Supplementary Appendix for

"Robust Distributed Lag Models via Data Adaptive Shrinkage"

Yin-Hsiu Chen¹, Bhramar Mukherjee¹

Sara D. Adar², Veronica J. Berrocal¹, Brent A. Coull³

¹Department of Biostatistics, University of Michigan

 $^2\mathrm{Department}$ of Epidemiology, University of Michigan

³Department of Biostatistics, Harvard University

A.1 Connection Between C and R beyond Polynomial DLM

Denote

 $\begin{aligned} \boldsymbol{C}: & (L+1) \times p \text{ transformation matrix} \\ \boldsymbol{R}: & (L+1-p) \times (L+1) \text{ constraint matrix} \\ \boldsymbol{C}_e: & (L+1) \times (L+1) \text{ matrix } [\boldsymbol{C} \ \boldsymbol{0}_{(L+1) \times (L+1-p)}] \text{ where } \boldsymbol{0}_{(L+1) \times (L+1-p)} \text{ is a } (L+1) \times (L+1-p) \text{ zero matrix} \\ \boldsymbol{C}_{\boldsymbol{U}}: & (L+1) \times (L+1) \text{ matrix } [\boldsymbol{C} \ \boldsymbol{0}_{(L+1) \times (L+1-p)}] \text{ where } \boldsymbol{0}_{(L+1) \times (L+1-p)} \text{ is a } (L+1) \times (L+1) \text{ matrix} \\ \boldsymbol{C}_{\boldsymbol{U}}: & (L+1) \times (L+1) \text{ matrix } [\boldsymbol{C} \ \boldsymbol{0}_{(L+1) \times (L+1-p)}] \text{ where } \boldsymbol{0}_{(L+1) \times (L+1-p)} \text{ is a } (L+1) \times (L+1) \text{ matrix} \\ \boldsymbol{C}_{\boldsymbol{U}}: & (L+1) \times (L+1) \text{ matrix } [\boldsymbol{C} \ \boldsymbol{0}_{(L+1) \times (L+1-p)}] \text{ where } \boldsymbol{0}_{(L+1) \times (L+1-p)} \text{ is a } (L+1) \times (L+1) \text{ matrix} \\ \boldsymbol{C}_{\boldsymbol{U}}: & (L+1) \times (L+1) \text{ matrix } [\boldsymbol{C} \ \boldsymbol{0}_{(L+1) \times (L+1-p)}] \text{ where } \boldsymbol{0}_{(L+1) \times (L+1-p)} \text{ is a } (L+1) \times (L+1) \text{ matrix } [\boldsymbol{C} \ \boldsymbol{0}_{(L+1) \times (L+1-p)}] \text{ matrix } [\boldsymbol{U} \ \boldsymbol{0}_{(L+1-p)}] \text{ matrix } [\boldsymbol{U} \ \boldsymbol{0}_{(L+1-p)}] \text{ matrix } [\boldsymbol{U} \ \boldsymbol{0$

 \boldsymbol{R}_e : a $(L+1) \times (L+1)$ matrix $\begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{0}_{p \times (L+1)} \end{bmatrix}$ where $\boldsymbol{0}_{p \times (L+1)}$ is a $p \times (L+1)$ zero matrix

(1) $\boldsymbol{R} \to \boldsymbol{C}$

The *p* basis functions corresponding to the *p* columns of *C* span the solution space of $\mathbf{R}\boldsymbol{\beta} = 0$ (or $\mathbf{R}_e\boldsymbol{\beta} = 0$). *C* can be obtained by applying SVD on \mathbf{R}_e (i.e. $\mathbf{R}_e = \mathbf{U}_R \mathbf{D}_R \mathbf{V}_R^T$). The last *p* columns of \mathbf{V}_R is one choice of \mathbf{C} .

(2) $\boldsymbol{C} \to \boldsymbol{R}$ $\boldsymbol{\beta} = \boldsymbol{C}\boldsymbol{\eta}$ and $\boldsymbol{R}\boldsymbol{\beta} = 0$ so we have $\boldsymbol{R}\boldsymbol{C}\boldsymbol{\eta} = 0$. Deriving \boldsymbol{R} from \boldsymbol{C} is equivalent of solving $\boldsymbol{C}^T\boldsymbol{R}^T = 0$ (or $\boldsymbol{C}_e^T\boldsymbol{R}^T = 0$). \boldsymbol{R} can be obtained by applying SVD on \boldsymbol{C}_e^T (i.e. $\boldsymbol{C}_e^T = \boldsymbol{U}_C \boldsymbol{D}_C \boldsymbol{V}_C^T$). The last (L+1-p) rows of \boldsymbol{V}_C^T is one choice of \boldsymbol{R} .

<u>**Remark**</u>: DLM solution is invariant to row operations on \mathbf{R} . For example, consider a piecewise linear distributed lag function with L = 6 and only internal knot at 3. With basis functions 1, ℓ , and $(\ell - 3)_+$, \mathbf{C} is given by

$$oldsymbol{C} = egin{bmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 1 & 2 & 0 \ 1 & 3 & 0 \ 1 & 4 & 1 \ 1 & 5 & 2 \ 1 & 6 & 3 \end{bmatrix}.$$

Following the above procedure, \boldsymbol{R} can be obtained as

$$\boldsymbol{R} = \begin{bmatrix} 0.000 & -0.346 & 0.693 & -0.030 & -0.255 & -0.439 & 0.377 \\ 0.000 & -0.218 & 0.436 & -0.290 & -0.238 & 0.691 & -0.381 \\ 0.000 & -0.090 & 0.179 & -0.549 & 0.779 & -0.180 & -0.139 \\ -0.560 & 0.727 & 0.226 & -0.275 & -0.157 & -0.039 & 0.079 \end{bmatrix}.$$

Through row operations, we can obtain

$$\boldsymbol{R} = \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

as suggested. The solution of $R\beta = 0$ is a piecewise linear function with internal knot at 3.

A.2 Asymptotic Results for the Empirical Bayes estimator

We first derive the variance-covariance expression of $\hat{\boldsymbol{\psi}} = \hat{\boldsymbol{\beta}}_{UDLM} - \hat{\boldsymbol{\beta}}_{CDLM}$ and then obtain the asymptotic theory of $\hat{\boldsymbol{\beta}}_{EB1}$. Let $S_U^{(t)}(\boldsymbol{\beta})$ denote the first-order derivative of the unconstrained DLM likelihood for time t (i.e. $(y_t - e^{-\boldsymbol{X}_t^T\boldsymbol{\beta}})\boldsymbol{X}_t) S_C^{(t)}(\boldsymbol{\theta})$ denote the first-order derivative of the constrained DLM likelihood for time t (i.e. $(y_t - e^{-\boldsymbol{Z}_t^T\boldsymbol{\theta}})\boldsymbol{Z}_t)$, and let $H_U(\boldsymbol{\beta})$ and $H_C(\boldsymbol{\theta})$ denote the Hessian matrices from the two models, respectively. Let $\boldsymbol{\beta}_0$ denote the true vector of lagged coefficients. By Taylor expansion,

$$\ell'(\hat{\boldsymbol{\beta}}_{UDLM}) = \ell'(\boldsymbol{\beta}_0) + \ell''(\boldsymbol{\beta}_0)(\hat{\boldsymbol{\beta}}_{UDLM} - \boldsymbol{\beta}_0) + o_p(|\hat{\boldsymbol{\beta}}_{UDLM} - \boldsymbol{\beta}_0|)$$

$$\Rightarrow \hat{\boldsymbol{\beta}}_{UDLM} - \boldsymbol{\beta}_0 = [-\ell''(\boldsymbol{\beta}_0) + o_p(1)]^{-1}\ell'(\boldsymbol{\beta}_0)$$

$$\Rightarrow \operatorname{Cov}(\hat{\boldsymbol{\beta}}_{UDLM}) = [-\ell''(\boldsymbol{\beta}_0)]^{-1}\operatorname{Cov}(\ell'(\boldsymbol{\beta}_0))[-\ell''(\boldsymbol{\beta}_0)]^{-1} + o_p(1)$$

$$\Rightarrow [-\ell''(\boldsymbol{\beta}_0)]^{-1}\operatorname{Cov}(\ell'(\boldsymbol{\beta}_0))[-\ell''(\boldsymbol{\beta}_0)]^{-1} \xrightarrow{P} \operatorname{Cov}(\hat{\boldsymbol{\beta}}_{UDLM})$$

