Supporting Information

Dehydropolymerization of $H_3B \cdot NM eH_2$ using a [Rh(DPEphos)]⁺ catalyst: the promoting effect of NMeH₂.

Gemma M. Adams,^a David E. Ryan,^a Nicholas A. Beattie,^{b†} Alasdair I. McKay,^a Guy C. Lloyd-Jones^c and Andrew S. Weller.*^a

a Chemistry Research Laboratories, Mansfield Road, University of Oxford, Oxford, OX1 3TA, UK ^b Institute of Chemical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK c School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK † Present Address: School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

Corresponding Author Email Address: andrew.weller@chem.ox.ac.uk

Coordination Modes of Xantphos–iPr, Xantphos–Ph and DPEphos

Xantphos– ⁱPr, Xantphos–Ph and DPEphos show different spreads of coordination modes as shown by the crystallographically characterized examples contained in the Cambridge Structural Database (as of August 2018).¹⁴⁻¹⁶ The M-O distances and P-M-P angles of these complexes are detailed in Figure S1 and show that Xantphos– ⁱPr has the greatest propensity for *mer*-κ³-POP coordination (85% of 54 examples), whilst DPEphos is most likely to exist in a *cis*–κ 2 –PP conformation (93% of 290 complexes). Interestingly, Xantphos–Ph appears to be an intermediate between these two coordination extremes, with 69% of its 223 complexes reported to be *cis*-κ²-PP, whilst 19% are *mer*-κ³-POP ligated. These coordination preferences may influence the mechanism of $H_3B\cdot NM eH_2$ dehydropolymerization.

Figure S1. Plot of M–O distance (Å) vs P–M–P bite angle (°) in crystallographically characterized transition metal complexes containing **(a)** Xantphos– ⁱPr (54 complexes), **(b)** Xantphos–Ph (223 complexes) and **(c)** DPEphos (290 complexes). Number of complexes examined in parentheses. Ligand coordination geometries as follows: \bigcirc = *cis*– κ^2 –PP; \Box = *trans*–κ²–PP; \triangle = *mer*–κ³–POP; \diamondsuit = *fac*–κ³–POP.

Experimental

All manipulations, unless otherwise stated, were performed under an argon atmosphere using standard Schlenk line and glovebox techniques. Glassware was oven dried at 130°C overnight and flame dried under vacuum prior to use. Pentane, hexane, $Et₂O$ and $CH₂Cl₂$ were dried using a Grubbs–type solvent purification system (MBraun SPS–800) and degassed by three successive freeze-pump-thaw cycles.¹ THF was dried over Na/benzophenone, vacuum distilled, degassed by three successive freeze–pump–thaw cycles and stored over 3.0 Å molecular sieves. $1,2-F_2C_6H_4$ (pre–treated with alumina) and CD_2Cl_2 were dried over CaH₂, vacuum distilled, degassed by three successive freeze– pump–thaw cycles and stored over 3.0 Å molecular sieves. $H_3B\cdot NMe_3$ was purchased from Sigma–Aldrich and sublimed prior to use $(5.0 \times 10^{-2}$ mbar, 298 K). H₃B·NMeH₂ was purchased from Boron Specialities and recrystallized twice from Et₂O at −18°C. Hg (99.9995%) was purchased from Sigma–Aldrich, washed with $1,2-F_2C_6H_4$ and dried in vacuo prior to use. 3,3–dimethyl–1–butene was purchased from Sigma–Aldrich, dried over Na, vacuum distilled and stored over 3.0 Å molecular sieves. PPh₃ was purchased from Sigma–Aldrich and used as received. DPEphos was purchased from Strem Chemicals and used as received. BH₃⋅THF (1.0 M in THF) and NMeH₂ (2.0 M in THF) were purchased from Fisher Scientific and used as received to form solutions in THF solvent of the desired concentrations. Na[BAr^F₄] (Ar^F = 3,5–(CF₃)₂C₆H₃),² [BH₂(NMeH₂)₂][BAr^F₄],³ D₃B·NMeH₂,⁴ H₃B⋅NMeD₂,⁴ [Rh(DPEphos)(NBD)][BAr^F₄] (**1a**),⁵ [Rh(DPEphos)(η⁶–ο–xylene)][BAr^F₄] (**7**),⁶ $Rh(Xanthos-Pn)(H)₂Cl⁷ [Rh(Xantphos-Pn)(n²-H₂B(NMe₃)(CH₂)₂^tBu)][BAr^{F₄}] (A)⁸ and$ $[\mathsf{Rh}(\mathsf{Ph}_2\mathsf{P}(\mathsf{CH}_2)_3\mathsf{PPh}_2)(\mathsf{C}_6\mathsf{H}_5\mathsf{F})][\mathsf{BAr}^\mathsf{F}_4]$ ⁹ were prepared by literature methods. $[Rh(NBD)_2][Al(OC(CF_3)_3)_4]$ was prepared according to the literature procedure for $[Rh(COD)_2][Al(OC(CF_3)_3)_4]$.¹⁰

