates a
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change in ` by

δ` = C · δr, (S17)

where δ` = (¯̀− `∗0)e+σ`m`. To minimize ¯̀ for fixed σ`,
we need to take into account that δ` can not attain any
vector in its N -dimensional vector space. In particular,
the existence of the self-stress t implies that δ` has to be
perpendicular to t (using Eqs. (S14) and (S17)):

t · δ` = 0. (S18)

This equation is essentially a linearized version of the ge-
ometric compatibility condition ¯̀≥ ¯̀

min(σ`). Note that
Eq. (S18) is the only constraint when minimizing ¯̀, be-
sides fixing σ`, because t is the only self-stress. Inserting
Eq. (S15) and δ` into Eq. (S18) yields:

¯̀= `∗0 − a`σ`(mt ·m`/N). (S19)

The minimal ¯̀ is obtained for m` = mt, where the scalar
product mt ·m` attains its maximal possible value N .
Thus:

¯̀
min(σ`) = `∗0 − a`σ`. (S20)

Insertion into Eq. (S16) yields:

`(σ`) = (`∗0 − a`σ`)e+ σ`mt. (S21)

Hence, also each individual spring length depends lin-
early on σ`.

This proof is schematically illustrated by Fig. S1,
where the N -dimensional space of spring lengths ` is rep-
resented by a 3D figure. As for Eq. (S18), the ¯̀

min surface
(blue surface) is locally perpendicular to the self-stress t
(blue arrow). In order to find the minimal possible ¯̀ for
given standard deviation σ`, we first cut the ¯̀

min surface
with the locus where the standard deviation σ` has a de-
fined constant value, which is a cylinder mantle (red).
The cut is an ellipse, and as we show through Eq. (S19),
its lowest point is where m` ↑↑ mt. Because the radius
of the cylinder is proportional to σ`, and because the
blue ¯̀

min surface is locally linear, we obtain that indeed
`∗0 − ¯̀

min(σ`) ∼ σ`.
To take heterogeneities in the weights wi into account,

one can completely follow the above line of argument,
where only the formal definition of the scalar product
in the N -dimensional “constraint space” needs to be
changed. In particular, the scalar product between two
N -dimensional vectors p and q needs to be defined as:

p · q =
∑
i

wipiqi. (S22)

Consequentially, also averages and standard deviations
change, e.g. t̄ = e · t/N = [

∑
i witi]/N and σ2

t = (t −
t̄e)2/N = [

∑
i wi(ti − t̄)2]/N .

For the cellular models with area term, the line of ar-
gument is similar, but with the following changes: First,
vectors in the “constraint space” like the self-stress t now

contain 2N components (where N is the number of cells):
N of these components represent cell “lengths” and the
other N components represent cell “areas”. Second, be-
cause the overall area is constant, there is a second self-
stress where the length components are zero and the area
components are one: (0, . . . , 0, 1, . . . , 1). However, the
important self-stress is still t, which is now written as
t = e + a`m

`
t + aam

a
t , where e = (1, . . . , 1, 0, . . . , 0),

the vector m`
t has only non-zero length entries, and

the vector ma
t has only non-zero area entries. Conse-

quentially, minimization of ¯̀ for fixed σ` and σa yields:
¯̀
min(σ`, σa) = `∗0 − a`σ` − aaσa.

Here we have assumed that at at the transition point
`0 = `∗0, all spring lengths attain their preferred value
`i = `∗0. In Section II A we numerically show that this
is the case is nearly all of our models. However, it is in
principle possible that this is not the case, but only if
there are prestresses in the floppy regime, which we oc-
casionally observed for the 2D vertex model with kA > 0
(Fig. S4) and the 3D Voronoi model with kV > 0 [2].
While we consider these exceptions outside the scope of
the current paper, the above derivation can easily be gen-
eralized to obtain a formula for ¯̀

min that includes these
cases.

C. Geometric properties and energy

Here we show how for all studied models, the function
¯̀
min(σ`, σa, γ) controls the behavior of the system in the

rigid regime. In particular, knowing the functional form
of ¯̀

min(σ`, σa, γ) lets us write explicit expressions for ¯̀,
σ`, σa, and the total system energy e in terms of the
control parameters kA, `0, and γ.

1. Without shear strain

For all models, the dimensionless system energy e can
be expressed in terms of ¯̀, σ`, and σa:

e = N
[
(¯̀− `0)2 + σ2

` + kAσ
2
a

]
. (S23)

Because in the rigid regime, the average length attains
the minimally possible length given σ` and σa, the energy
minimum fulfills the following two equations:

0 =
∂e
(

¯̀= ¯̀
min(σ`, σa), σ`, σa

)
∂σ`

(S24)

0 =
∂e
(

¯̀= ¯̀
min(σ`, σa), σ`, σa

)
∂σa

. (S25)

Insertion of Eq. (S23) yields:

σ` = −∂
¯̀
min

∂σ`
(¯̀− `0) (S26)

σa = − 1

kA

∂ ¯̀
min

∂σa
(¯̀− `0). (S27)
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If we knew the relation ¯̀
min(σ`, σa), we could just insert it

together with ¯̀= ¯̀
min into Eqs. (S26) and (S27) in order

to obtain explicit expressions for ¯̀, σ`, and σa depending
on the control parameters `0 and kA.