Since $\hat{\boldsymbol{\beta}}_{UDLM} \to \boldsymbol{\beta}_0, \ -H_U^{-1}(\hat{\boldsymbol{\beta}}_{UDLM})^{-1} \xrightarrow{P} [-\ell''(\boldsymbol{\beta}_0)]^{-1}$. Also, $\operatorname{Cov}(\ell'(\boldsymbol{\beta}_0))$ can be consistently estimated by empirical variance $\sum_{t=1}^T S_U^{(t)}(\hat{\boldsymbol{\beta}}_{UDLM}) S_U^{(t)}(\hat{\boldsymbol{\beta}}_{UDLM})^T$. So,

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = H_U^{-1}(\hat{\boldsymbol{\beta}}) [\sum_{t=1}^T S_U^{(t)}(\hat{\boldsymbol{\beta}}) S_U^{(t)}(\hat{\boldsymbol{\beta}})^T] H_U^{-1}(\hat{\boldsymbol{\beta}})$$

Similarly,

$$\operatorname{Cov}(\hat{\boldsymbol{\theta}}) = H_C^{-1}(\hat{\boldsymbol{\theta}}) [\sum_{t=1}^T S_C^{(t)}(\hat{\boldsymbol{\theta}}) S_C^{(t)}(\hat{\boldsymbol{\theta}})^T] H_C^{-1}(\hat{\boldsymbol{\theta}})$$
$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}_{UDLM}, \hat{\boldsymbol{\theta}}) = H_U^{-1}(\hat{\boldsymbol{\beta}}_{UDLM}) [\sum_{t=1}^T S_U^{(t)}(\hat{\boldsymbol{\beta}}_{UDLM}) S_C^{(t)}(\hat{\boldsymbol{\theta}})^T] H_C^{-1}(\hat{\boldsymbol{\theta}})$$

Therefore,

$$\begin{aligned} \operatorname{Cov}(\hat{\boldsymbol{\psi}}) &= \operatorname{Cov}(\hat{\boldsymbol{\beta}}_{UDLM} - \hat{\boldsymbol{\beta}}_{CDLM}) \\ &= \operatorname{Cov}(\hat{\boldsymbol{\beta}}_{UDLM} - \boldsymbol{C}\hat{\boldsymbol{\theta}}) \\ &= \operatorname{Cov}(\hat{\boldsymbol{\beta}}_{UDLM}) - 2\operatorname{Cov}(\hat{\boldsymbol{\beta}}_{UDLM}, \hat{\boldsymbol{\theta}})\boldsymbol{C}^{T} + \boldsymbol{C}\operatorname{Cov}(\hat{\boldsymbol{\theta}})\boldsymbol{C}^{T} \\ &= H_{U}^{-1}(\hat{\boldsymbol{\beta}}_{UDLM}) [\sum_{t=1}^{T} S_{U}^{(t)}(\hat{\boldsymbol{\beta}}_{UDLM}) S_{U}^{(t)}(\hat{\boldsymbol{\beta}}_{UDLM})^{T}] H_{U}^{-1}(\hat{\boldsymbol{\beta}}_{UDLM}) \\ &- 2H_{U}^{-1}(\hat{\boldsymbol{\beta}}_{UDLM}) [\sum_{t=1}^{T} S_{U}^{(t)}(\hat{\boldsymbol{\beta}}_{UDLM}) S_{C}^{(t)}(\hat{\boldsymbol{\theta}})^{T}] H_{C}^{-1}(\hat{\boldsymbol{\theta}}) \boldsymbol{C}^{T} \\ &+ \boldsymbol{C} H_{C}^{-1}(\hat{\boldsymbol{\theta}}) [\sum_{t=1}^{T} S_{C}^{(t)}(\hat{\boldsymbol{\theta}}) S_{C}^{(t)}(\hat{\boldsymbol{\theta}})^{T}] H_{C}^{-1}(\hat{\boldsymbol{\theta}}) \boldsymbol{C}^{T} \end{aligned}$$

Let β_{CDLM} , β_{EB1} , and ψ be the asymptotic limit of constrained DLM estimator, EB1 estimator, and bias, respectively. We have

$$\boldsymbol{eta}_{EB1} = \boldsymbol{eta}_0 + \boldsymbol{K} \boldsymbol{\psi}$$

where $\mathbf{K} = (\mathbf{V} \circ \mathbf{I}_{L+1})[(\mathbf{V} + \boldsymbol{\psi}\boldsymbol{\psi}^T) \circ \mathbf{I}_{L+1}]^{-1}$. When $\boldsymbol{\beta}_0 \neq \boldsymbol{\beta}_{CDLM}$ ($\boldsymbol{\psi} \neq \mathbf{0}$), we can use first-order Taylor expansion of $\hat{\boldsymbol{\beta}}_{EB1}$ at $(\boldsymbol{\beta}_0^T, \boldsymbol{\beta}_{CDLM}^T)^T$ and the fact that $\mathbf{V} = O_p(N^{-1})$ to obtain

$$\sqrt{N}(\hat{\boldsymbol{\beta}}_{EB1} - \boldsymbol{\beta}_{EB1}) = \boldsymbol{G} \times \sqrt{N}[(\hat{\boldsymbol{\beta}}_{UDLM}^T, \hat{\boldsymbol{\beta}}_{CDLM}^T)^T - (\boldsymbol{\beta}_0^T, \boldsymbol{\beta}_{CDLM}^T)^T] + o_p(1)$$

where

$$\boldsymbol{G} = [\operatorname{diag}'\{\frac{v_j(v_j - \psi_j^2)}{(v_j + \psi_j^2)^2}\}, \boldsymbol{I}_{L+1} - \operatorname{diag}\{\frac{v_j(v_j - \psi_j^2)}{(v_j + \psi_j^2)^2}\}]$$

where v_j s are the diagonal elements of V and ψ_j s are the elements of ψ . Thus, $\hat{\boldsymbol{\beta}}_{EB1}$ is \sqrt{N} -consistent and asymptotically normal when $\boldsymbol{\beta}_0 \neq \boldsymbol{\beta}_{CDLM}$. Let $\hat{\boldsymbol{\Sigma}}$ denote the estimated variance-covariance matrix of $(\hat{\boldsymbol{\beta}}_{UDLM}^T, \hat{\boldsymbol{\beta}}_{CDLM}^T)^T$. With plug-in estimate of \boldsymbol{G} , the asymptotic variance of $\hat{\boldsymbol{\beta}}_{EB1}$ can be estimated as $\hat{\boldsymbol{G}}\hat{\boldsymbol{\Sigma}}\hat{\boldsymbol{G}}^T$.

A.3 Equivalence of (p-1)-degree Polynomial DLM Estimator and GRR/HB Shrinkage Target Corresponding to R_{p-1}

The general form of (p-1)-degree polynomial distributed lag function is $\beta(\ell) = \sum_{i=0}^{p-1} a_i \ell^i = C\theta$ for $\ell = 0, \dots, L$ where C is a $(L+1) \times p$ transformation matrix with element $(\ell+1, j)$ equal to $\ell^{(j-1)}$ and $\theta = (a_1, \dots, a_p)^T$. Let \mathbf{R}_{p-1} be the (p-1)-degree polynomial constraint matrix. We first show that $\mathbf{R}_{p-1}C = \mathbf{0}$.