NMR spectra were recorded on a Bruker AVIIIHD 500 or Bruker AVIIIHD 400 nanobay spectrometer at room temperature, unless otherwise stated. Residual protio solvent was used as a reference for ${}^{1}H$ NMR spectra in deuterated solvent samples. For NMR spectrometric samples in 1,2–F₂C₆H₄ or protio–THF solvent, or a mixture of both, ¹H NMR spectra were pre–locked to a sample of C_6D_6 (25%) and 1,2– $F_2C_6H_4$ (75%) and referenced to the centre of the downfield solvent multiplet, δ = 7.07 and 3.57 respectively. ³¹P and ¹¹B NMR spectra were referenced against 85% H₃PO₄ (external) and BF₃⋅OEt₂ (external) respectively. Chemical shifts (δ) are quoted in ppm and coupling constants (*J*) in Hz. ESI– MS (electrospray ionization mass spectrometry) of organometallic complexes were recorded using a Bruker MicrOTOF instrument directly connected to a modified Innovative Technology glovebox. The mass spectrometer was calibrated in positive ion mode using a 10.0 ng mL⁻¹ mixture of tetraalkylammonium bromide salts $[N(C_nH_{2n+1})₄]$ Br (n = 2 – 8, 12, 16, 18) in $CH₂Cl₂$. Typical experimental acquisition parameters were: sample flow rate, 4.0 μL min−1 ; nebulizer gas pressure, 0.4 bar; drying gas (argon) at 60°C flowing at 4.0 L min⁻¹; capillary voltage, 4.5 kV. The solvents used were 1,2–F₂C₆H₄ or CH₂Cl₂. Samples were diluted to a concentration of approximately 1.0 \times 10⁻⁶ M and filtered (0.2 µm pore size) before running. Elemental microanalyses were performed by Stephen Boyer at London Metropolitan University.

Gel permeation chromatography (GPC) was performed on a Malvern Viscotek GPCmax chromatograph fitted with a refractive index (RI) detector. The triple-column (plus guard column) setup was contained within an oven (35°C) and consisted of a porous styrene divinylbenzene copolymer with a maximum pore size of 1,500 Å. THF containing 0.1% w/w [NⁿBu₄]Br was used as the eluent at a flow rate of 1.0 mL min⁻¹. Samples were dissolved in the eluent (2.0 mg mL−1), filtered (0.2 μm pore size) and run immediately. The calibration was conducted using a series of monodisperse polystyrene standards $(M_n =$ 474 – 476,800 g/mol) obtained from Sigma–Aldrich.

A solution of DPEphos (129.0 mg, 239.5 µmol) in $1,2-F_2C_6H_4$ (10.0 mL) was added dropwise to a Schlenk flask containing a solution of $[Rh(NBD)_2][Al(OC(CF_3)_3)_4]$ (300.0 mg, 239.2 µmol) in 1,2– $F_2C_6H_4$ (8.0 mL). The resulting orange solution was left to stir for 12 hours. The solution was filtered, concentrated to ca. 3.0 mL under vacuum, layered with pentane (40.0 mL) and left to crystallize for ca. 48 hours at room temperature. Following removal of the supernatant by filtration, the dark orange crystalline material was washed with pentane (10.0 mL \times 3) and dried under vacuum. Yield: 350.0 mg (206.0 µmol, 86%).

¹**H NMR** (400 MHz, CD₂Cl₂, 298 K): δ 7.55 – 7.31 (m, 22 H, aryl CH), 7.07 – 6.10 (m, 6 H, aryl CH), 4.30 (s, br, 4 H, NBD–HC=CH), 3.85 (s, br, 2 H, NBD–CH), 1.53 (s, 2 H, NBD– CH₂). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K): δ 17.0 (d, ¹J_{RhP} 159). **ESI-MS** (1,2–F₂C₆H₄, 60°C, 4.5 kV): m/z 733.13 (calculated 733.13 for the [Rh(DPEphos)(NBD)]⁺ fragment, showing the correct isotope pattern). **Elemental Microanalysis**: Calc. (C₅₉H₃₆Al₁F₃₆O₅P₂Rh₁): C, 41.67; H, 2.13. Found: C, 41.76; H, 2.23.