For example, close to the transition point we find that
¯̀
min(σ`, σa) depends linearly on σ` and σa:

¯̀
min(σ`, σa) = `∗0 − a`σ` − aaσa. (S28)

This is a consequence of the self-stress that is created
at the onset of rigidity (see Section I B). Insertion into
Eqs. (S26) and (S27) yields:

σ` = a`(¯̀− `0) (S29)

σa =
aa
kA

(¯̀− `0). (S30)

Further, using again Eq. (S28), we obtain:

¯̀= `0 +
1

Z
(`∗0 − `0) (S31)

σ` =
a`
Z

(`∗0 − `0) (S32)

σa =
aa
kAZ

(`∗0 − `0) (S33)

with

Z = 1 + a2` +

{
0 for kA = 0, and
a2a
kA

for kA > 0.
(S34)

Finally, inserting Eqs. (S31)–(S33) into Eq. (S23), we
obtain an explicit expression of e in terms of the control
parameters `0 and kA:

e =
N

Z
(`∗0 − `0)2, (S35)

where Z depends on kA according to Eq. (S34).

2. Including shear strain

The minimal length function generally depends also on
the shear strain γ. Note that in our formalism there are
no requirements on the precise definition of γ, which can
in particular describe any of both pure shear or simple
shear deformation. Please refer to Section IV for the
precise definition of γ used in each of the studied models.

We assume that ¯̀
min(σ`, σa, γ) is analytic in γ, and

close to the transition, we can thus write up to first order
in σ` and σa and up to second order in γ:

¯̀
min(σ`, σa, γ) = `∗0 − a`σ` − aaσa + bγ2. (S36)

Note that there is some freedom in choosing the point
γ = 0, which allows us to discard the linear term ∼ γ
in Eq. (S36). This point is automatically reached by
searching for the point `0 = `∗0 and γ = 0 using a shear-
stabilized minimization protocol for simulations [3], or

in experiments by starting from a stress-free state with
minimal `0 (Section I D). Moreover, generally there are
of course also terms ∼ σ`/aγ and ∼ σ`/aγ2. These terms
allow to predict higher-order corrections to the energy
and its derivatives. However, for this study we focus just
on the highest-order terms as listed in Eq. (S36).

Following the same arguments as in the previous sub-
section, we ultimately obtain for the system energy:

e =
N

Z

(
`∗0 − `0 + bγ2

)2
, (S37)

where Z is again given by Eq. (S34). In the following Sec-
tions I D and I E below we compute several derivatives of
this expression to obtain the mechanical material prop-
erties.

D. Shear stress and shear modulus

Using the expression Eq. (S37), we obtain the following
expression for the shear stress σ̃ = (de/dγ)/N in the rigid
regime, with N being the dimensionless system area:

σ̃ =
4bγ

Z

(
`∗0 − `0 + bγ2

)
. (S38)

Note that a term ∼ γ in `min (Eq. (S36)) would lead to an
additional constant term in the numerator of Eq. (S38).
Thus, the shear stress for `0 < `∗0 would be nonzero at
γ = 0.

From Eq. (S38), we obtain the differential shear mod-
ulus G = dσ̃/dγ in the rigid regime:

G =
4b

Z

(
`∗0 − `0 + 3bγ2

)
. (S39)

Combining this with Eq. (S38), we obtain:

G = ∆G∗ +
3σ̃

γ
, (S40)

where ∆G∗ is:

∆G∗ =
8b

Z
(`0 − `∗0). (S41)

This is the shear modulus discontinuity in G, which ap-
pears at the onset of rigidity γ = γ∗.

For γ = 0 and `0 < `∗0, Eq. (S39) implies that the
shear modulus G scales linearly with the distance `∗0− `0
to the transition point. This is confirmed by our model
simulations for the 2D spring networks in Fig. 4f in the
main text, and for the cellular models in Fig. S2, in part
confirming earlier findings [2, 4, 5]. Fig. S2 also shows a
collapse of the different kA > 0 curves of a given model
when rescaling the shear modulus with Z, indicating that
b indeed describes the underlying geometry and is thus
independent of kA. However, note that like the coeffi-
cients a`, also the coefficient b may differ between the
kA = 0 and kA > 0 versions of a model (see in particular
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FIG. S2. For γ = 0 and `0 < `∗0, the shear modulus G scales
linearly with the distance `∗0 − `0 to the transition point (cf.
Eq. (S39)). (a) 2D Voronoi and 2D vertex model, (b) 3D
Voronoi model. Rescaling the shear modulus by Z defined in
Eq. (S34) largely collapses the data for all kA > 0 values of a
given model.

Fig. S2b). The reason is that they represent Taylor ex-
pansions of the function ¯̀

min(σ`, σa, γ) at different points
(σ`, σa, γ). For kA > 0, the coefficient b characterizes the
behavior at (σ`, σa, γ) = (0, 0, 0), while for kA = 0 at
(σ`, σa, γ) = (0, σa > 0, 0). The numerical values of b are
noted in Table I in the main text.