The corresponding constraints constructed in \mathbf{R}_{p-1} are $\sum_{j=0}^{p} (-1)^{j} {p \choose j} \beta(\ell+j) = 0$ for $\ell = 0, ..., L-p$. Showing $\mathbf{R}_{p-1}\mathbf{C} = \mathbf{0}$ is the same as showing $\sum_{j=0}^{p} (-1)^{j} {p \choose j} [\sum_{i=1}^{p} a_{i}(\ell+j)] = 0$

$$[j)^{i-1}] = 0$$
 for $\ell = 0, ..., L - p$.

$$\sum_{j=0}^{p} (-1)^{j} {p \choose j} \left[\sum_{i=1}^{p} a_{i} (\ell+j)^{i-1} \right]$$
$$= \sum_{i=1}^{p} \sum_{j=0}^{p} (-1)^{j} {p \choose j} a_{i} (\ell+j)^{i-1}$$
$$= \sum_{i=1}^{p} a_{i} \left[\sum_{j=0}^{p} (-1)^{j} {p \choose j} (\ell+j)^{i-1} \right]$$

It is sufficient to show that $\sum_{j=0}^{p} (-1)^{j} {p \choose j} (\ell + j)^{i-1} = 0$ for $\ell = 0, ..., L - p$ and $1 \leq i \leq p$. It is well-known that each polynomial can be uniquely expressed as a linear combination of binomial coefficients. $\sum_{j=0}^{p} (-1)^{j} {p \choose j} (\ell + j)^{i-1} = 0$ corresponds to the binomial coefficient involved (p-1)-degree term of the characteristic polynomial $(\ell + j)^{i-1}$. We know that i is at most p so the coefficients of all the terms of degree larger than p-1 must be zero so we have $\sum_{j=0}^{p} (-1)^{j} {p \choose j} (\ell + j)^{i-1} = 0$ for $\ell = 0, ..., L - p$ and $1 \leq i \leq p$. Therefore, $\mathbf{R}_{p-1}\mathbf{C} = \mathbf{0}$.

The shrinkage target of GRR/HB estimator corresponding to \mathbf{R}_{p-1} is the maximizer of likelihood function in (1) of main text subject to the constraint $\mathbf{R}_{p-1}\boldsymbol{\beta} = \mathbf{0}$. Let $\hat{\boldsymbol{\beta}}$ denote the GRR/HB estimator. Since $\hat{\boldsymbol{\beta}}$ conforms to the constraint, we have $\mathbf{R}_{p-1}\hat{\boldsymbol{\beta}} = \mathbf{0}$ and $\hat{\boldsymbol{\beta}}$ is an element in the kernel of \mathbf{R}_{p-1} . From above, we have $\mathbf{R}_{p-1}\mathbf{C} = \mathbf{0}$ and we know that the p columns of \mathbf{C} are linearly independent. Thus, the kernel of \mathbf{R}_{p-1} is spanned by the p columns of \mathbf{C} . Subsequently, every element in the kernel can be expressed as $\mathbf{C}\boldsymbol{\theta}$ so $\hat{\boldsymbol{\beta}}$ must be in the form of $\mathbf{C}\boldsymbol{\theta}$. Therefore, the maximizing the likelihood function in (1) in terms of $\boldsymbol{\beta}$ subject to the constraint $\mathbf{R}_{p-1}\boldsymbol{\beta} = \mathbf{0}$ is equivalent to maximizing the likelihood function in (2) in terms of $\boldsymbol{\theta}$ without any constraint. We then conclude that (p-1)-degree polynomial DLM estimator and GRR/HB shrinkage target corresponding to \mathbf{R}_{p-1} are equivalent.

A.4 Conditional Distributions of HB Estimator and Two-stage Shrinkage Estimator

The full conditional distributions of σ_{π}^2 and β for HB estimator are given by

$$f(\sigma_{\pi}^{2}|\boldsymbol{\beta},\boldsymbol{Y}) \propto IG(a_{\pi} + M/2, b_{\pi} + \boldsymbol{\beta}^{T}\boldsymbol{R}^{T}\boldsymbol{R}\boldsymbol{\beta}/2)$$
$$f(\boldsymbol{\beta}|\sigma_{\pi}^{2},\boldsymbol{Y}) \propto \prod_{t=1}^{T} [\exp(y_{t}\boldsymbol{X}_{t}^{T}\boldsymbol{\beta} - e^{\boldsymbol{X}_{t}^{T}\boldsymbol{\beta}})] \cdot \exp(-\frac{\boldsymbol{\beta}^{T}\boldsymbol{R}^{T}\boldsymbol{R}\boldsymbol{\beta}}{2\sigma_{\pi}^{2}}).$$

For two-stage shrinkage approach, if we let $\boldsymbol{\omega} = (\omega_1, \omega_2)^T$ have a discrete uniform prior distribution, the full conditional distributions of $\boldsymbol{\beta}, \sigma^2$, and $\boldsymbol{\omega}$ are given by:

$$\begin{split} f(\boldsymbol{\beta}|\hat{\boldsymbol{\beta}}_{EB},\boldsymbol{\omega},\sigma^2) &\sim N([1/\sigma^2\boldsymbol{\Omega}(\boldsymbol{\omega})^{-1} + (\boldsymbol{G}\boldsymbol{\Sigma}\boldsymbol{G}^T)^{-1}]^{-1}(\boldsymbol{G}\boldsymbol{\Sigma}\boldsymbol{G}^T)^{-1}\hat{\boldsymbol{\beta}}_{EB}, [1/\sigma^2\boldsymbol{\Omega}(\boldsymbol{\omega})^{-1} + (\boldsymbol{G}\boldsymbol{\Sigma}\boldsymbol{G})^{-1}]^{-1}) \\ p(\boldsymbol{\omega}|\hat{\boldsymbol{\beta}}_{EB},\boldsymbol{\beta},\sigma^2) &= \frac{|\boldsymbol{\Omega}(\boldsymbol{\omega})|^{-1/2}\mathrm{exp}[-\frac{1}{2\sigma^2}\boldsymbol{\beta}^T\boldsymbol{\Omega}(\boldsymbol{\omega})^{-1}\boldsymbol{\beta}]}{\sum_{\boldsymbol{\omega}^*}|\boldsymbol{\Omega}(\boldsymbol{\omega}^*)|^{-1/2}\mathrm{exp}[-\frac{1}{2\sigma^2}\boldsymbol{\beta}^T\boldsymbol{\Omega}(\boldsymbol{\omega}^*)^{-1}\boldsymbol{\beta}]} \\ f(\sigma^2|\hat{\boldsymbol{\beta}}_{EB},\boldsymbol{\beta},\boldsymbol{\omega}) &\sim IG(a_0 + (L+1)/2, b_0 + \boldsymbol{\beta}^T\boldsymbol{\Omega}(\boldsymbol{\omega})^{-1}\boldsymbol{\beta}/2). \end{split}$$

A.5 Analytical Results for the GRR Estimator

GRR estimator $\hat{\boldsymbol{\beta}}_{GRR}$ is given by

$$\hat{\boldsymbol{\beta}}_{GRR} = \arg\min_{\boldsymbol{\beta}} \left[-\sum_{t=1}^{T} \left[y_t \boldsymbol{\beta}^T \boldsymbol{X}_t - e^{\boldsymbol{\beta}^T \boldsymbol{X}_t} - \log(y_t!)\right] + \lambda \boldsymbol{\beta}^T \boldsymbol{R}^T \boldsymbol{R} \boldsymbol{\beta}\right]$$

and its asymptotic MSE $E[(\hat{\boldsymbol{\beta}}_{GRR} - \boldsymbol{\beta})^T (\hat{\boldsymbol{\beta}}_{GRR} - \boldsymbol{\beta})]$ can be decomposed into $f_1(\lambda) + f_2(\lambda)$ where

$$f_1(\lambda) = E[(\hat{\boldsymbol{\beta}}_{UDLM} - \boldsymbol{\beta})^T \boldsymbol{H}^T \boldsymbol{H} (\hat{\boldsymbol{\beta}}_{UDLM} - \boldsymbol{\beta})] = \operatorname{trace}[(\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X}) (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X} + \lambda \boldsymbol{R}^T \boldsymbol{R})^{-2}]$$
$$f_2(\lambda) = (\boldsymbol{H} \boldsymbol{\beta} - \boldsymbol{\beta})^T (\boldsymbol{H} \boldsymbol{\beta} - \boldsymbol{\beta}) = \lambda^2 \boldsymbol{\beta}^T (\boldsymbol{R}^T \boldsymbol{R}) (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X} + \lambda \boldsymbol{R}^T \boldsymbol{R})^{-2} (\boldsymbol{R}^T \boldsymbol{R}) \boldsymbol{\beta}.$$

