
SUPPORTING INFORMATION 

SI MATERIALS AND METHODS 

Biological material and sequencing libraries. Buffy coats from healthy donors were purchased from 

Indiana Blood Center and all participants signed a written consent. The ethics committee at the CHU 

Sainte-Justine approved the project (protocol #4023). Peripheral blood mononuclear cells (PBMCs) were 

obtained by centrifugation on Ficoll-Paque, and monocytes were isolated by positive selection with CD14 

magnetic beads (Miltenyi Biotec). Monocytes were differentiated into either DCs by adding rhIL-4 (20 

ng/mL; Shenandoah Biotechnology,Inc) and rhGM-CSF (20 ng/mL; R&D Systems Inc.) or macrophages 

by adding rhM-CSF (20ng/mL; R&D Systems Inc.) in the cell culture medium. 

 

DCs were infected with MTB for 2, 4, 5, 6, 18, 24, 48, and 72 h at a multiplicity of infection (MOI) of 1:1 

or with heat-killed MTB at MOI of 5:1, as this MOI induces virtually the same transcriptional response at 

all four time points compared to that observed with live MTB (SI Appendix, Fig. S2). Macrophages were 

infected with MTB in the same fashion as DCs or with Salmonella typhimurium as previously described 

(1). Briefly, macrophages were infected at MOI of 10:1 for 2 hours, washed, and cultured for 1 hour with 

50µg/ml gentamycin, then washed again and cultured in complete medium with 3µg/ml gentamycin for an 

additional 2, 4, 8, 12, 24 or 48 h, the time points we refer to in the main text.  

 

DNA from DCs was extracted using the PureGene DNA extraction kit (Gentra Systems). DNA from 

macrophages was extracted using the DNeasy Blood and Tissue Kit (Qiagen). RNA was extracted using 

the miRNeasy mini kit (Qiagen). RNA quality was evaluated with the 2100 Bioanalyzer (Agilent 

Technologies) and only samples with no evidence of RNA degradation (RNA integrity number > 8) were 

kept for further experiments.  
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ATAC-seq libraries were generated from 50,000 cells, as previously described (2). We collected ChIP-seq 

data for the H3K27ac histone mark in non-infected and Salmonella-infected macrophages as previously 

described (3). Sequencing was performed using the Illumina HiSeq 2500, as per the manufacturer’s 

instructions.  

 

TLR and Dectin-1 stimulations were performed on DCs with LPS (100 and 500 ng/mL, InvivoGen), 

gardiquimod (0.5, 1 and 2 ug/mL, InvivoGen), poly I:C (10, 20 and 30 ug/mL, InvivoGen) and beta-

glucan (kindly provided by Dr. David Williams, University of Tennessee).  

 

SeqCap Epi library preparation and sequencing. Libraries were generated as for the whole-genome 

sequencing with KAPA Library Preparation Kit for Illumina Platforms (KAPA Biosystems), as per the 

manufacturer’s instructions. Library quality was assessed by 2100 Bioanalyzer (Agilent Technologies). 

Samples showing the desired profile were pooled together in equal mass according to Qubit 

quantification. We then performed a hybridization using the SeqCap Epi kit (Roche NimbleGen). The 

sample pool, indexes corresponding to the sequences of the adapters used for library preparation, and 

repetitive DNA (C0t) were desiccated and then incubated in hybridization buffer with a set of customized 

probes for 72 hours to select and sequence target regions only. Specifically, DNA methylation data was 

collected for 33,059 target regions spanning >130,000 CpG sites (mean length = 300 bp; mean number of 

CpG sites = 5), which is less than 1% of the ~28 million CpGs contained in the human genome. These 

regions were primarily comprised of MTB-induced differentially methylated regions identified at 18 

hours post-infection using whole-genome bisulfite sequencing, as well as other distal regulatory elements 

in DCs where changes in DNA methylation have been shown to be most likely to occur (SI Appendix, 

Fig. S1A) (3). Moreover, these candidate regions were nearby differentially expressed genes in response 

to MTB at 18 hours. Probes targeting a two kilobase region between coordinates 4500 and 6500 bp of the 

lambda genome (NC_001416.1) were also included in the SeqCap Epi design, as a control for bisulfite 



conversion efficiency. Sequencing was performed using the Illumina HiSeq 2500, as per the 

manufacturer’s instructions.  