E. Isotropic stress and bulk modulus

In order to derive the isotropic part of the stress and
the bulk modulus from the energy expression Eq. (S37),
we make use of the fact that `0 is non-dimensionalized
by the number density of elements, and thus indirectly
depends on the system size.

To make sure we are not missing any term, we start
from the “dimensionful” energy of the system, which
reads:

E =
∑
i

[
KL(Li − L0)2 +KA(Ai −A0)2

]
. (S42)

Here, KL and KA are length and area rigidities, Li and
Ai are length and area of element i, and L0 and A0 are

their respective preferred values. Thus, the total area
of the system is AT =

∑
iAi and the average area per

element is Ā = AT /N . To obtain the dimensionless ex-
pressions e for the energies of our models (Eqs. (1)–(4)
in the main text), we have set A0 = Ā and then non-
dimensionalized with respect to the length scale Ā1/D

and the energy scale KLĀ
2d/D [2, 6, 7]. Hence, the di-

mensionful total energy E of the system can be written
as the sum:

E = EA0 +KLĀ
2d/De, (S43)

where EA0
= NKA(Ā−A0)2 is a mean-field contribution

by the area elasticity, and e is the non-dimensional energy
given by Eq. (S37).

The isotropic part of the stress is defined as the
negative (dimensionful) pressure −P = dE/dAT =
(dE/dĀ)/N . Insertion of Eq. (S43) yields:

−P = 2KA(Ā−A0) +
KLĀ

2d/D

N

[
2d

DĀ
e+

de

dĀ

]
. (S44)

We obtain for the dimensionless pressure p =
Ā1−2d/DP/KL:

− p = 2kA(1− a0) +
1

N

[
2d

D
e+ Ā

de

dĀ

]
(S45)

with a0 = A0/Ā.
While in the floppy regime the dimensionless energy

e is zero, in the rigid regime e is given by Eq. (S37)
in terms of shear strain γ and the dimensionless control
parameters kA = KAĀ

2−2d/D/KL and `0 = L0/Ā
d/D.

The derivatives of kA and `0 with respect to Ā are:

dkA
dĀ

=
2(D − d)kA

DĀ

d`0
dĀ

= − d`0
DĀ

. (S46)

Hence, we ultimately obtain for the pressure p to first
order in `∗0 − `0 + bγ2 and for bγ2 � `∗0:

− p = 2kA(1− a0) +
2d`∗0
DZ

(`∗0 − `0 + bγ2). (S47)

Comparison with the shear modulus G, Eq. (S39), for
kA = 0 or a0 = 1 yields the second relation in Eq. (13)
in the main text.

From Eq. (S47) directly follows that the Poynting co-
efficient χ = p/γ2 close to `0 = `∗0 is for kA = 0 or a0 = 1:

χ = −2db`∗0
DZ

. (S48)

For 2D spring networks, this prediction is tested in
Fig. S5b & inset.

The bulk modulus is defined by −AT (dP/dAT ) =
−Ā(dP/dĀ), and thus the dimensionless bulk modulus
is

B = − Ā
2−2d/D

KL

dP

dĀ
. (S49)
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Insertion of the pressure P , Eq. (S44), yields in the floppy
regime:

B = 2kA, (S50)

and in the rigid regime:

B = 2kA +
1

N

[
2d(2d−D)

D2
e+

4d

D
Ā

de

dĀ
+ Ā2 d2e

dĀ2

]
.

(S51)
To absolute order in `∗0− `0 + bγ2 and for γ = 0, only the
last term in the square brackets survives when inserting
Eq. (S37):

B = 2kA +
2d2(`∗0)2

D2Z
. (S52)

This is the bulk modulus when approaching the transi-
tion from the rigid regime. To extend this expression
for γ 6= 0 and into the rigid regime `∗0 − `0 + bγ2 > 0,
higher order terms in ¯̀

min need to be taken into account.
Note that Eq. (S52) can also be derived by projecting
the affine isotropic deformation mode onto the self-stress
t that is created at the onset of geometric incompatibility
(Section I B) [1].

The prefactor Z in Eq. (S52), and thus ultimately the
coefficients a` and aa (Eq. (S34)), represent the effect of
non-affinities during isotropic deformations. To see this,
consider a system at the transition point, where all di-
mensionless areas are ai = 1 and all dimensionless lengths
are `i = `∗0. An affine isotropic deformation starting from
this configuration means that all dimensionless ai and `i
stay the same, because we non-dimensionalize with the
average area Ā. With Eq. (S23) follows that the energy
for affine transformations away from the transition point
towards the solid regime would then be e = N(`∗0 − `0)2.
The difference to Eq. (S37) is just the prefactor Z−1,
which thus indeed accounts for the non-affinities.

F. Scaling exponents for 2D spring networks

Here we rationalize for the 2D spring networks the ob-
served approximate scaling exponents in the coefficients
a` ∼ ∆z1/2 (Fig. 2a inset in the main text) and b ∼ ∆z
(Fig. 4c inset in the main text).