Synthesis of [Rh(DPEphos)(η² –H2B(NMe3)(CH2)² ^tBu)][BAr^F ⁴] (2a)

 $[Rh(DPEphos)(NBD)][BAr^F₄]$ (**1a**) (547.2 mg, 342.7 µmol) and $H_3B·NMe₃$ (32.0 mg, 438.7 µmol) were dissolved in $1,2-F_2C_6H_4$ (5.0 mL) in a J. Young flask. The mixture was immediately frozen in liquid N_2 and hydrogenated. On warming to room temperature, the mixture was shaken, yielding a dark blue solution, forming [Rh(DPEphos)(H₃B∙NMe₃)][BAr^F₄] in situ.¹¹ The solution was rapidly degassed with three successive freeze–pump–thaw cycles and placed under an atmosphere of argon. 3,3– dimethylbut–1–ene (0.3 mL, 2327.7 μmol) was added to the J. Young flask, and a further 3.0 mL of 1.2– $F_2C_6H_4$ was added to ensure all of the 3.3–dimethylbut–1–ene had entered the reaction mixture. The reaction mixture was stirred for 90 minutes, turning from dark blue to purple in colour. The solution was filtered; the solvent removed in vacuo and the resultant purple powder was washed with hexane (10.0 mL \times 3), and dried under vacuum. Yield: 452.5 mg (272.3 µmol, 79%). A small number of purple crystals of **2a** could be obtained by recrystallization from CH₂Cl₂/pentane at −20°C, however these were not suitable for single crystal X–ray diffraction studies.

¹**H NMR** (500 MHz, CD₂Cl₂, 298 K): δ 7.72 (s, br, 8 H, [BAr^F₄]⁻–ortho–CH), 7.56 (s, br, 4 H, [BAr^F₄]⁻-para-CH), 7.45 – 7.28 (m, 22 H, aryl CH), 7.13 (d, 2 H, ²J_{HH} 8, aryl CH), 6.87 (t, 2 H, ²J_{HH} 8, aryl CH), 6.63 (m, 2 H, aryl CH), 2.59 (s, 9 H, NMe₃), 1.49 (m, 2 H, CH₂CH₂^tBu), 0.78 (s, 9 H, ^tBu), 0.49 (m, 2 H, CH₂CH₂^tBu), −5.55 (br, 2 H, RhH₂B). Upon decoupling to ¹¹B, the resonance at δ −5.55 sharpened slightly. **¹¹B NMR** (160 MHz, CD_2Cl_2 , 298 K): δ 33.3 (s, br, RhH₂B), −6.6 (s, [BAr^F₄]⁻). ³¹**P{¹H} NMR** (202 MHz, CD₂Cl₂, 298 K): δ 40.0 (d, ¹ *J*RhP 180). **ESI–MS** (CH2Cl2, 60˚C, 4.5 kV): *m/z* 798.22 (calculated 798.27 for the $[Rh(DPEphos)(\eta^2-H_2B(NMe_3)(CH_2)_2^tBu)]^+$ fragment, showing the correct isotope pattern). **Elemental Microanalysis**: Calc. (C₇₇H₆₄B₂F₂₄N₁O₁P₂Rh₁): C, 55.65; H, 3.88; N, 0.84. Found: C, 55.78; H, 3.95; N, 0.82.

Synthesis of [Rh2(DPEphos)2(μ–H)(μ–H2B=NHMe)][BAr^F ⁴] (3a)

 $3a$

 $[Rh(DPEphos)(NBD)][BAr^F₄]$ (**1a**) (35.0 mg, 21.9 µmol) and $H_3B·NMeH_2$ (2.0 mg, 44.6 umol) were dissolved in $1.2-F_2C_6H_4$ (0.35 mL) in a high pressure J. Young NMR tube. The sample was immediately frozen in liquid $N₂$ and hydrogenated. On warming to room temperature, the mixture was shaken, and the light orange solution turned darker in colour. The sample was immediately placed into the NMR spectrometer.