 

Whole-genome library preparation, sequencing and analysis. Libraries were generated with KAPA 

Library Preparation Kit for Illumina Platforms (KAPA Biosystems), as per the manufacturer’s 

instructions. Briefly, genomic DNA was fragmented to 100-300 bp with an S2 sonicator (Covaris). 

Fragments were then end-repaired, A-tailed, and ligated with methylated sequencing adapters. Between 

every enzymatic step, libraries were purified using AMPure beads (Agencourt). After ligation, in addition 

to the AMPure bead purification, a DUAL-SPRI size selection was performed to further select for 

fragments with adapters in the window of 200-400 bp. Sodium bisulfite conversion was performed with 

EZ DNA Methylation Lightning Kit (Zymo Research), and libraries were amplified using KAPA Hifi 

HotStart Uracil Tolerant Enzyme (KAPA Biosystems). Library quality was assessed by 2100 Bioanalyzer 

(Agilent Technologies). Sequencing was performed on an S2 flowcell on an NovaSeq (Illumina), as per 

the manufacturer’s instructions. 

 

SeqCap Epi data processing and differential methylation analysis. Adaptor sequences and low-quality 

score bases (Phred score < 20) were first trimmed using Trim Galore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The resulting reads were mapped to 

the human reference genome (GRCh37/hg19) and lambda phage genome using Bismark (4), which uses 

Bowtie 2 (5) and a bisulfite converted reference genome for read mapping. Only reads that had a unique 

alignment were retained. Methylation levels for each CpG site were estimated by counting the number of 

sequenced C (‘methylated’ reads) divided by the total number of reported C and T (‘unmethylated’ reads) 

at the same position of the reference genome using Bismark’s methylation extractor tool. We performed a 

strand-independent analysis of CpG methylation where counts from the two Cs in a CpG and its reverse 

complement (position i on the plus strand and position i+1 on the minus strand) were combined and 

assigned to the position of the C in the plus strand. To assess MethylC-seq bisulfite conversion rate, the 



frequency of unconverted cytosines (C basecalls) at lambda phage CpG reference positions was 

calculated from reads uniquely mapped to the lambda phage reference genome. Overall, bisulfite 

conversion rate was >99% in all of the samples (SI Appendix, Table S1).  

 

In DCs, differentially methylated (DM) CpG sites at each time point following MTB infection were 

identified using the R package DSS (6). We used a linear model with the following design: DNA 

methylation ~ Donor + Infection, which allowed us to consider the paired nature of the experiment and 

capture the effects of infection on DNA methylation observed within donors. We considered a CpG site 

as differentially methylated if statistically supported at a False Discovery Rate (FDR) < 0.01 and an 

absolute mean methylation difference above 10%. Only CpG sites that had a coverage of at least 5X in 

each of the samples were included in the analysis (103,649 in total).  

 

To identify DM sites that show a stable loss of methylation (as Cluster 3 DM sites in DCs) in Salmonella-

infected macrophages using one individual, we performed a hierarchical clustering analysis on sites that 

specifically: (i) do not change methylation at 2 hours (|methylation difference| < 10%), and (ii) lose 

methylation at 48 hours (methylation difference < -40%). 

 

BS-seq data processing and promoter analysis 

We used Trim Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to trim off 

adapter sequences incorporated in the read and remove bases with a Phred base quality score below 20. 

The resulting reads were mapped to the human reference genome (GRCh37/hg19) and lambda phage 

genome using Bismark (4), which uses Bowtie 2 (5) and a bisulfite converted reference genome (C-to-T 

and a G-to-A) for read mapping. Only reads that had a unique alignment and a maximum of one 

mismatch were retained. PCR duplicates were removed using a Perl script that is part of the Bismark 

package (deduplicate_bismark_alignment_output.pl). The context of each C was determined, which 

allowed us to classify each C of the genome as CpG, CHH, or CHG, where H is either an A, T, or C 



nucleotide. Methylation levels for each CpG site were estimated by counting the number of reported C 

(‘methylated’ reads) divided by the total number of reported C and T (‘methylated’ plus ‘unmethylated’ 

reads) at the same position of the reference genome using Bismark’s methylation extractor tool. The same 

strategy was also applied for non-CpG methylation (CHG context, where H is either an A, T, or C 

nucleotide). We performed a strand-independent analysis of CpG methylation where counts from the two 

Cs in a CpG and its reverse complement (position i on the plus strand and position i+1 on the minus 

strand) were combined and assigned to the position of the C in the plus strand. 