To understand the scaling of the coefficient a`, we start
with the extended Hessian Hλ of the system, which we
define as the second energy derivative with respect to
both, all internal degrees of freedom rn and a global lin-
ear scaling factor λ. We denote the eigen frequencies of
this extended Hessian by (ωmλ )2 and the λ component of
the corresponding eigen vectors by Λmλ . Then, the bulk
modulus B = (d2E/dλ2)/D2N can be expressed using
the well-known formula [2, 8, 9]:[

d2E

dλ2

]−1
=
∑
m

(Λmλ )2

(ωmλ )2
. (S53)

We use this formula in the rigid regime approaching the
transition. In this case, there are many low-frequency
modes, which correspond to the zero modes in the floppy
regime. However, as evidenced by the bulk modulus
discontinuity, these modes have vanishing λ component
[1, 2]: Λmλ = 0. Thus, we can treat the quantities on the
right-hand side of Eq. (S53) as those of the unstressed
Hessian, ignoring any zero modes in the sum [2]. In-
sertion of Eq. (S52) and transforming the sum into an
integral yields:

1 + a2` ∼
∫ ∞
0+

Dλ(ω)Λ2
λ(ω)

ω2
dω. (S54)

Here Dλ(ω) is the density of states, and we used that
`∗0 is to dominant order independent of ∆z (Table I and
Fig. 1b inset in main text). It has been shown that for
the “non-extended” Hessian H, the density of states D
shows a plateau starting at ω∗ ∼ ∆z [10, 11]. Assuming
that Λλ does not depend strongly on ω and that Dλ ' D,
we obtain

1 + a2` ∼
1

∆z
. (S55)

For ∆z � 1 follows indeed that a` ∼ ∆z1/2. Deviations
that we observe in our 2D system for small ∆z (Fig. 2a
inset in the main text) may be related to logarithmic
corrections [11].

We use a related argument to understand the scaling
of the coefficient b. Now we use the Hessian Hγ extended
by the shear strain γ. Analogously to above, we denote
the eigen frequencies of this extended Hessian by (ωmγ )2

and the γ component of the corresponding eigen vectors
by Λmγ . We use the analogous formula to Eq. (S53) for
the shear modulus [2, 8, 9]:

1

NG
=
∑
m

(Λmγ )2

(ωmγ )2
. (S56)

Using Eqs. (S39) and (S47) with γ = 0, this equation can
be transformed into

1

b(−p)
∼
∫ ∞
0+

Dγ(ω)Λ2
γ(ω)

ω2
dω. (S57)

Here, −p is the isotropic stress acting on the boundaries
of the system. The major difference to the isotropic case,
Eq. (S54), is that the shear modulus vanishes when ap-
proaching the point `0 = `∗0 and γ = 0 from the rigid
side. This means that right at the transition, there are
zero modes of Dγ with non-vanishing overlap Λmγ 6= 0.
As a consequence, in the rigid vicinity of the transition
where −p is small, the integral Eq. (S57) is dominated
by these modes, which are raised to energies ∼ (−p) [2].
Indeed, some of us recently showed that for small −p, the
product DγΛ2

γ collapses for different ∆z and −p as [12]:

Dγ(ω)Λ2
γ(ω) dω = ∆zfγ(x) dx (S58)
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FIG. S3. Rigidity is created by geometric incompatibility. This is shown here by 2D histograms with respect to the largest
prestress in a given configuration (directly indicating geometric incompatibility, x axis) and its shear modulus (y axis), for (a)
2D spring networks, here with z = 3.2, (b) the 2D vertex model with kA = 0 and (c) the 3D Voronoi model with kV = 0.
Earlier publications have shown this for the 2D Voronoi model with kA = 0 [7] and the 3D Voronoi model with kV > 0 [2].

with x = ω/
√
−p and fγ being independent of ∆z and

p. This makes sense, because at the transition there are
∼ ∆z zero modes, which are all raised to energies ∼ (−p).
Insertion of Eq. (S58) into Eq. (S57) yields:

1

b(−p)
∼ ∆z

−p
, (S59)

and thus b ∼ 1/∆z. More details on the shear modulus
scaling in the spring networks can be found in Ref. [12].

G. Application to rheometer geometry

To facilitate the comparison of our results to experi-
ments, we briefly discuss here how our results apply to
a rheometer geometry with circumferential axis x, radial
axis y, and rotation axis z, and the shear strain γ corre-
sponds to the simple shear strain. Rheometers typically
measure shear stress σ̃ = σxz and normal stress σzz.

In the following, we show for that several experimen-
tal protocols, and in the vicinity of the (γ, `0) = (0, `∗0)
point, the normal stress σzz should be dominated by the
isotropic part of the stress tensor, −p, given by Eq. (S47).
To this end, we will assume no lateral (i.e. radial) defor-
mation of the network in the rheometer, which we expect
to be valid whenever the sample is glued to the rheometer
plates and its height is small as compared to its radius.