We first show that $f_1(\lambda)$ is monotonic decreasing and $f_2(\lambda)$ is monotonic increasing and then we show that $f_1(\lambda) + f_2(\lambda)$ is convex.

$$\begin{aligned} df_{1}(\lambda) \\ = d \operatorname{trace}[(\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X}) (\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^{T} \boldsymbol{R})^{-2}] \\ = \operatorname{trace}[2(\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^{T} \boldsymbol{R})^{-1} (\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X}) d(\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^{T} \boldsymbol{R})^{-1}] \\ = \operatorname{trace}\{-2(\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^{T} \boldsymbol{R})^{-1} (\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X}) (\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^{T} \boldsymbol{R})^{-1} [d(\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^{T} \boldsymbol{R})] \\ & (\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X}) (\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^{T} \boldsymbol{R})^{-1} \} \\ = \operatorname{trace}[-2\boldsymbol{R}^{T} \boldsymbol{R} (\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X}) (\boldsymbol{X}^{T} \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^{T} \boldsymbol{R})^{-3}] d\lambda \end{aligned}$$

Since $\boldsymbol{X}^T \hat{\boldsymbol{W}} \boldsymbol{X}$ and $\boldsymbol{R}^T \boldsymbol{R}$ are positive definite and $\lambda > 0$, $\boldsymbol{X}^T \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^T \boldsymbol{R}$ is positive definite (Weyl's inequality). It follows that $2\boldsymbol{R}^T \boldsymbol{R} (\boldsymbol{X}^T \hat{\boldsymbol{W}} \boldsymbol{X}) (\boldsymbol{X}^T \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^T \boldsymbol{R})^{-3}$ is positive definite and trace $[-2\boldsymbol{R}^T \boldsymbol{R} (\boldsymbol{X}^T \hat{\boldsymbol{W}} \boldsymbol{X}) (\boldsymbol{X}^T \hat{\boldsymbol{W}} \boldsymbol{X} + \lambda \boldsymbol{R}^T \boldsymbol{R})^{-3}] < 0$. Therefore, we have shown that $f_1(\lambda)$ is monotonic decreasing $(f_1'(\lambda) < 0 \ \forall \lambda > 0)$.

Assume $\lambda_2 > \lambda_1 > 0$,

$$\begin{split} &f_{2}(\lambda_{2}) - f_{2}(\lambda_{1}) \\ = \lambda_{2}^{2}\beta^{T}(\boldsymbol{R}^{T}\boldsymbol{R})(\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda_{2}\boldsymbol{R}^{T}\boldsymbol{R})^{-2}(\boldsymbol{R}^{T}\boldsymbol{R})\beta - \lambda_{1}^{2}\beta^{T}(\boldsymbol{R}^{T}\boldsymbol{R})(\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda_{1}\boldsymbol{R}^{T}\boldsymbol{R})^{-2}(\boldsymbol{R}^{T}\boldsymbol{R})\beta \\ = \beta^{T}(\boldsymbol{R}^{T}\boldsymbol{R})[(\frac{1}{\lambda_{2}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{-2} - (\frac{1}{\lambda_{1}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{-2}](\boldsymbol{R}^{T}\boldsymbol{R})\beta \\ = \beta^{T}(\boldsymbol{R}^{T}\boldsymbol{R})(\frac{1}{\lambda_{2}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{-2}[(\frac{1}{\lambda_{1}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{2} - (\frac{1}{\lambda_{2}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{2}] \\ &(\frac{1}{\lambda_{1}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{-2}(\boldsymbol{R}^{T}\boldsymbol{R})\beta \\ = \beta^{T}(\boldsymbol{R}^{T}\boldsymbol{R})(\frac{1}{\lambda_{2}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{-2}[(\frac{1}{\lambda_{1}^{2}} - \frac{1}{\lambda_{2}^{2}})(\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X})^{2} + (\frac{1}{\lambda_{1}} - \frac{1}{\lambda_{2}})(\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X})(\boldsymbol{R}^{T}\boldsymbol{R}))] \\ &(\frac{1}{\lambda_{1}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{-2}(\boldsymbol{R}^{T}\boldsymbol{R})\beta \\ = \operatorname{trace}\{\beta\beta^{T}(\boldsymbol{R}^{T}\boldsymbol{R})^{2}(\frac{1}{\lambda_{2}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{-2}[(\frac{1}{\lambda_{1}^{2}} - \frac{1}{\lambda_{2}^{2}})(\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X})^{2} + (\frac{1}{\lambda_{1}} - \frac{1}{\lambda_{2}})(\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X})(\boldsymbol{R}^{T}\boldsymbol{R}))] \\ &(\frac{1}{\lambda_{1}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{-2}(\boldsymbol{R}^{T}\boldsymbol{R})\beta \\ = \operatorname{trace}\{\beta\beta^{T}(\boldsymbol{R}^{T}\boldsymbol{R})^{2}(\frac{1}{\lambda_{2}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{-2}[(\frac{1}{\lambda_{1}^{2}} - \frac{1}{\lambda_{2}^{2}})(\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X})^{2} + (\frac{1}{\lambda_{1}} - \frac{1}{\lambda_{2}})(\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X})(\boldsymbol{R}^{T}\boldsymbol{R}))] \\ &(\frac{1}{\lambda_{1}}\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \boldsymbol{R}^{T}\boldsymbol{R})^{-2}\} \\ =\operatorname{trace}(\boldsymbol{A}) \\ = \sum_{\ell=1}^{L+1}\alpha_{\ell} \end{split}$$

where γ_{ℓ} is the ℓ^{th} eigenvalue of \boldsymbol{B} . Since $\boldsymbol{\beta}\boldsymbol{\beta}^{T}$, $\boldsymbol{X}^{T}\boldsymbol{\hat{W}}\boldsymbol{X}$, and $\boldsymbol{R}^{T}\boldsymbol{R}$ are positive definite and $\lambda_{2} > \lambda_{1}$, all of the terms that \boldsymbol{A} is composed of are positive definite and so is \boldsymbol{A} . Hence, $f_{2}(\lambda_{2}) - f_{2}(\lambda_{1}) = \sum_{\ell=1}^{L+1} \alpha_{\ell} > 0$. Therefore, we have shown that $f_{2}(\lambda)$ is monotonic increasing.

$$f_{2}^{'}(\lambda) = 2\lambda \boldsymbol{\beta}^{T}(\boldsymbol{R}^{T}\boldsymbol{R})(\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^{T}\boldsymbol{R})^{-2}(\boldsymbol{R}^{T}\boldsymbol{R})\boldsymbol{\beta} - \lambda^{2} \text{trace}[2(\boldsymbol{R}^{T}\boldsymbol{R})^{3}\boldsymbol{\beta}\boldsymbol{\beta}^{T}(\boldsymbol{X}^{T}\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^{T}\boldsymbol{R})^{-3}]$$