 

The summarized methylation estimates of strand-merged CpG sites from the 3 infected and 3 non-

infected samples were used to identify MTB-induced differences in methylation at promoters, using the R 

package DSS (6), which implements the Bsmooth smoothing method (7). To minimize noise in 

methylation estimates due to low-coverage data, we restricted the differential methylation analysis to CpG 

sites with an average coverage of ≥4 sequence reads across all DC samples. 

 

5hmC enrichment at DM sites. To calculate the enrichment of 5-hydroxymethylcytosine (5hmC) at DM 

CpG sites (Clusters 1, 2 and 3), we compared the distribution of 5hmC levels in non-infected DCs 

between DM and non-DM sites. Since non-DM sites have lower overall levels of baseline methylation 

than DM sites (SI Appendix, Fig. S16A), we performed similar enrichment analysis by using a random 

set of non-DM sites that matches the distribution of methylation found in non-infected samples within 

each set of DM sites (SI Appendix, Fig. S16B). Each random set contains the same number of CpG sites 

as those identified within each DM cluster. 

 

RNA-seq data processing and identification of differentially expressed genes. Read count estimates 

per gene were obtained using the alignment-free method Kallisto (8). For all downstream analyses, we 

excluded non-coding and lowly-expressed genes with an average read count lower than 10 in all of the 

samples, resulting in 13,955 genes in total. The R package DESeq2 (9) was used to identify differences in 



expression levels between non-infected and infected samples at each time point. Nominal p-values were 

corrected for multiple testing using the Benjamini-Hochberg method (10). The complete list of 

differentially expressed genes can be found in SI Appendix, Dataset S3. Differentially expressed genes in 

response to MTB were classified into 6 distinct temporal expression clusters: (i) Early induced genes, 

which show the highest level of expression at 2 hours post-infection and return back to basal levels; (ii) 

Intermediate induced genes, which show the highest level of expression at 18 hours post-infection and 

return back to basal levels; and (iii) Persistent induced genes, which become increasingly up-regulated 

over the course of infection. The same definition criteria was used for down-regulated genes. 

 

Gene set enrichment analysis. We used ClueGO (11) at default parameters to test for enrichment of 

functionally annotated gene sets among differentially expressed genes. The results for these enrichment 

analyses are reported in SI Appendix, Dataset S4. Enrichment p-values were based on a hypergeometric 

test using the set of 13,955 genes as background. Benjamini-Hochberg method was applied for multiple 

testing correction. 

 

ChIP-seq data processing and tag density profiles. ChIP-seq reads were trimmed for adapter sequences 

and low-quality score bases using Trim Galore. The resulting reads were mapped to the human reference 

genome using Bowtie 2 with the following option: -N 1. Only reads that had a unique alignment were 

retained, and PCR duplicates were further removed using Picard tools 

(http://broadinstitute.github.io/picard/). Tag density profiles for chromatin modifications and genome 

accessibility patterns around regions of interest were accomplished with ngs.plot package (12) using 

default parameters. 