First, we expect the normal stress σzz to be domi-
nated by the isotropic stress, σzz ' −p, upon applica-
tion of simple shear starting from a stress-free state. To
show this, we use the Lodge-Meissner relation [13], which
states that the normal stress difference is:

σxx − σzz = σ̃γ. (S60)

Note that while this relation likely holds generally for
isotropic, purely elastic materials, we consider a proof of
this to be outside the scope of this article. Combined
with Eqs. (S38) and (S47), we find:

σxx − σzz = −2Dbγ2

d`∗0
p. (S61)

Hence, for γ � 1 we obtain that the normal stress dif-
ference is much smaller than the isotropic stress −p, and
thus σzz ' −p.

We expect the same also for uniaxial compression or
expansion of the sample along the z axis [14]. This is be-
cause in the absence of lateral deformation, both isotropic
strain and pure shear strain along the z axis will have the
same magnitude ε. When expanding the sample start-
ing from `0 = `∗0, the discontinuity in the bulk modulus
will lead to lowest order in ε to a linear increase in the
isotropic stress −p ∼ ε. However, because of the linear
increase of the shear modulus with (`∗0−`0) ∼ ε, the nor-
mal stress difference will increase only as ∼ ε2. Hence,
we find also for small uniaxial deformations: σzz ' −p.

II. NUMERICAL RESULTS

A. Rigidity is created by geometric incompatibility

Here we discuss numerical evidence showing that ge-
ometric incompatibility is both necessary and sufficient
to create rigidity in the models studied. We have shown
this before for the kV > 0 case of the 3D Voronoi model
[2] and for the kA = 0 case for the 2D Voronoi model
[7]. For the 2D spring networks, the 2D vertex model
with kA = 0, and the 3D Voronoi model with kV = 0, we
demonstrate this in Fig. S3.

In Fig. S3, we sorted all energy-minimized configura-
tions into two-dimensional histograms with respect to the
shear modulus G and the maximal prestress 2|`i − `0| in
the configuration. The dashed magenta lines indicate
cutoff values below which we regard shear modulus and
maximal prestress as numerically zero (obtained as de-
scribed in [2]). The fact that the upper-left and lower-
right quadrants in all three plots are essentially devoid
of configurations means that geometric incompatibility is
necessary and sufficient, respectively, to create rigidity in
these models.

For the 2D vertex model with kA > 0 we find ex-
ceptions to this, similar to the 3D Voronoi model with
kV > 0 [2]. Note that all results presented here are
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FIG. S4. In the 2D vertex model with kA > 0, rigidity is cre-
ated by the onset of geometric incompatibility, but there are
also localized prestresses. (a) Geometric incompatibility is
necessary for rigidity, and in many cases also sufficient. How-
ever, there were several energy-minimized configurations with
finite prestresses, but vanishing shear modulus. (b) Two such
configurations, with p0 = 3.939 and p0 = 3.939, respectively.
The color of each cell i indicates pi − p0, where gray corre-
sponds to a value of zero and bright red to a value of 0.05.
kA = 1 in both panels. Shown here are only configurations
without quadrilaterals (see Section IV).

based on configurations without quadrilaterals and tri-
angles (see Section IV). Like for the other models, also
for the 2D vertex model with kA > 0 geometric incom-
patibility (i.e. the existence of prestresses) is necessary
to create rigidity (i.e. a finite shear modulus). This is
suggested by the essential absence of configurations in
the upper-left quadrant in Fig. S4a. However, the exis-
tence of prestresses is not always sufficient to rigidify the
system, as can be seen by the configurations in the lower-
right quadrant of this plot. Examples for such configura-
tions are shown in Fig. S4b, where the color indicates the
value of pi − p0 of each cell, with gray indicating a value
of zero and red indicating a positive value. The cells with
finite perimeter tension are localized to one region and
do not percolate the system. Note that when probing the
scaling of `min and of mechanical properties, we excluded
networks with such localized prestresses (i.e. in Fig. 2b
in the main text, Fig. S2a, and Fig. S7d-f).

B. 2D spring networks

Here we report additional numerical results on the 2D
spring networks. First, we found occasional jumps when
probing the dependence of the critical shear strain γ∗ on
`0 > `∗0 (see Fig. S5a for z = 3.7). We observed that
these jumps occur more frequently for higher coordina-
tion number z, i.e. for systems closer to isostaticity. We
interpret these jumps as plastic events where the sys-
tem switches into the basin of a different minimum of
`min(0, γ). In particular, we numerically looked for the
critical strain γ∗ by increasing γ in steps of size ∆γ un-
til the system rigidified (see Section IV). Notably, upon
decreasing ∆γ, we obtained less jumps in γ∗, consistent
with a decreased probability of switching basins when
taking smaller steps. Throughout this article, we focus
on the purely elastic behavior of the system in the vicin-
ity of one local minimum of ¯̀

min(σ` = 0, γ), and exclude
these cases from our analysis.

Second, in the past, randomly-cut packing-derived
spring networks have been studied without varying the
parameter `0, where instead the value `init0 right after
initialization of the spring network was used, e.g. in
Ref. [15]. In order to compare to the scaling relations
with respect to ∆z found in the past, we numerically
studied the scaling of `init0 − `∗0 and find that it scales
as (`init0 − `∗0) ∼ ∆z. Together with our other findings,
we recapitulate indeed several of the scaling exponents
observed in Ref. [15] (see discussion section in the main
text).