Selected spectrometric data: ¹**H NMR** (500 MHz, 1,2–F₂C₆H₄, 298 K): δ 8.33 (s, br, 8 H, [BAr^F₄]⁻-ortho-CH), -9.12 (br, 1 H, Rh₂(μ -BH₂) and Rh₂(μ -H)). Upon decoupling to ³¹P, the resonance at δ -9.12 sharpened. Note that the resonance at δ -9.12 is expected to integrate 1.5 H relative to the resonance at δ 8.33, due to the concomitant formation of $[BH₂(NMeH₂)₂][BAT^F₄].¹² ¹¹B NMR (160 MHz, 1,2–F₂C₆H₄, 298 K): δ 55.8 (br, RhH₂B), −6.3$ $(\text{s}, [\text{BAr}^{\text{F}}_{4}]^{-})$, -7.1 (t, ¹ J_{BH} ~120, $[\text{BH}_2(\text{NMeH}_2)_2]^{\text{+}}$). $^{11}\text{B}({}^{1}\text{H})$ NMR (160 MHz, 1,2–F₂C₆H₄, 298 K): δ 55.8 (br, RhH2B), −6.3 (s, [BAr^F 4] −), −7.1 (s, c **³¹P{¹H} NMR** (202 MHz, 1,2– $F_2C_6H_4$, 298 K): δ 28.3 (d, ¹ J_{RhP} 150). **ESI-MS** (1,2– $F_2C_6H_4$, 60°C, 4.5 kV): *m/z* 1326.20 (calculated 1326.20 for the $\text{[Rh}_2(\text{DPEphos})_2(\mu-\text{H})(\mu-\text{H}_2\text{B}=\text{NHMe})$ ⁺ fragment, showing the correct isotope pattern). These NMR and ESI−MS spectrometric data are analogous to the well–studied $PR_2(CH_2)_3PR_2$ (R = Ph, ⁱPr) analogues of complex **3a**,¹² thereby enabling characterization.

Figure S2. In situ ¹H NMR spectrum $(1,2-F_2C_6H_4$ solvent, 298 K) of the reaction mixture forming [Rh2(DPEphos)2(μ–H)(μ–H2B=NHMe)][BAr^F ⁴] (**3a**).

Figure S3. In situ ¹¹B NMR spectrum (1,2– $F_2C_6H_4$ solvent, 298 K) of the reaction mixture forming [Rh₂(DPEphos)₂(μ–H)(μ–H₂B=NHMe)][BAr^F₄] (**3a**).

Figure S4. In situ ${}^{31}P\{{}^{1}H\}$ NMR spectrum (1,2– $F_2C_6H_4$ solvent, 298 K) of the reaction mixture forming [Rh₂(DPEphos)₂(μ-H)(μ-H₂B=NHMe)][BAr^F₄] (3a).

Figure S5. Full experimental (top) and simulated (bottom) ESI mass spectra of the reaction mixture forming [Rh₂(DPEphos)₂(μ-H)(μ-H₂B=NHMe)][BAr^F₄] (3a).

Synthesis of [Rh2(DPEphos)2(σ,μ–(H2B)2NHMe)][BAr^F ⁴] (4a)

 $[Rh(DPEphos)(NBD)][BAr^F₄]$ (1a) (35.0 mg, 21.9 µmol) and H₃B⋅NMeH₂ (4.0 mg, 89.1 umol) were dissolved in 1,2– $F_2C_6H_4$ (0.4 mL) in a high pressure J. Young NMR tube. The sample was immediately frozen in liquid $N₂$ and hydrogenated. On warming to room temperature, the mixture was shaken and agitated for 10 minutes, and the light orange solution turned darker in colour. The sample was freeze–pump–thaw degassed three times, backfilled with argon, and agitated for 30 minutes before being placed into the NMR spectrometer. $31P\{^1H\}$ NMR spectroscopy of the fully degassed NMR sample indicated that the mixture subsequently contained 25% $[Rh_2(DPEphos)_2(\mu-H)(\mu-H_2B=NHMe)][BAr^F4]$ (**3a**) and 75% $[Rh_2(DPEphos)_2(\sigma, \mu-(H_2B)_2NHMe)][BATF_4]$ (**4a**). See Figure S22 for 10 mol% speciation experiment.

Selected spectrometric data: ¹**H NMR** (400 MHz, 1,2–F₂C₆H₄, 298 K): δ −8.41 (d, br, ²J_{PH} 76, Rh₂(μ–BH)), −9.25 (m, obscured by **3a** Rh₂(μ–BH₂) and Rh₂(μ–H), Rh₂(μ–BH)). Upon decoupling to ¹¹B, the resonance at δ –8.41 sharpened. Upon decoupling to ³¹P, the resonance at δ -8.41 collapsed to a broad singlet. ¹¹**B NMR** (128 MHz, 1,2–F₂C₆H₄, 298 K): δ 9.7 (br, Rh(σ,μ–(H₂B)₂), −6.2 (s, [BAr^F₄]⁻). ³¹**P{¹H} NMR** (162 MHz, 1,2–F₂C₆H₄, 298 K): δ 31.7 (dd, 1 P, ¹ J_{RhP} 163, ² J_{PP} 23), 28.9 (dd, 1 P, ¹ J_{RhP} 159, ² J_{PP} 21), 15.7 (ddd, 1 P, $\sqrt[1]{2R_{\text{HP}}}$ 138, $\sqrt[2]{2}I_{\text{RP}}$ 103, $\sqrt[2]{2}I_{\text{PP}}$ 23), 12.8 (ddd, 1 P, $\sqrt[1]{2}I_{\text{RP}}$ 136, $\sqrt[2]{2}I_{\text{RP}}$ 103, $\sqrt[2]{2}I_{\text{PP}}$ 21).