$$\begin{split} & f_1''(\lambda) + f_2''(\lambda) \\ = & \frac{d \text{trace}[-2\boldsymbol{R}^T\boldsymbol{R}(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X})(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-3}]}{d\lambda} + 2\lambda\boldsymbol{\beta}^T(\boldsymbol{R}^T\boldsymbol{R})(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-2}(\boldsymbol{R}^T\boldsymbol{R})\boldsymbol{\beta} \\ & + 2\lambda\frac{d[\boldsymbol{\beta}^T(\boldsymbol{R}^T\boldsymbol{R})(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-2}(\boldsymbol{R}^T\boldsymbol{R})\boldsymbol{\beta}]}{d\lambda} - 2\lambda\text{trace}[2(\boldsymbol{R}^T\boldsymbol{R})^3\boldsymbol{\beta}\boldsymbol{\beta}^T(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-3}] \\ & - \lambda^2\frac{d[2(\boldsymbol{R}^T\boldsymbol{R})^3\boldsymbol{\beta}\boldsymbol{\beta}^T(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-3}]}{d\lambda} \\ = & \text{trace}[6(\boldsymbol{R}^T\boldsymbol{R})^2(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X})(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-4}] + 2\lambda\boldsymbol{\beta}^T(\boldsymbol{R}^T\boldsymbol{R})(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-2}(\boldsymbol{R}^T\boldsymbol{R})\boldsymbol{\beta} \\ & + 2\lambda\text{trace}[2(\boldsymbol{R}^T\boldsymbol{R})^3\boldsymbol{\beta}\boldsymbol{\beta}^T(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-3}] - 2\lambda\text{trace}[2(\boldsymbol{R}^T\boldsymbol{R})^3\boldsymbol{\beta}\boldsymbol{\beta}^T(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-3}] \\ & + \lambda^2\text{trace}[6(\boldsymbol{R}^T\boldsymbol{R})^4\boldsymbol{\beta}\boldsymbol{\beta}^T(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-4}] \\ = & \text{trace}[6(\boldsymbol{R}^T\boldsymbol{R})^2(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X})(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-4}] + 2\lambda\boldsymbol{\beta}^T(\boldsymbol{R}^T\boldsymbol{R})(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-2}(\boldsymbol{R}^T\boldsymbol{R})\boldsymbol{\beta} \\ & + \lambda^2\text{trace}[6(\boldsymbol{R}^T\boldsymbol{R})^4\boldsymbol{\beta}\boldsymbol{\beta}^T(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-4}] + 2\lambda\boldsymbol{\beta}^T(\boldsymbol{R}^T\boldsymbol{R})(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-2}(\boldsymbol{R}^T\boldsymbol{R})\boldsymbol{\beta} \\ & + \lambda^2\text{trace}[6(\boldsymbol{R}^T\boldsymbol{R})^4\boldsymbol{\beta}\boldsymbol{\beta}^T(\boldsymbol{X}^T\hat{\boldsymbol{W}}\boldsymbol{X} + \lambda \boldsymbol{R}^T\boldsymbol{R})^{-4}] > 0 \end{split}{}$$

Therefore, we have shown that $f_1(\lambda) + f_2(\lambda)$ is convex.

Simulation Settings and Evaluation Metrics **A.6**

Table 1: Summary of the three simulation scenarios for comparing UDLM, CDLM, EB1, EB2, GRR, GADLM, BDLM, and HB in simulation study 1.

, , , , , , , , , , , , , , , , , , , ,		v
Scenario	Working DL Function*	True Distributed Lag Coefficients
(1) Working DL Function Completely	Cubic	$\beta_j = (j^3 - 17j^2 + 70j)/400$ for $j = 0,, 10$
Matches True DL Function		
(2) Working DL Function Moderately	Quadratic	Slight Departure from
Departs from True DL Function		$\beta_j = (-0.7j^2 + 2.3j + 50.8)/400$ for $j = 0,, 10$
(3) Non-smooth True DL Function	Quadratic	Oscillating between 0.02 and 0.18
		(a) $\beta_j = 0$ for $j = 0, \dots, 10$
		(b) $\beta_j = 0.014(10 - j)$ for $j = 0, \dots, 10$
(4) Mixture of 5 True DL Function	Cubic	(c) Same as (1)
		(d) Same as (2)
		(e) Same as (3)
	C ODINC	CDIM DD1 DD2 CDD 111D

*The working distributed lag (DL) function in CDLM for CDLM, EB1, EB2, GRR, and HB.

Table 2: Metrics used for evaluating the estimation precision in simulation study 1.

Metric	Lag Effects Vector $(\boldsymbol{\beta})$	Total Effect $(\sum_{j=0}^{10} \beta_j)$
Squared bias	$(\hat{oldsymbol{eta}}-oldsymbol{eta})^T(\hat{oldsymbol{eta}}-oldsymbol{eta})$	$[\sum_{j=0}^{10} (\hat{eta}_j - eta_j)]^2$
Variance	$\operatorname{trace}\left[\frac{1}{1000}\sum_{i=1}^{1000}(\hat{\boldsymbol{\beta}}_{i}-\hat{\boldsymbol{\beta}})(\hat{\boldsymbol{\beta}}_{i}-\hat{\boldsymbol{\beta}})^{T}\right]$	$\frac{1}{1000}\sum_{i=1}^{1000}(\sum_{j=0}^{10}\hat{\beta}_{ij}-\sum_{j=0}^{10}\hat{\beta}_{j})^2$
Relative Efficiency ¹	$\frac{\sum_{i=1}^{1000} \hat{\boldsymbol{\beta}}_{i}^{UDLM} - \boldsymbol{\beta} _{2}^{2}}{\sum_{i=1}^{1000} \hat{\boldsymbol{\beta}}_{i} - \boldsymbol{\beta} _{2}^{2}}$	$\frac{\sum_{i=1}^{1000} (\sum_{j=0}^{10} \hat{\beta}_{ij}^{UDLM} - \sum_{j=0}^{10} \beta_j)^2}{\sum_{i=1}^{1000} (\sum_{j=0}^{10} \hat{\beta}_{ij} - \sum_{j=0}^{10} \beta_j)^2}$
Distance ²	$rac{1}{1000}\sum_{i=1}^{1000} \hat{oldsymbol{eta}}_i-oldsymbol{eta} _2$	-
1D1		

¹Relative efficiency with respect to UDLM in terms of mean squared errors (MSE)

²Mean distance to the true coefficient vector $\boldsymbol{\beta}$ * $\hat{\boldsymbol{\beta}}_{i} = (\hat{\beta}_{i0}, ..., \hat{\beta}_{i10})^{T}$: the estimated lag coefficients from the i^{th} data set for a particular method ** $\hat{\boldsymbol{\beta}} = \frac{1}{1000} \sum_{i=1}^{1000} \hat{\boldsymbol{\beta}}_{i}$ and $\hat{\beta}_{j} = \frac{1}{1000} \sum_{i=1}^{1000} \hat{\beta}_{ij}$ for j = 0, ..., 10.

A.7 Quantification of the Uncertainty Ignored by Fixing Tuning Parameter GRR

Percentage	Scenario 1	Scenario 2	Scenario 3
Lag 0	0.91	0.83	0.96
Lag 1	0.97	0.88	0.93
Lag 2	0.93	0.96	0.94
Lag 3	0.92	0.92	1.02
Lag 4	0.92	0.90	0.95
Lag 5	0.93	0.99	0.89
Lag 6	0.93	0.97	0.91
Lag 7	0.95	0.95	0.93
Lag 8	0.97	0.95	0.95
Lag 9	0.95	0.95	0.91
Lag 10	0.96	0.98	0.95

Table 3: Average of the 1000 estimated variances as a percentage of the empirical variance of the 1000 estimates from 1000 repetitions for the 11 cumulative lag coefficient estimates based on GRR across the three scenarios in simulation study 1.

A.8 NMMAPS Analysis

Figure 1: Partial autocorrelation function (PACF) plots for daily measurements of PM_{10} (left) and O_3 (right) in Chicago, Illinois from 1987 to 2000 based on the National Morbidity, Mortality and Air Pollution Study (NMMAPS) data.

Table 4: Estimated mean and 95% confidence/credible interval of the cumulative lagged effect (% change in mortality count) up to 3, 7, and 14 days of PM_{10} (upper) and O_3 (lower) on mortality with an interquartile range increase in exposure level (PM_{10} : 21.49 $\mu g/m^3$, O_3 : 14.65 ppb) in Chicago, Illinois from 1987 to 2000 based on the data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight estimation methods.