 

ATAC-seq data processing and TF footprinting analysis. ATAC-seq reads were trimmed for adapter 

sequences and low-quality score bases and were mapped to the human reference genome. Mapping was 

performed using BWA-MEM (13) in paired-end mode at default parameters. Only reads that had a unique 



alignment (mapping quality > 10) were retained. TF footprinting analyses were performed as previously 

described, using the Centidual algorithm (3) and JASPAR annotated human TF binding motifs (2018 

release) (14). For each of the actively bound TFs in DCs (241 in total; FDR < 0.05 at 18 hours post-

infection; SI Appendix, Dataset S5)), we first trained Centidual assuming that the footprint was bound in 

the two conditions. Then, we fixed the model parameters and generated a likelihood ratio and posterior 

probability  for each condition  separately and for each site . To detect if the footprint was more 

active in one of the two conditions, we fit a logistic model that included an intercept for each condition (

 and ), the PWM effect , and PWM times the treatment effect : 

 

where  is an indicator variable that takes the value 1 if t = “treatment” and 0 if t = “control”. We then 

calculated a Z-score for the interaction effect , corresponding to the evidence for condition-specific 

binding. ATAC-seq samples were down-sampled to obtain similar number of reads between NI and HI 

samples at each time-point.  We used a window size of 300 bp on either side of the motif match, and 

reads with fragment lengths [40, 140] and [141, 600] bp for footprinting analyses. 

 

To test for differential binding of immune-related TFs (NF-κB/Rel, AP-1, STATs, and IRFs) between 

non-infected and infected samples, we compared the intensity of the Tn5 sensitivity-based footprint 

across all matches to motifs of TFs that belong to each family in the hypomethylated regions. Motif IDs 

(and corresponding names) were aggregated to their respective TF family as follows:  
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To test for enrichment of binding of methylation-sensitive (“methyl-minus”) TFs in hypomethylated 

regions, we compared the proportion of regions that overlap well-supported footprints (posterior 

probability > 0.99) of “methyl-minus” TFs reported in Yin et al. (15)) among non-DMRs and 

hypomethylated regions (with 250-bp flanking the start and end). The list of motif IDs (and 

corresponding names) that were included in the analysis are shown below: 

 

  

MA0105.3 NFKB1 MA0833.1 ATF4 MA0137.1 STAT1 MA0050.2 IRF1
MA0105.2 NFKB1 MA0834.1 ATF7 MA0137.2 STAT1 MA0050.1 IRF1
MA0105.1 NFKB1 MA0462.1 BATF::JUN MA0137.3 STAT1 MA0051.1 IRF2
MA0105.4 NFKB1 MA0835.1 BATF3 MA0517.1 STAT1::STAT2 MA1418.1 IRF3
MA0778.1 NFKB2 MA0476.1 FOS MA0144.2 STAT3 MA1419.1 IRF4
MA0101.1 REL MA0099.3 FOS::JUN MA1420.1 IRF5
MA0107.1 RELA MA1126.1 FOS::JUN(var.2) MA0772.1 IRF7
MA1117.1 RELB MA1134.1 FOS::JUNB MA0652.1 IRF8

MA1141.1 FOS::JUND MA0653.1 IRF9
MA1127.1 FOSB::JUN
MA1135.1 FOSB::JUNB
MA1136.1 FOSB::JUNB(var.2)
MA0477.1 FOSL1
MA1128.1 FOSL1::JUN
MA1129.1 FOSL1::JUN(var.2)
MA1137.1 FOSL1::JUNB
MA1142.1 FOSL1::JUND
MA1143.1 FOSL1::JUND(var.2)
MA0478.1 FOSL2
MA1130.1 FOSL2::JUN
MA1131.1 FOSL2::JUN(var.2)
MA1138.1 FOSL2::JUNB
MA1139.1 FOSL2::JUNB(var.2)
MA1144.1 FOSL2::JUND
MA1145.1 FOSL2::JUND(var.2)
MA0655.1 JDP2
MA0656.1 JDP2(var.2)
MA0488.1 JUN
MA0489.1 JUN(var.2)
MA1132.1 JUN::JUNB
MA1133.1 JUN::JUNB(var.2)
MA0490.1 JUNB
MA1140.1 JUNB(var.2)
MA0491.1 JUND

NF-κB/Rel AP-1 STATs IRFs



 

 

Relationship between gene expression and chromatin accessibility. Peaks were first called on ATAC-

seq using the MACS2 software suite (16) with the added parameters: -g hs -q 0.05 --broad --nomodel --

extsize 200 --nolambda. All peaks from each sample were then merged to provide one set of combined 

peaks. To count the number of reads overlapping peaks, we used featureCount (from the subread 

package) (17) with the following option: -p -P. For all downstream analyses, we excluded low-count 

peaks with an average read count lower than 10 across all samples, resulting in 79,282 peaks in total. We 

then plotted the distribution of changes in Tn5 accessibility (between non-infected and MTB-infected 