Synthesis of [Rh2(DPEphos)2(σ,μ–(H2B)2NHMe)][Al(OC(CF3)3)4] (4b)

[Rh(DPEphos)(NBD)][Al(OC(CF₃)₃)₄] (**1b**) (40.4 mg, 23.8 μmol) and H₃B⋅NMeH₂ (4.2 mg, 93.6 µmol) were dissolved in 1,2– $F_2C_6H_4$ (0.4 mL) in a high pressure J. Young NMR tube. The sample was immediately frozen in liquid N_2 and hydrogenated. On warming to room temperature, the mixture was shaken and agitated for 10 minutes, and the light orange solution turned darker in colour. The sample was freeze–pump–thaw degassed three times, backfilled with argon, and agitated for 30 minutes before being filtered into a J. Young crystallization flask. The solution was layered with pentane (20.0 mL) at room temperature to yield orange crystals suitable for single crystal X–ray diffraction. The bulk solid of **4b** was analysed by NMR spectroscopy which showed that approximately 5% $[Rh_2(DPEphos)_2(\mu-H)(\mu-H_2B=NHMe)][Al(OC(CF_3)_3)_4]$ (3b) was present by ${}^{31}P\{{}^{1}H\}$ spectroscopy, and dehydrocoupling products of H₃B⋅NMeH₂ were also identified by ¹¹B NMR spectroscopy. Yield: 18.0 mg (ca. 7.8 μmol, 66%). See Figure S22 for 10 mol% speciation experiment.

Selected spectrometric data: ¹**H NMR** (400 MHz, CD₂Cl₂, 298 K): δ 8.06 – 5.78 (m, 54 H, aryl CH), 4.64 (br, 2 H, BH), 3.94 (br, 2 H, aryl CH…Rh), 1.70 (d, 3 H, ³J_{HH} 6, NMe), −8.65 (br, 1 H, Rh₂(u–HB)), -9.44 (br, 1 H, Rh₂(u–HB). Upon decoupling to ¹¹B, the resonance at δ 4.64 sharpened, and the resonances at δ −8.65 and −9.44 each sharpened into doublets, revealing ²J_{PH} coupling constants of 73.9 and 68.8, respectively. Upon decoupling to ³¹P, the resonances at δ -8.65 and -9.44 each collapsed to broad singlets. ¹¹**B NMR** (128 MHz, CD₂Cl₂, 298 K): δ 9.4 (br, Rh(σ,μ–(H₂B)₂)). ³¹**P{¹H} NMR** (162 MHz, CD₂Cl₂, 298 K): δ 31.7 (dd, 1 P, ¹ J_{RhP} 163, ² J_{PP} 23), 28.8 (dd, 1 P, ¹ J_{RhP} 158, ² J_{PP} 21), 15.7 (ddd, 1 P, ¹ J_{RhP} 138, ² J_{RhP} 102, ² J_{PP} 23), 13.0 (ddd, 1 P, ¹ J_{RhP} 135, ³ J_{RhP} 102, ² J_{PP} 21). **ESI–MS** $(1, 2-F_2C_6H_4, 60^{\circ}C, 4.5$ kV): m/z 1338.33 (calculated 1338.22 for the [Rh₂(DPEphos)₂(σ ,µ–(H₂B)₂NHMe)]⁺ fragment, showing the correct isotope pattern).

Figure S6. ¹H NMR spectrum $(CD_2Cl_2$ solvent, 298 K) of the bulk material from the crystallization of $[Rh_2(DPEphos)_2(\sigma,\mu-(H_2B)_2NHMe)][Al(OC(CF_3)_3)_4]$ (4b).

Figure S7. ¹¹B NMR spectrum (CD₂Cl₂ solvent, 298 K) of the bulk material from the crystallization of $[Rh_2(DPEphos)_2(\sigma,\mu-(H_2B)_2NHMe)][Al(OC(CF_3)_3)_4]$ (4b).

Figure S8. ³¹ $P\{^1H\}$ NMR spectrum (CD₂Cl₂ solvent, 298 K) of the bulk material from the crystallization of $[Rh_2(DPEphos)_2(\sigma, \mu-(H_2B)_2NHMe)][Al(OC(CF_3)_3)_4]$ (4b).

Figure S9. Full experimental (top) and simulated (bottom) ESI mass spectra of the bulk material from the crystallization of [Rh₂(DPEphos)₂(σ,μ–(H₂B)₂NHMe)][Al(OC(CF₃)₃)₄] (**4b**).