PM_{10}	Up to Lag 3 (95% CI^1)	Up to Lag 7 (95% CI^1)	Up to Lag 14 (95% CI^{1})
UDLM	0.75 (-0.01, 1.52)	0.32 (-0.71, 1.36)	-0.75(-2.24, 0.75)
CDLM	$0.51 \ (-0.22, \ 1.23)$	0.40 (-0.61, 1.40)	-0.87 (-2.36 , 0.62)
EB1	$0.81 \ (0.07, \ 1.56)$	$0.41 \ (-0.54, \ 1.37)$	-0.71 (-1.98 , 0.56)
GRR	0.67 (-0.06, 1.40)	$0.21 \ (-0.80, \ 1.22)$	-0.74 (-2.23 , 0.75)
BDLM	0.57 (-0.24, 1.43)	-0.01 $(-1.23, 1.16)$	-1.05(-2.76, 0.69)
HB	$0.63\ (0.14,\ 1.12)$	0.26 (-0.41, 0.94)	-0.72 $(-1.60, 0.15)$
HB2-GRR	0.48 (-0.21, 1.18)	0.14 (-0.84, 1.12)	-0.43 $(-1.91, 1.05)$
HP-GRR	$0.97 \ (0.27, \ 1.67)$	0.48 (-0.45, 1.41)	-0.57 $(-1.78, 0.64)$
O_3	Up to Lag 3 (95% CI^1)	Up to Lag 7 (95% CI^1)	Up to Lag 14 (95% CI ¹)
UDLM	$2.04 \ (0.98, \ 3.11)$	$2.63\ (1.31,\ 3.98)$	$2.25\ (0.53,\ 4.01)$
CDLM	$2.03\ (1.07,\ 3.00)$	$2.52 \ (1.28, \ 3.77)$	$2.10\ (0.38,\ 3.85)$
EB1	$2.09\ (0.82,\ 3.39)$	$2.59\ (0.97,\ 4.24)$	$2.19\ (0.11,\ 4.32)$
GRR	$2.08\ (1.10,\ 3.07)$	$2.59\ (1.33,\ 3.88)$	$2.21 \ (0.48, \ 3.97)$
BDLM	$1.91 \ (0.93, \ 2.90)$	$2.32\ (1.11,\ 3.56)$	$2.26\ (0.64,\ 3.91)$
HB	2.12 (1.18, 3.07)	2.63(1.41, 3.87)	$2.23 \ (0.61, \ 3.88)$
HB2-GRR	1.94 (1.01, 2.89)	$2.30\ (1.10,\ 3.52)$	$2.12 \ (0.46, \ 3.80)$
HP-GRR	$1.83 \ (0.97, \ 2.70)$	$2.18\ (1.06,\ 3.31)$	$2.12 \ (0.53, \ 3.73)$

¹CI refers to confidence interval for UDLM, CDLM, EB1, GRR, and HP-GRR and refers to credible interval for BDLM, HB, and HB2-GRR.

Table 5: Estimated mean and 95% confidence/credible intervals (in parenthesis) for the lag effects (% change in mortality count) of an interquartile range increase of PM_{10} (21.49 $\mu g/m^3$) on mortality in Chicago, Illinois from 1987 to 2000 based on the data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight estimation methods.

	UDLM	CDLM	EB1	GRR	BDLM	HB	HB2-GRR	HP-GRR
Lag 0	-0.15	-0.13	-0.13	-0.17	-0.13	-0.15	-0.13	-0.15
-	(-0.61, 0.31)	(-0.51, 0.26)	(-0.59, 0.34)	(-0.61, 0.27)	(-0.57, 0.31)	(-0.58, 0.28)	(-0.55, 0.29)	(-0.55, 0.25)
Lag 1	0.04	0.15	0.13	0.03	0.05	-0.02	0.10	0.04
	(-0.40, 0.48)	(-0.06, 0.35)	(-0.18, 0.43)	(-0.26, 0.33)	(-0.37, 0.46)	(-0.34, 0.31)	(-0.17, 0.37)	(-0.23, 0.31)
Lag 2	0.22	0.25	0.25	0.37	0.21	0.37	0.27	0.33
	(-0.22, 0.65)	(0.06, 0.44)	(-0.23, 0.73)	(0.14, 0.60)	(-0.19, 0.60)	(0.11, 0.63)	(0.05, 0.48)	(0.12, 0.55)
Lag 3	0.65	0.23	0.56	0.44	0.54	0.48	0.25	0.37
	(0.22, 1.08)	(0.05, 0.42)	(0.36, 0.77)	(0.22, 0.66)	(0.16, 0.92)	(0.21, 0.75)	(0.05, 0.45)	(0.18, 0.57)
Lag 4	0.22	0.15	0.15	0.19	0.13	0.21	0.07	0.12
	(-0.20, 0.64)	(-0.01, 0.31)	(-0.17, 0.48)	(-0.01, 0.40)	(-0.22, 0.49)	(-0.02, 0.43)	(-0.10, 0.24)	(-0.06, 0.29)
Lag 5	-0.27	0.03	-0.17	-0.13	-0.23	-0.17	-0.11	-0.15
	(-0.69, 0.15)	(-0.11, 0.17)	(-0.32, -0.01)	(-0.32, 0.05)) (-0.55, 0.08)	(-0.39, 0.06)	(-0.26, 0.04)	(-0.31, 0.00)
Lag 6	-0.41	-0.09	-0.31	-0.29	-0.27	-0.31	-0.17	-0.23
	(-0.83, 0.02)	(-0.24, 0.05)	(-0.46, -0.15)	(-0.47, -0.10))(-0.56, 0.03)((-0.52, -0.10)	(-0.32, -0.02)	(-0.37, -0.10)
Lag 7	0.03	-0.19	-0.08	-0.23	-0.11	-0.21	-0.14	-0.19
	(-0.40, 0.45)	(-0.34, -0.05)	(-0.24, 0.07)	(-0.42, -0.05))(-0.36, 0.15)	(-0.42, 0.00)	(-0.28, 0.00)	(-0.32, -0.07)
Lag 8	-0.25	-0.26	-0.26	-0.12	-0.15	-0.10	-0.10	-0.16
	(-0.70, 0.20)	(-0.40, -0.11)	(-0.71, 0.20)	(-0.31, 0.06)) (-0.38, 0.07)	(-0.31, 0.11)	(-0.22, 0.02)	(-0.27, -0.04)
Lag 9	-0.03	-0.28	-0.14	-0.08	-0.13	-0.09	-0.09	-0.14
	(-0.48, 0.43)	(-0.41, -0.14)	(-0.28, 0.00)	(-0.27, 0.10)) (-0.33, 0.07)	(-0.32, 0.13)	(-0.20, 0.02)	(-0.25, -0.04)
Lag 10	-0.27	-0.25	-0.25	-0.14	-0.14	-0.15	-0.09	-0.14
	(-0.73, 0.18)	(-0.40, -0.11)	(-0.75, 0.24)	(-0.34, 0.06)	(-0.32, 0.04)	(-0.38, 0.07)	(-0.20, 0.02)	(-0.23, -0.04)
Lag 11	-0.12	-0.20	-0.19	-0.24	-0.13	-0.24	-0.08	-0.13
	(-0.58, 0.33)	(-0.37, -0.04)	(-0.55, 0.17)	(-0.44, -0.04	(-0.29, 0.04)	(-0.48, 0.01)	(-0.18, 0.02)	(-0.21, -0.04)
Lag 12	-0.33	-0.13	-0.22	-0.31	-0.12	-0.31	-0.07	-0.12
	(-0.79, 0.12)	(-0.30, 0.04)	(-0.39, -0.04)	(-0.52, -0.10))(-0.28, 0.03)(-0.55, -0.06)	(-0.17, 0.02)	(-0.19, -0.04)
Lag 13	-0.25	-0.08	-0.14	-0.23	-0.10	-0.24	-0.07	-0.10
	(-0.70, 0.21)	(-0.25, 0.09)	(-0.33, 0.06)	(-0.50, 0.04) (-0.24, 0.03)	(-0.55, 0.07)	(-0.16, 0.02)	(-0.17, -0.03)
Lag 14	0.18	-0.07	0.07	0.18	-0.08	0.18	-0.06	-0.09
	(-0.24, 0.60)	(-0.38, 0.25)	(-0.27, 0.42)	(-0.21, 0.56)) (-0.21, 0.06)	(-0.22, 0.58)	(-0.14, 0.02)	(-0.15, -0.03)

Table 6: Estimated mean and 95% confidence/credible intervals (in parenthesis) for the lag effects (% change in mortality count) of an interquartile range increase of O_3 (14.65 ppb) on mortality in Chicago, Illinois from 1987 to 2000 based on the data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight estimation methods.