DCs across the five time-points of infection (2, 4, 18, 24, 48, and 72 hours)) for the top 25% most 

variable peaks associated with DE genes in each cluster. The DE genes associated with the selected peaks 

represent ~50% of the total genes within each of the DE clusters: (i) Early induced: 418/765 = 55%; (ii) 

Intermediate induced: 418/839 = 49%; and (iii) Persistent induced: 1083/2091 = 52%. 

MA0018.1 CREB1 MA0495.2 MAFF MA0823.1 HEY1
MA0018.3 CREB1 MA0511.2 RUNX2 MA0830.1 TCF4
MA0028.2 ELK1 MA0526.1 USF2 MA0831.1 TFE3
MA0058.1 MAX MA0526.2 USF2 MA0831.2 TFE3
MA0058.3 MAX MA0636.1 BHLHE41 MA0834.1 ATF7
MA0059.1 MAX::MYC MA0638.1 CREB3 MA0835.1 BATF3
MA0062.1 GABPA MA0640.1 ELF3 MA0839.1 CREB3L1
MA0093.2 USF1 MA0641.1 ELF4 MA0871.1 TFEC
MA0095.1 YY1 MA0649.1 HEY2 MA1126.1 FOS::JUN(var.2)
MA0095.2 YY1 MA0663.1 MLX MA1127.1 FOSB::JUN
MA0099.3 FOS::JUN MA0664.1 MLXIPL MA1128.1 FOSL1::JUN
MA0104.4 MYCN MA0736.1 GLIS2 MA1129.1 FOSL1::JUN(var.2)
MA0136.2 ELF5 MA0749.1 ZBED1 MA1130.1 FOSL2::JUN
MA0149.1 EWSR1-FLI1 MA0750.1 ZBTB7A MA1131.1 FOSL2::JUN(var.2)
MA0156.2 FEV MA0750.2 ZBTB7A MA1134.1 FOS::JUNB
MA0464.2 BHLHE40 MA0757.1 ONECUT3 MA1135.1 FOSB::JUNB
MA0470.1 E2F4 MA0759.1 ELK3 MA1136.1 FOSB::JUNB(var.2)
MA0473.1 ELF1 MA0761.1 ETV1 MA1137.1 FOSL1::JUNB
MA0473.2 ELF1 MA0762.1 ETV2 MA1138.1 FOSL2::JUNB
MA0474.2 ERG MA0763.1 ETV3 MA1139.1 FOSL2::JUNB(var.2)
MA0475.1 FLI1 MA0764.1 ETV4 MA1141.1 FOS::JUND
MA0475.2 FLI1 MA0765.1 ETV5 MA1142.1 FOSL1::JUND
MA0476.1 FOS MA0772.1 IRF7 MA1143.1 FOSL1::JUND(var.2)
MA0477.1 FOSL1 MA0821.1 HES5 MA1144.1 FOSL2::JUND
MA0478.1 FOSL2 MA0822.1 HES7 MA1145.1 FOSL2::JUND(var.2)



 

 

 

 
 
Fig. S1. Characteristics of SeqCap target regions. (A) Left: Combination of histone patterns used to 
define the 7 chromatin states (previously defined in (18)). Right: Pie charts showing the distribution of 
chromatin state annotations genome-wide and within SeqCap target regions in MTB-infected DCs. (B) 
Bar plots showing mean coverages of CpG sites within the target regions for each sample. Dotted line 
denotes the average coverage across all samples. (C) Correlation between DNA methylation levels at 
target regions among replicates (using only CpG sites with ≥5 coverage in all samples). 
  



 

 
 
Fig. S2. (A) Barplots showing the absolute number of DM CpG sites identified in monocyte-derived 
macrophages at a |methylation difference| > 10% and FDR < 0.05 after MTB infection, either gains (red) 
or losses (blue). (B) Barplots comparing the overlap between DM CpG sites identified in monocyte-
derived macrophages and DM CpG sites identified in DCs or random CpG sites in our SeqCapEpi panel. 
 