Synthesis of [Rh(DPEphos)(H)2(NMeH2)2][BAr^F ⁴] (5)

Route A: [Rh(DPEphos)(NBD)][BAr^F₄] (1a) (17.8 mg, 11.1 µmol) was dissolved in 1,2– $F_2C_6H_4$ (0.25 mL) in a high pressure J. Young NMR tube. 0.25 mL of a 0.0892 M solution of NMeH₂ in THF (22.3 µmol) was added. The reaction mixture was immediately frozen in liquid $N₂$ and hydrogenated. On warming to room temperature, the mixture was shaken, and the light orange solution turned darker in colour. The sample was immediately placed into the NMR spectrometer. ${}^{31}P\{{}^{1}H\}$ NMR spectroscopy indicated that the mixture contained 95% [Rh(DPEphos)(H)₂(NMeH₂)₂][BAr^F₄] ⁴] (**5**) and 5% [Rh(DPEphos)(NMeH2)2][BAr^F ⁴] (**6**). Under extended degassing, **5** loses H² to form **6**.

Route B: [Rh(DPEphos)(NBD)][BAr^F₄] (1a) (35.0 mg, 21.9 µmol) and H₃B⋅NMeH₂ (4.0 mg, 89.1 umol) were dissolved in 1,2– $F_2C_6H_4$ (0.4 mL) in a high pressure J. Young NMR tube. The sample was immediately frozen in liquid $N₂$ and hydrogenated. On warming to room temperature, the mixture was shaken and agitated for 10 minutes, and the light orange solution turned darker in colour. The sample was freeze–pump–thaw degassed three times and agitated for 30 minutes before being placed into the NMR spectrometer. ${}^{31}P\{{}^{1}H\}$ NMR spectroscopy of the NMR sample indicated that the mixture subsequently contained 25% $[Rh_2(DPEphos)_2(\mu-H)(\mu-H_2B=NHMe)][BAr^F_4]$ (3a) and 75% $[Rh_2(DPEphos)_2(\sigma,\mu (H_2B)_2NHMe)$ [BAr^F₄] (4a). 0.25 mL of a 0.1784 M solution of NMeH₂ in THF (44.6 µmol) was added to the sample. $3^{1}P\{^{1}H\}$ NMR spectroscopy of the NMR sample indicated that the mixture contained [Rh(DPEphos)(H)₂(NMeH₂)₂][BAr^F₄] (5) only, which under extended degassing formed **6**.

Selected spectrometric data: ¹**H NMR** (400 MHz, 1,2–F₂C₆H₄, 298 K): δ −9.61 (dddd, 1 H, ²J_{PtransH} 182, ²J_{PcisH} 24, ¹J_{RhH} 18, ²J_{HH} 5, RhH *trans* to P), −16.61 (m, 1 H, RhH *cis* to P). **¹H{³¹P} NMR** (400 MHz, 1,2–F2C6H4, 298 K): δ −9.61 (dd, 1 H, ¹ *J*RhH 18, ² *J*HH 5, RhH *trans* **to DPEphos–PPh₂), −16.61 (d, br, 1 H, ¹J_{RhH} 15, RhH** *trans* **to NMeH₂). ³¹P{¹H} NMR** (162 MHz, 1,2–F₂C₆H₄, 298 K): δ 52.2 (d, 1 P, ¹J_{RhP} 137), 23.8 (d, br, 1 P, ¹J_{RhP} 86).

Route C: [Rh(DPEphos)(NMeH₂)₂][BAr^F₄] (6) (20.0 mg, 12.8 µmol) was dissolved in CD_2Cl_2 (0.25 mL) in a high pressure J. Young NMR tube. The sample was freeze–pump– thaw degassed three times and hydrogenated, whereupon the orange solution turned slightly darker. The sample was placed in the NMR spectrometer immediately after hydrogenation.