	UDLM	CDLM	EB1	GRR	BDLM	HB	HB2-GRR	HP-GRR
Lag 0	0.50	0.33	0.36	0.32	0.45	0.37	0.32	0.30
	(-0.21, 1.20)	(-0.19, 0.85)	(-0.26, 0.98)	(-0.33, 0.98)) (-0.22, 1.11)	(-0.31, 1.00))(-0.29, 0.94)	(-0.26, 0.85)
Lag 1	0.12	0.57	0.29	0.53	0.18	0.50	0.46	0.48
	(-0.59, 0.83)	(0.29, 0.85)	(-0.08, 0.67)	(0.06, 1.00)	(-0.47, 0.83)	(0.00, 1.09)) (0.01, 0.91)	(0.08, 0.88)
Lag 2	1.20	0.61	1.04	0.68	1.00	0.69	0.63	0.59
	(0.49, 1.91)	(0.35, 0.86)	(0.70, 1.38)	(0.34, 1.01)	(0.38, 1.62)	(0.26, 1.00)) $(0.31, 0.95)$	(0.30, 0.89)
Lag 3	0.22	0.51	0.39	0.54	0.27	0.54	0.52	0.45
	(-0.48, 0.92)	(0.27, 0.75)	(0.09, 0.70)	(0.21, 0.86)	(-0.29, 0.84)	(0.17, 0.90)	(0.22, 0.82)	(0.18, 0.72)
Lag 4	0.36	0.35	0.35	0.31	0.25	0.30	0.27	0.24
	(-0.34, 1.06)	(0.15, 0.55)	(-0.39, 1.10)	(0.01, 0.60)	(-0.24, 0.75)	(0.01, 0.70)	(0.01, 0.54)	(0.02, 0.46)
Lag 5	0.20	0.18	0.18	0.18	0.13	0.16	0.09	0.11
	(-0.49, 0.90)	(0.00, 0.36)	(-0.62, 0.98)	(-0.11, 0.46))(-0.30, 0.56))(-0.14, 0.53)	(-0.16, 0.33)	(-0.08, 0.29)
Lag 6	0.02	0.03	0.03	0.10	0.03	0.10	0.01	0.02
	(-0.68, 0.71)	(-0.16, 0.22)	(-0.79, 0.85)	(-0.19, 0.38)) (-0.34, 0.40))(-0.28, 0.37)	(-0.22, 0.24)	(-0.14, 0.19)
Lag 7	0.01	-0.08	-0.07	-0.07	0.00	-0.05	-0.02	-0.03
	(-0.68, 0.70)	(-0.27, 0.12)	(-0.74, 0.60)	(-0.35, 0.21))(-0.33, 0.33)	(-0.45, 0.21))(-0.23, 0.19)	(-0.18, 0.12)
Lag 8	-0.08	-0.12	-0.12	-0.27	-0.04	-0.27	-0.06	-0.04
	(-0.77, 0.62)	(-0.31, 0.07)	(-0.82, 0.59)	(-0.55, 0.01))(-0.35, 0.27))(-0.55, 0.09))(-0.26, 0.15)	(-0.17, 0.10)
Lag 9	-0.57	-0.11	-0.40	-0.22	-0.07	-0.26	-0.07	-0.02
	(-1.26, 0.12)	(-0.29, 0.07)	(-0.60, -0.21)	(-0.51, 0.06) (-0.40, 0.26)	(-0.46, 0.20))(-0.26, 0.11)	(-0.13, 0.10)
Lag 10	0.18	-0.05	0.02	0.12	0.03	0.12	-0.02	0.00
	(-0.51, 0.88)	(-0.24, 0.14)	(-0.26, 0.29)	(-0.17, 0.41)) (-0.20, 0.26)	(-0.23, 0.46)	(-0.19, 0.14)	(-0.11, 0.11)
Lag 11	0.57	0.02	0.41	0.32	0.05	0.36	0.02	0.00
	(-0.13, 1.27)	(-0.21, 0.24)	(0.15, 0.67)	(0.01, 0.64)	(-0.20, 0.30))(-0.15, 0.59))(-0.14, 0.17)	(-0.09, 0.10)
Lag 12	-0.19	0.05	-0.03	-0.03	-0.01	-0.02	-0.01	0.00
	(-0.88, 0.50)	(-0.18, 0.28)	(-0.36, 0.31)	(-0.34, 0.28)) (-0.20, 0.18))(-0.38, 0.31))(-0.15, 0.14)	(-0.09, 0.08)
Lag 13	-0.55	0.00	-0.39	-0.54	-0.03	-0.57	-0.03	0.00
	(-1.23, 0.14)	(-0.22, 0.23)	(-0.64, -0.14)	(-0.97, -0.10)(-0.22, 0.17)	(-0.89, 0.14))(-0.18, 0.12)	(-0.08, 0.08)
Lag 14	0.28	-0.20	0.13	0.24	0.01	0.26	-0.01	0.00
	(-0.34, 0.90)	(-0.64, 0.25)	(-0.36, 0.63)	(-0.33, 0.81)(-0.14, 0.15))(-0.43, 0.73)	(-0.14, 0.12)	(-0.07, 0.07)

Table 7: Estimated mean and 95% confidence intervals (in parenthesis) for the cumulative lag effect (% change in mortality count) of an interquartile range increase of PM_{10} $(21.49\mu g/m^3)$ across lags on mortality in Chicago, Illinois from 1987 to 2000 based on the data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight estimation methods.

	UDLM	CDLM	EB1	GRR	BDLM	HB	HB2-GRR	HP-GRR
Lag 0	-0.15	-0.13	-0.13	-0.17	-0.18	-0.25	-0.13	-0.15
-	(-0.61, 0.31)	(-0.51, 0.26)(-0.51, 0.25)(-0.61, 0.27)	(-0.66, 0.24)	(-0.59, 0.08)(-0.55, 0.29)	(-0.53, 0.23)
Lag 1	-0.12	0.02	0.00	-0.14	-0.15	-0.09	-0.03	0.01
	(-0.71, 0.48)	(-0.53, 0.58)(-0.42, 0.42)(-0.70, 0.42)	(-0.78, 0.41)	(-0.48, 0.31)(-0.56, 0.51)	(-0.40, 0.43)
Lag 2	0.10	0.27	0.25	0.23	0.17	0.29	0.24	0.36
	(-0.58, 0.78)	(-0.37, 0.92)(-0.39, 0.88)(-0.42, 0.89)	(-0.60, 0.91)	(-0.16, 0.73))(-0.38, 0.86)	(-0.25, 0.96)
Lag 3	0.75	0.51	0.81	0.67	0.57	0.63	0.48	0.97
	(-0.01, 1.52)	(-0.22, 1.23)	(0.07, 1.56)	(-0.06, 1.40)	(-0.24, 1.43)	(0.14, 1.12)) $(-0.21, 1.18)$	(0.27, 1.67)
Lag 4	0.97	0.65	0.97	0.86	0.71	0.78	0.55	1.12
	(0.13, 1.81)	(-0.14, 1.45)	(0.10, 1.83)	(0.06, 1.67)	(-0.18, 1.69)	(0.23, 1.32)	(-0.22, 1.32)	(0.30, 1.94)
Lag 5	0.70	0.68	0.80	0.73	0.55	0.70	0.44	0.94
	(-0.20, 1.61)	(-0.19, 1.55)(-0.11, 1.71)(-0.15, 1.61)	(-0.45, 1.59)	(0.11, 1.30)	(-0.39, 1.28)	(0.06, 1.82)
Lag 6	0.30	0.59	0.50	0.44	0.24	0.49	0.28	0.60
	(-0.67, 1.27)	(-0.35, 1.52)(-0.44, 1.44)(-0.50, 1.39)	(-0.84, 1.35)	(-0.15, 1.13))(-0.63, 1.18)	(-0.31, 1.51)
Lag 7	0.32	0.40	0.41	0.21	-0.01	0.26	0.14	0.48
	(-0.71, 1.36)	(-0.61, 1.40)(-0.54, 1.37)(-0.80, 1.22)	(-1.23, 1.16)	(-0.41, 0.94))(-0.84, 1.12)	(-0.45, 1.41)
Lag 8	0.07	0.14	0.16	0.09	-0.15	0.09	0.04	0.24
	(-1.03, 1.18)	(-0.93, 1.21)(-0.93, 1.25)(-0.99, 1.16)	(-1.39, 1.13)	(-0.61, 0.79))(-1.02, 1.09)	(-0.78, 1.26)
Lag 9	0.05	-0.13	0.02	0.00	-0.27	-0.03	-0.06	0.12
	(-1.12, 1.22)	(-1.27, 1.01)(-1.10, 1.13)(-1.14, 1.15)	(-1.55, 1.13)	(-0.76, 0.70))(-1.19, 1.07)	(-0.92, 1.16)
Lag 10	-0.22	-0.39	-0.24	-0.14	-0.40	-0.16	-0.15	-0.05
	(-1.46, 1.01)	(-1.59, 0.82)(-1.54, 1.07)(-1.35, 1.08)	(-1.79, 1.05)	(-0.92, 0.60))(-1.35, 1.06)	(-1.15, 1.05)
Lag 11	-0.35	-0.59	-0.43	-0.38	-0.64	-0.37	-0.23	-0.19
	(-1.65, 0.95)	(-1.86, 0.68)(-1.70, 0.84)(-1.66, 0.91)	(-2.09, 0.91)	(-1.17, 0.42))(-1.51, 1.05)	(-1.31, 0.92)
Lag 12	-0.68	-0.72	-0.65	-0.69	-0.97	-0.67	-0.30	-0.35
	(-2.05, 0.68)	(-2.06, 0.62)(-1.96, 0.66)(-2.03, 0.66)	(-2.51, 0.65)	(-1.49, 0.16))(-1.65, 1.05)	(-1.49, 0.79)
Lag 13	-0.93	-0.80	-0.78	-0.92	-1.23	-0.91	-0.37	-0.48
	(-2.35, 0.49)	(-2.21, 0.61)(-2.10, 0.53)(-2.33, 0.50)	(-2.85, 0.45)	(-1.77, -0.04	(-1.78, 1.05)	(-1.66, 0.69)
Lag 14	-0.75	-0.87	-0.71	-0.74	-1.05	-0.72	-0.43	-0.57
	(-2.24, 0.75)	(-2.36, 0.62)(-1.98, 0.56)(-2.23, 0.75)	(-2.76, 0.69)	(-1.60, 0.15))(-1.91, 1.05)	(-1.78, 0.64)