Third, we also observe a negative Poynting effect,
which is reflected in the development of a tensile isotropic
stress −p upon shear. For `0 = `∗0, the isotropic stress
scales quadratically with the shear strain γ, which is
shown in Fig. S5b for z = 3.2. Moreover, we can predict
the corresponding coefficient χ = p/γ2 using Eq. (S48)
by extracting the coefficient b for each network from the
scaling of the critical shear γ∗ with `0 > `∗0 (Fig. S5b
inset).

Fourth, the existence of the function `min allows the
prediction not only of the Poynting coefficient χ, but
also of the coefficient describing the linear shear mod-
ulus scaling for `0 < `∗0 (Fig. S5c, cf. Fig. 4f) and of the
shear modulus discontinuity (Fig. S5c inset, cf. Fig. 4d
inset).

C. 2D fiber networks without bending rigidity

We also simulated a fiber network model without bend-
ing rigidity. To this end, we divided each spring of our 2D
spring networks into M “subsprings” (Fig. S6a). These
subspring networks are still under-constrained, and the
limit M → ∞ corresponds to fiber networks without
bending rigidity. We find that such subspring networks
also follow the predictions that we make in the main
text (Fig. S6b-e, cf. Fig. 4 in the main text). Moreover,
we also find numerically that these results are quantita-
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FIG. S5. Additional numerical results for the scaling in 2D spring networks. (a) Dependence of the critical shear γ∗ on
`0 − `∗0 for z = 3.7 (cf. Fig. 4c in the main text). We interpret the jumps in γ∗ as a switch of the system into the basin of a
different minimum of `min(0, γ). (a inset) The value of `0 right after creation of the spring network, `init0 , behaves such that
we numerically observe the scaling relation (`init0 − `∗0) ∼ ∆z. (b) Atypical negative Poynting effect: Quadratic scaling of the
tensile isotropic stress −p with the shear strain γ for `0 = `∗0 and z = 3.2. (b inset) Prediction of the prefactor in panel b
based on the scaling of the critical shear γ∗ with `0 − `∗0 for `0 > `∗0. The black dashed line represents the prediction according
to Eq. (S48). (c) Prediction of the prefactor in the linear shear modulus scaling for `0 < `∗0 with γ = 0 based on the scaling
of the critical shear γ∗ with `0 − `∗0 for `0 > `∗0. The black dashed line represents the prediction according to the relation
G = 4b(¯̀− `0). (c inset) Prediction of the shear modulus discontinuity ∆G∗ for `0 > `∗0 based on the scaling of the critical
shear γ∗ with `0 − `∗0. The black dashed line represents the prediction according to Eq. (S41). In panel c and the insets to
panels b and c, each symbol represents one probed spring network. In the insets to panels b and c, Z was extracted from the
geometric scaling of the respective networks for `0 < `∗0, using Eq. (S29).

FIG. S6. Our analytical predictions also match fiber network simulations without bending rigidity. (a) To simulate fiber
networks, we divide each spring of our original spring networks into M subsprings. We numerically observe (b) a quadratic
scaling between critical strain γ∗ and `∗0−`0 (cf. Fig. 4c in the main text), (c) a linear scaling of the shear modulus discontinuity
with `∗0−`0 (cf. Fig. 4d inset in the main text), (d) the predicted scaling of the relative excess shear modulus beyond the critical
strain γ∗ (cf. Fig. 4d in the main text), and (e) a linear scaling of the shear modulus with the mean rest length for γ = 0 (cf.
Fig. 4f in the main text). (f) Simulations with different values for M > 1 lead to quantitatively the same predictions, here
shown for the plot in panel e for one of the original spring networks. In panels b-e, we set M = 4. In panels b-f, we have used
for the original spring network a system size of 128 nodes and a connectivity of z = 3.2.

tively independent of the number M as long as M > 1
(Fig. S6f). This makes sense, because subspring chains
under tension will straighten out and thus have the same
effect as the original spring, independent of M . Con-
versely, when replacing springs under compression by a
subspring chain, this chain will buckle resulting in a net-
work that behaves as if that subspring chain was not

there, independent of M > 1. As a consequence of this
independence onM > 1, the limitM →∞ is well-defined
and corresponds to the behavior of the subspring network
with any M > 1. Hence, fiber networks without bending
rigidity are also faithfully represented by our theory.
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FIG. S7. System-size dependence of the parameters `∗0, a`, and b characterizing the ¯̀
min function. (a-c) 2D spring networks

with z = 3.2, (d-f) 2D vertex model with kA > 0, and (g-i) 3D Voronoi model with kV > 0. For the 2D spring networks, all
quantities vary only little with system size. The same is also true for the other models with kA = 0. However, we observe a
drift in the a and b coefficients for both models with kA > 0.

D. System-size dependence of the geometric
parameters

We also studied the system-size dependence of the pa-
rameters `∗0, a`, aa, and b characterizing the `min func-
tion. We find that for all models with kA = 0, the pa-
rameters do not depend very strongly on system size (e.g.
Fig. S7a-c). At the same time their variances decrease
with system size as ∼ 1/N (Fig. S7 insets).