 

  



 

 
 
Fig. S3. DNA methylation dynamics in DCs in response to infection with heat-inactivated MTB. (A) 
Bar plots showing the number of differentially methylated sites identified at a |methylation difference| > 
10% and FDR < 0.01 (y-axis) at each time point after infection with heat-inactivated MTB (2, 18, 48 and 
72 hours (h); x-axis). (B) Distribution of differences in methylation between infected and non-infected 
cells at DM sites, at each time point. (C) Scatterplots depicting the correlation between differences in 
methylation in response to live (x-axis) or heat-inactivated MTB (y-axis) at each time point after infection 
(2, 18, 48 and 72 hours (h)). 



 

 

 

Fig. S4. Distribution of methylation changes in DCs stimulated various ligands for 24 hours – beta-glucan 
10, 20, 30 ug/mL, LPS 100, 500 ng/mL, gardiquimod 0.5, 1, 2 ug/mL, poly I:C 10, 20, 30 ug/mL – among 
the 3,779 DM CpG sites identified in DCs after infection with live or heat-killed TB.   



 

 

 
Fig. S5. Expression of TET genes in non-infected DCs. Bar plots showing the expression levels (in 
log2-normalized read counts) of TET genes, in non-infected DCs. All data are represented as mean ± 
s.e.m. 
  



 

 
 
 
Fig. S6. Time course analysis of gene expression in DCs in response to infection with heat-
inactivated MTB. (A) Principal component analysis of gene expression data from all samples. PC1 (x-
axis) and PC2 (y-axis) clearly separate non-infected DCs from DCs infected with live MTB. (B) 
Scatterplots depicting the correlation between changes in expression (log2 fold changes) in response to 
live (x-axis) or heat-inactivated MTB (y-axis) at each time point after MTB infection (2, 18, 48 and 72 
hours (h)). 
  



 

Fig. S7. (A) Distribution of differences in methylation between infected and non-infected cells at DM sites, 
at each time point. (B) Heatmap of differences in methylation DM sites (those defined in Cluster 3 in 
Figure 1C) across eight time points after infection. (C) Heatmap showing the proportion of genes 
associated with methylation changes at different time point (y-axis) among genes that start changing 
gene expression levels at 2-, 4-, 6, or 18-hours. The figure only contains genes that are associated with 
both changes in methylation and gene expression at any time point (5-hours is not included because we 
did not collect expression data for that time point). For example, 271 genes are already significantly up-
regulated at 2 hours (FDR<1%); yet, only after 18 hour we start seeing a significant proportion of these 
genes also being associated with detectable changes in methylation. (D) Boxplots showing the 
distribution of standardized differences in methylation of DM sites in Cluster 3 (blue) along with the 
corresponding standardized differences in expression of the associated genes (orange), across all time 
points (x-axis). 



 
 

 

 
 
Fig. S8. Example of genes for which DNA demethylation occurred prior to gene activation. (A) 
Boxplots showing the distribution of standardized differences in methylation (blue) of Cluster 3 DM sites 
along with the corresponding standardized differences in expression (orange) of the associated genes, for 
which DNA demethylation occurred prior to gene activation (i.e., not differentially expressed after 2 and 
18 hours post-infection using a relaxed FDR ≥ 0.1; n = 8 genes). These distributions are shown for each 
time point after MTB infection (2, 18, 48 and 72 hours (h)). (B) Specific example of changes in DNA 
methylation levels (blue; right y-axis) across all time points, along with the corresponding fold changes in 
log2 scale (orange; left y-axis) in expression of the associated gene that is induced after loss of 
methylation (defined in (A)). All data are represented as mean ± s.e.m. Gray dots denote no significant 
change in gene expression or methylation. 
  



 

 
 
Fig. S9. Density plot of the average methylation differences (x-axis) observed in promoter regions 
(defined using different window sizes around the transcription start site (TSS)) between non-infected DCs 
and DCs infected with MTB for 2 hours. No noticeable differences in methylation changes were observed 
between the promoter of non-DE genes, and genes that are up-regulated upon MTB infection, regardless 
of their response dynamics.   