Table 8: Estimated mean and 95% confidence intervals (in parenthesis) for the cumulative lag effect (% change in mortality count) of an interquartile range increase of O_3 (14.65 ppb) across lags on mortality in Chicago, Illinois from 1987 to 2000 based on the data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight estimation methods.

	UDLM	CDLM	EB1	GRR	BDLM	HB	HB2-GRR	HP-GRR
Lag 0	0.50	0.33	0.36	0.32	0.45	0.37	0.32	0.30
	(-0.21, 1.20)	(-0.19, 0.85)	(-0.26, 0.98)	(-0.33, 0.98)	(-0.22, 1.11)	(-0.28, 1.03)	(-0.29, 0.94)	(-0.26, 0.85)
Lag 1	0.61	0.90	0.65	0.85	0.63	0.87	0.78	0.78
	(-0.19, 1.42)	(0.16, 1.64)	(-0.27, 1.58)	(0.10, 1.61)	(-0.15, 1.40)	(0.11, 1.64)	(0.06, 1.51)	(0.10, 1.45)
Lag 2	1.82	1.51	1.70	1.53	1.63	1.57	1.42	1.38
	(0.87, 2.77)	(0.65, 2.38)	(0.59, 2.82)	(0.66, 2.41)	(0.74, 2.53)	(0.73, 2.42)	(0.58, 2.27)	(0.60, 2.16)
Lag 3	2.04	2.03	2.09	2.08	1.91	2.12	1.94	1.83
	(0.98, 3.11)	(1.07, 3.00)	(0.82, 3.39)	(1.10, 3.07)	(0.93, 2.90)	(1.18, 3.07)	(1.01, 2.89)	(0.97, 2.70)
Lag 4	2.40	2.39	2.45	2.39	2.17	2.42	2.22	2.08
	(1.27, 3.55)	(1.34, 3.44)	(0.86, 4.07)	(1.31, 3.48)	(1.12, 3.23)	(1.39, 3.47)	(1.19, 3.26)	(1.14, 3.02)
Lag 5	2.61	2.57	2.63	2.57	2.29	2.59	2.31	2.18
	(1.41, 3.83)	(1.45, 3.69)	(1.13, 4.16)	(1.42, 3.73)	(1.18, 3.42)	(1.47, 3.71)	(1.22, 3.41)	(1.19, 3.19)
Lag 6	2.63	2.59	2.66	2.67	2.32	2.69	2.32	2.21
	(1.36, 3.91)	(1.42, 3.78)	(1.01, 4.34)	(1.46, 3.89)	(1.16, 3.50)	(1.51, 3.88)	(1.17, 3.48)	(1.15, 3.27)
Lag 7	2.63	2.52	2.59	2.59	2.32	2.63	2.30	2.18
	(1.31, 3.98)	(1.28, 3.77)	(0.97, 4.24)	(1.33, 3.88)	(1.11, 3.56)	(1.41, 3.87)	(1.10, 3.52)	(1.06, 3.31)
Lag 8	2.55	2.39	2.47	2.32	2.28	2.35	2.25	2.14
	(1.18, 3.95)	(1.08, 3.72)	(0.84, 4.11)	(1.00, 3.66)	(1.02, 3.57)	(1.07, 3.65)	(0.99, 3.52)	(0.95, 3.34)
Lag 9	1.97	2.28	2.05	2.09	2.21	2.09	2.17	2.12
	(0.54, 3.41)	(0.91, 3.68)	(0.38, 3.75)	(0.71, 3.49)	(0.87, 3.57)	(0.74, 3.45)	(0.85, 3.51)	(0.86, 3.40)
Lag 10	2.15	2.23	2.07	2.22	2.24	2.21	2.15	2.13
	(0.66, 3.67)	(0.80, 3.69)	(0.32, 3.85)	(0.77, 3.68)	(0.85, 3.66)	(0.80, 3.64)	(0.77, 3.55)	(0.79, 3.48)
Lag 11	2.73	2.25	2.48	2.55	2.29	2.57	2.17	2.13
	(1.17, 4.32)	(0.75, 3.77)	(0.63, 4.37)	(1.02, 4.09)	(0.84, 3.76)	(1.10, 4.06)	(0.71, 3.64)	(0.73, 3.55)
Lag 12	2.53	2.30	2.46	2.52	2.28	2.55	2.16	2.13
	(0.91, 4.18)	(0.73, 3.89)	(0.45, 4.50)	(0.93, 4.13)	(0.77, 3.81)	(1.04, 4.09)	(0.64, 3.70)	(0.66, 3.62)
Lag 13	1.97	2.31	2.06	1.97	2.26	1.96	2.13	2.12
	(0.30, 3.67)	(0.67, 3.97)	(-0.02, 4.18)	(0.31, 3.65)	(0.69, 3.85)	(0.39, 3.57)	(0.54, 3.74)	(0.59, 3.68)
Lag 14	2.25	2.10	2.19	2.21	2.26	2.23	2.12	2.12
	(0.53, 4.01)	(0.38, 3.85)	(0.11, 4.32)	(0.48, 3.97)	(0.64, 3.91)	(0.61, 3.88)	(0.46, 3.80)	(0.53, 3.73)
		-	-					

Computation Times A.9

Table 9: Computation times of applying eight estimation methods to National Morbidity, Mortality, and Air Pollution Study (NMMAPS) data on an Intel i7-2600 CPU with a single 3.4GHz core.

Methods	Time	
UDLM	1.7 seconds	
CDLM	1.6 seconds	
$\operatorname{EB1}$	5.8 seconds	
GRR^1	63.7 seconds	
$BDLM^2$	5.4 seconds	
HB^3	1.1 hours	
$HB2-GRR^{1,4}$	13.1 hours	
HP-GRR ^{1,4}	14.1 hours	

¹ Tuning parameter is chosen from a grid of 100 equally-spaced values

² Asymptotic normality of the Poisson likelihood is applied
 ³ Gibbs sampler is based on 10000 iterations

⁴ Standard error estimates are based on 1000 bootstrap samples