Selected spectrometric data: ¹**H NMR** (400 MHz, CD₂Cl₂, 298 K): δ 7.72 – 6.10 (m, 49 H, [BAr^F₄]⁻-CH, aryl CH), 2.32 (m, br, 3 H, NCH₃), 2.12 (m, br, 1 H, NH), 2.09 (t, 3 H, N'CH₃), 1.87 (m, br, 1 H, N'H), 1.72 (m, br, 1 H, N'H), 1.46 (m, br, 1 H, NH), −9.76 (dddd, 1 H,
²J_{PtransH} 180, ²J_{PcisH} 26, ¹J_{RhH} 18, ²J_{HH} 5, RhH *trans* to P), −16.78 (m, 1 H, RhH *cis* to P). 31 **P{¹H} NMR** (162 MHz, CD₂Cl₂, 298 K): δ 52.1 (d, 1 P, ¹ $J_{\sf RhP}$ 137), 24.2 (br, 1 P, ¹ $J_{\sf RhP}$ 86). ¹**H** NMR (400 MHz, 1,2–F₂C₆H₄, 298 K): δ 8.29 (s, br, 8 H, [BAr^F₄]⁻–ortho–CH), 7.66 (s, br, 4 H, $[BArF_4]$ ⁻-para–CH), 2.23 (m, br, 4 H, overlapping NCH₃, NH), 2.13 (m, br, 3 H, N′CH3), 2.04 (m, br, 1 H, N′H), 1.89 (m, br, 1 H, N′H), 1.58 (m, br, 1 H, NH), −9.61 (dddd, 1 H, ² J_{PtransH} 182, ² J_{PcisH} 24, ¹ J_{RhH} 18, ² J_{HH} 5, RhH *trans* to P), −16.61 (m, 1 H, RhH *cis* to P). ¹**H**{³¹P} NMR (400 MHz, 1,2–F₂C₆H₄, 298 K): δ −9.61 (dd, 1 H, ¹J_{RhH} 18, ²J_{HH} 5, RhH *trans* to DPEphos–PPh₂), −16.61 (d, br, 1 H, ¹J_{RhH} 15, RhH *trans* to NMeH₂). ³¹**P{¹H} NMR** (162 MHz, 1,2–F2C6H4, 298 K): δ 52.2 (d, 1 P, ¹ *J*RhP 137), 23.8 (d, br, 1 P, ¹ *J*RhP 86).

Figure S10. ¹H NMR spectrum (CD₂Cl₂ solvent, 298 K) of isolated [Rh(DPEphos)(H)₂(NMeH₂)₂][BAr^F₄] (5). The signal marked with a star corresponds to added H_2 .

Synthesis of [Rh(DPEphos)(NMeH2)2][BAr^F ⁴] (6)

 6

Route A: [Rh(DPEphos)(η^2 -H₂B(NMe₃)(CH₂)₂^tBu)][BAr^F₄] (2a) (18.6 mg, 11.2 µmol) was dissolved in $1,2-F_2C_6H_4$ (0.25 mL) in a J. Young NMR tube. 0.25 mL of a 0.0892 M solution of NMeH₂ in THF (22.3 µmol) was added. On agitating the sample, the purple solution turned orange in colour. The sample was placed into the NMR spectrometer.
 ${}^{31}P\ell^1H$ NMR spectroscopy indicated that the mixture contained NMR spectroscopy indicated that the mixture contained [Rh(DPEphos)(NMeH₂)₂][BAr^F₄] (6) as the sole phosphorus–containing species. The sample can be freeze–pump–thaw degassed and hydrogenated, forming **5** as the major organometallic product. Alternatively, the sample containing **6** can be filtered into a J. Young crystallization flask and layered with pentane (20.0 mL) to give an orange oil which was washed with pentane (20.0 mL) and dried under vacuum. Due to the oily nature of this material, bulk material could not be isolated despite repeated attempts.

Route B: To a stirred solution of [Rh(DPEphos)(η⁶-o-xylene)][BAr^F₄] (**7**) (200.0 mg, 124.2 umol) in $1.2-F_2C_6H_4$ (2.0 mL), was added NMeH₂ (2.0 M in THF, 0.25 mL, 500 μmol). The resultant orange solution was added dropwise to rapidly stirring pentane (40.0 mL) at −78 °C. The supernatant was decanted and the yellow solid washed with pentane (20 mL × 5) at −78 °C. The sample was subsequently dried in vacuo whilst warming to room temperature (10 minutes). Whilst under vacuum, the resultant oily solid was subjected to repeated freezing in liquid N_2 and thawing whilst sonicating (\times 5), followed by washing with pentane (10.0 mL \times 5), until a yellow powder was obtained. The sample was subsequently dried in vacuo for 1 hour. Yield: 151.6 mg (96.8 µmol, 78%). After extended periods under dynamic vacuum, the compound decomposes. For this reason the sample was more conveniently prepared in situ for kinetics experiments.

Selected spectrometric data: ¹**H NMR** (400 MHz, CD₂Cl₂, 298 K): δ 7.72 – 6.71 (m, 49 H, [BAr^F 4] − –CH, aryl CH), 2.03 (br, 6 H, NCH3), 1.75 (br, 4 H, NH). **³¹P{¹H} NMR** (162 MHz, CD2Cl2, 298 K): δ 39.5 (d, ¹ *J*RhP 182). **¹H NMR** (400 MHz, 1,2–F2C6H4, 298 K): δ 1.99 (br, 6 H, NCH3), 1.78 (br, 4 H, NH). **³¹P{¹H} NMR** (162 MHz, 1,2–F2C6H4, 298 K): δ 39.7 (d, ¹ *J*RhP 180). **ESI-MS** (CH₂CI₂, 60°C, 4.5 kV): The major peak observed by mass spectrometry with *m*/z 669.06 was proposed to be due to formation of the [Rh(DPEphos)(N₂)]⁺ fragment (calculated m/z 669.07), showing the correct isotope pattern. This $N₂$ complex can be formed due to the presence of N_2 in the flow gas, as has been noted previously.¹³

[Rh(DPEphos)(NMeH2)2][BAr^F ⁴] (**6**).