In contrast, for models with kA > 0, we find a sig-
nificant, possibly logarithmic, drift in the coefficients a`,
both in two and in three dimensions (Fig. S7e,h). At the
same time, the variance in a` appears to cease decreasing
with system size (Fig. S7 insets to e,h). The coefficients
b appear to possibly also show such a drift albeit some-
what weaker (Fig. S7f,i & insets). We do not yet know
where this drift comes from, but we noted that it is much
stronger for the 2D vertex model than for the 3D Voronoi
model (Fig. S7e,h).

III. THERE IS AT MOST ONE SELF-STRESS IN
THE 2D VERTEX MODEL WITH kA = 0

Here we show analytically that for the kA = 0 case of
the 2D vertex model with convex cells, there is at most
one self-stress, and that as a consequence the onset of
prestresses occurs collectively in all cells at once.

For kA = 0, the generalized springs are the N perime-
ters pi and the degrees of freedom are the 2N vertex
positions rq, where q is the vertex index and we assume
that all vertices are shared by three cells. Thus, a self-
stress in this system is an N -dimensional vector ti with:∑

i

ti
∂pi
∂rq

= 0 for all vertices q. (S62)

For a given vertex q, the partial derivative in the sum is
only non-vanishing for the three abutting cells (denoted
here by i, j, k) such that Eq. (S62) reads for this vertex
q:

ti
∂pi
∂rq

+ tj
∂pj
∂rq

+ tk
∂pk
∂rq

= 0. (S63)
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FIG. S8. Definitions of angles for the proof that there is at
most one self-stress in the 2D vertex model for kA = 0 (see
Section III).

This corresponds to force balance at vertex q with the
perimeter tensions ti, tj , tk.

With the angles θqi , θ
q
j , θ

q
k between the cell-cell inter-

faces (Fig. S8), we obtain for the norm of the perimeter
derivatives |∂pi/∂rq| = 2 cos (θqi /2), and the direction of
∂pi/∂rq is along the angle bisector of θqi (cf. Fig. S8).
If all angles 0 < θqi < π, then insertion into the force
balance equation Eq. (S63) yields

ti
tan (θqi /2)

=
tj

tan (θqj/2)
=

tk
tan (θqk/2)

. (S64)

Any solution to Eq. (S62) has to fulfill Eq. (S64) for each
vertex simultaneously. Thus, in the case where the condi-
tions Eq. (S64) around different vertices are incompatible
with each other, there are no nonzero solutions for the ti.
In this case there is no self-stress and thus no prestress,
i.e. the system is in the floppy regime. If conversely the
conditions Eq. (S64) are compatible with each other for
all vertices, a nonzero solution for the ti exists. How-
ever, up to a common factor of proportionality, there is
only a single solution, because the factors between the ti
for different cells i are uniquely defined by the relations
Eq. (S64). Hence, there is at most only one state of self-
stress in this model, and the onset of prestresses occurs
in all cells at once.

IV. NUMERICAL ENERGY MINIMIZATION

A. Definitions for shear strain γ

For all cellular models, we used as definition for the
shear strain γ the simple shear strain (i.e. in the affine
case a change in γ corresponds to the displacement δx =
yδγ of any point (x, y)). For the 2D spring networks, the
shear strain γ denotes pure shear strain defined such that
when starting from a quadratic box, the final box aspect
ratio is exp (γ). Note that we expect our results to be
independent of whether γ denotes simple or pure shear.

B. 2D spring networks

We initialized the spring networks as packing-derived,
randomly cut networks as described in the models section
in the main text [9, 15]. To improve the precision as com-
pared to the cellular models, we created our own imple-
mentation of the Polak-Ribière version of the conjugate
gradient minimization method [16], where for the line
searches we use a self-developed Newton method based
only on energy derivatives. All states were minimized
until the average force per degree of freedom was less
than 10−12. For the `0 sweeps (Fig. 1a,b in the main
text and Fig. S3a), to prevent switching to a different
inherent state, starting from the initial `0 value we first
decreased `0 in steps of 0.01, each time minimizing the
energy. These energy minimizations were shear stabilized
with respect to the pure shear degree of freedom (i.e. γ
was allowed to vary during energy minimization) [3]. Af-
terwards, starting again from the initial configuration,
we iteratively increased `0 by steps of 0.01.

For the simulations exploring the vicinity of the
(γ, `0) = (0, `∗0) point (used for the values in Table I,
Figs. 2a, 3a, and 4 in the main text, and Fig. S5), we
always first looked for the (γ, `0) = (0, `∗0) point using
a bisection protocol with pure-shear-stabilized minimiza-
tions (see also Section I D). We therefore started with the
right (floppy) bracket at the initial `0 value and the left
(rigid) bracket at `0 = 1.1, and then executed 25 bisec-
tion steps. A configuration was declared rigid whenever
the isotropic stress exerted on the boundaries exceeded a
value of 10−10.