 

 
 
 
Fig. S10. Binding profiles of immune-related transcription factors within hypomethylated regions.  
Bar plots showing differences in TF occupancy score predictions for AP-1, IRF or STAT motifs between 
MTB-infected and non-infected DCs (ZMTB - ZNI; y-axis; see Methods), across four time points after 
infection (in hours (h); x-axis; see Methods). A positive Z-score difference indicates increased TF binding 
in hypomethylated regions after MTB infection. 
  



 

 
 
 
 
Fig. S11. (A) Enrichment (in log2; x-axis) of differentially expressed genes associated with active TB 
signature genes, interferon-stimulated genes in DCs, or TB susceptibility genes. Error bars show 95% 
confidence intervals for the enrichment estimates. (B) Enrichment (in log2; x-axis) of active TB signature 
genes, interferon-stimulated genes in DCs and TB susceptibility genes nearby (±100 kb) DM CpG sites 
(cluster 3). Black lines show enrichments at P < 0.01 and gray lines P ≥ 0.01. 
  



 

Fig. S12. Heatmaps showing differences in gene expression (left) and methylation (right) over time. The 
heatmaps only include genes for which we observe both a change in gene expression and a change in 
methylation status of one or more CpG sites. If more than one CpG sites was associated with a change in 
methylation, methylation changes are shown for the CpG site showing the most significant change in 
methylation.   



 

 
 
 
Fig. S13. Proposed model for the role of DNA methylation in innate immune responses to infection. 
Infection of phagocytes, such as DCs and macrophages, triggers the recruitment of signal-dependent TFs 
(specifically methylation-insensitive TFs) within the cell type-specific enhancer repertoires pre-
established (marked by H3K4me1) by pioneer TFs prior to immune stimulation. The rapid binding of 
methylation-insensitive TFs during early stages of infection induces local chromatin opening, the 
recruitment of histone acetyltransferase p300, and the subsequent deposition of activating H3K27ac 
marks in these regions(19). The finding that DM CpG sites are highly enriched for 5hmC at baseline 
suggests that these sites are pre-bound by Ten-eleven Translocation (TET) enzymes, possibly via the 
pioneer factor PU.1(20). In this scenario, p300 then acetylates TET2, the most highly expressed TET 
enzyme in DCs and macrophages, which confers enhanced enzyme activity(21) and might account for the 
rapid loss of DNA methylation in response to infection. Removal of methylation marks allows the 
binding of methylation-sensitive (methyl-minus) TFs, which in turn induces expression of genes that play 
a role in later stages of infection. Importantly, loss of methylation at DM CpG sites persists even after 
immune stimulation has ceased. This phenomenon may contribute to the faster and stronger 
transcriptional response observed upon restimulation (i.e., trained immunity). 5mC: 5-methylcytosine, 
5hmC: 5-hydroxymethylcytosine, 5C: (unmethylated) cytosine. 
 
 
 
  



 

 
 
 
Fig. S14. Tet2 expression profile in MTB-infected DCs. Bar plots showing changes in expression levels 
(in log2) of Tet2, across four time points after MTB infection (in hours (h); x-axis). 
  



 

 
 
 
Fig. S15. (A) Boxplots comparing the distribution of 5hmC levels (y-axis) in non-infected DCs in DM 
sites associated with the different clusters of DE genes (x-axis). (B) Density plot of 5hmC levels (x-axis) 
in non-infected DCs in DM sites associated with the different clusters of induced DE genes. 
  



 

 
 
 
 
Fig. S16. 5hmC enrichment in differentially methylated (DM) CpG sites. (A) Boxplots of methylation 
levels (5mC + 5hmC) of non-DM and DM sites (Clusters 1, 2 and 3), in non-infected DCs. (B) Boxplots 
of 5hmC levels of all non-DM (gray) and DM sites in each cluster. Also shown are distributions of 5hmC 
levels using a random set of non-DM sites that matches the distribution of methylation found in non-
infected samples within each set of DM sites (shown in (A)). Each random set contains the same number 
of CpG sites as those identified within each DM cluster.
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