We explored the rigid vicinity of the transition point
`0 < `∗0 (used for Figs. 2a, 3a, and 4c inset,f in the main
text, and Fig. S5c) starting from (γ, `0) = (0, `∗0) by ex-
ponentially increasing `∗0−`0 starting from a small initial
value, and then each time minimizing the energy without
shear stabilization to ensure γ = 0 for these simulations.
Similarly, we created the γ sweeps for `0 = `∗0 (used for
Fig. 4e in the main text, and Fig. S5b) by exponentially
increasing γ starting from (γ, `0) = (0, `∗0) and minimiz-
ing without shear stabilization.

We explored the boundary between solid and floppy
regime (used for Fig. 4c,d inset in the main text, and
Fig. S5c) by exponentially increasing `0−`∗0 starting from
(γ, `0) = (0, `∗0) without shear stabilization. To reduce
the switching to different basins, we chopped large `0
steps up into smaller steps of 0.01 to include intermittent
minimizations. Then, for a given `0, we increased γ in
steps of size 0.001, each time minimizing without shear
stabilization. As soon as a rigid state was encountered
(isotropic stress on the boundaries exceeds 10−10), we
started a bisection starting from the last rigid and the last
floppy states encountered as initial brackets. Using 20
bisection steps, we identified γ∗. Once γ∗ was identified,
we each time scanned 5 different γ values up to 5% above
and below γ∗ to help us verify that there was indeed a
discontinuity in the shear modulus. For Fig. 4d in the
main text, we explored the rigid vicinity of the transition
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more thoroughly using dedicated simulations, where we
exponentially increased γ−γ∗ once γ∗ for `0− `∗0 = 10−4

was identified.

C. 2D vertex model

We always started from Voronoi tessellations of ran-
dom point patterns, generated using the Computational
Geometry Algorithms Library (CGAL, [17]), and we used
the BFGS2 implementation of the GNU Scientific Library
(GSL, [18]) to minimize the energy. We enforced 3-way
vertices and the length cutoff for T1 transitions was set
to 10−5, and there is a maximum possible number of
T1 transitions on a single cell-cell interface of 104. For
the p0 sweeps, we directly minimized the random initial
states (used for Figs. 1c,d in the main text, and Figs. S3b,
S4a,b). To reduce the number of networks with pre-
stresses in the floppy regime (cf. Fig. S4b), we removed
quadrilaterals from the energy-minimized configurations
by repeatedly inducing T1 transitions and minimizing
the energy until no quadrilaterals were left. Finally, we
discarded simulations that had a total force norm larger
than 10−5, a shear modulus smaller than −10−5, or a
cell-cell interface with length smaller than the T1 cutoff.
To explore the solid vicinity of the transition point (used
for the values in Table I, Figs. 2b & inset, 3b in the main
text, and Fig. S2a), we proceeded using bisection simi-
lar to Ref. [2]. First however, we made sure to exclude
quadrilaterals from these states. To this end, we first
minimized with p0 = 3.99. Then, we repeatedly induced
T1 transitions to remove any quadrilaterals followed by
another energy minimization until no quadrilaterals were
left. This state at p0 = 3.99 was then the right bracket
for the bisection and the left bracket was set to 3.8. Then,
we proceeded with the bisection as in Ref. [2] with 18 bi-
section steps and a shear modulus cutoff of 10−8. We ex-
cluded configurations were the topology (more precisely,
the number of neighbors of all cells) changed between
the last rigid and floppy states of the bisection, or dur-
ing the exploration of the solid vicinity of the transition
point. All 2D vertex model configurations studied were
shear-stabilized with respect to the simple shear degree

of freedom.

D. 2D Voronoi model

We started from random point patterns and minimized
the system energy using the BFGS2 routine of the GSL,
and we used CGAL to compute the Voronoi tessellations.
We discarded simulations that had a total force norm
larger than 3×10−5. For the p0 sweeps, we directly min-
imized the random initial states (used for Figs. 1c,d in
the main text). To explore the solid vicinity of the tran-
sition point (used for Table I, Fig. 2b inset in the main
text, and Fig. S2a), we proceeded as in Ref. [2] where we
started from the initial p0 bracket [3.7, 3.9] and used 20
bisection steps. The cutoff to declare a configuration as
rigid was at a shear modulus of 10−6. To ensure config-
urations were properly minimized for the exploration of
the solid vicinity, we repeated up to 10 minimizations un-
til the force per degree of freedom was smaller than 10−8.
We excluded configurations were the topology (the neigh-
bor number of all cells) changed between the last rigid
and floppy states of the bisection, or during the explo-
ration of the solid vicinity of the transition point. Due
to limitations of the CGAL library, configurations were
not shear stabilized.

E. 3D Voronoi model

We used the shear-stabilized energy-minimized states
generated in Ref. [2] using the BFGS2 multidimensional
minimization routine of the GSL, both regarding the s0
sweeps (used for Figs. 1e,f in the main text, and Figs. S3c)
as well as the simulations exploring the solid vicinity of
the transition point (used for Table I, Figs. 2c & in-
set, 3c in the main text, and Fig. S2c). To explore the
solid vicinity of the transition point for kV = 0, we used
slightly different numerical parameters. In particular, the
initial bracket for the bisection was [5.34, 5.40], and we
performed 13 bisection steps, where a state was consid-
ered rigid whenever it had a shear modulus greater than
10−6.
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