Figure S14. Full experimental ESI mass spectrum (top) of a CH₂Cl₂ solution of $[Rh(DPEphos)(NMeH₂)₂][BAT^F₄].$ The major peak is proposed to be due to the $[Rh(DPEphos)(N₂)]$ ⁺ fragment, and the corresponding simulated mass spectrum is shown (bottom).

Synthesis of [Rh(Xantphos– ⁱPr)(H)2(NMeH2)][BAr^F ⁴] (8)

Rh(Xantphos- $\rm Pr$)(H)₂Cl (35.1 mg, 60.0 µmol) and Na[BAr^F₄] (53.2 mg, 60.0 µmol) were dissolved in 1.0 mL THF in a J. Young crystallisation tube. Immediately, 0.15 mL of a 2.0 M solution of NMeH₂ in THF (300.0 µmol) was added. The solution was stirred for 1 hour to give a pale yellow solution and white precipitate. The reaction mixture was filtered and layered with pentane (30.0 mL) and stored at 5˚C, which yielded pale yellow crystals. The crystals were isolated by filtration, washed with pentane (5.0 mL \times 3) and dried under vacuum. Yield 53.2 mg (36.9 µmol, 62%).

¹**H NMR** (500 MHz, CD₂Cl₂, 298 K): δ 7.72 (s, br, 8 H, [BAr^F₄]⁻-ortho-CH), 7.67 (d, 2 H, 2 J_{HH} 8, aryl CH para to P), 7.56 (s, br, 4 H, [BAr^F₄] –para–CH), 7.52 (m, 2 H, aryl CH meta to P), 7.42 (dd, 2 H, ²J_{HH} 8, ²J_{PH} 8, aryl CH ortho to P), 2.62 (br, 2 H, NH), 2.51 (s, br, 4 H, ⁱPr–CH), 2.32 (t, 3 H, ³J_{HH} 6, NMe), 1.89 (s, 3 H, Xantphos 'backbone' C(CH₃)), 1.44 (m, 6 H, ${}^{1}Pr$ –CH₃), 1.34 (s, 3 H, Xantphos 'backbone' C(CH₃)), 1.26 (m, 6 H, ${}^{1}Pr$ –CH₃), 1.19 (m, 6 H, ⁱPr–CH₃), 0.75 (m, 6 H, ⁱPr–CH₃), −17.73 (br, 1 H, RhH), −20.40 (br, 1 H, RhH). **³¹P{¹H} NMR** (202 MHz, CD₂Cl₂, 298 K): δ 64.0 (d, ¹ J_{RhP} 111). **ESI–MS** (1,2–F₂C₆H₄, 60°C, 4.5 kV): m/z 547.20 (calculated 547.18 for the [Rh(Xantphos–ⁱPr)]⁺ fragment, showing the correct isotope pattern). **Elemental Microanalysis**: Calc. (C₆₀H₅₉B₁F₂₄N₁O₁P₂Rh₁): C, 49.98; H, 4.12; N, 0.97. Found: C, 49.83; H, 3.97; N, 0.92.

Proposed Synthesis of Tentatively Characterised [Rh2(DPEphos)2(B2H5)][BAr^F 4]

Possible structure of proposed complex $[Rh_2(DPEphos)_2(B_2H_5)][BArF_4]$

[Rh(DPEphos)(η^2 –H₂B(NMe₃)(CH₂)₂^tBu)][BAr^F₄] (2a) (14.0 mg, 8.4 µmol) was dissolved in THF solvent (0.35 mL) in a J. Young NMR tube. 0.11 mL of a 0.08 M solution of H3B∙THF (8.8 μmol) was added. The purple solution turned orange on addition of H3B∙THF. The sample was immediately placed into the NMR spectrometer.

Selected spectrometric data: **³¹P{¹H} NMR** (162 MHz, THF, 298 K): δ 32.0 (d, 2 P, ¹ *J*RhP 151), 17.5 (d, br, 2 P, ¹ J_{RhP} ~120). **ESI-MS** (1,2-F₂C₆H₄, 60°C, 4.5 kV): The major peak observed by mass spectrometry with *m/z* 1309.16 was proposed to be due to formation of a [{Rh(DPEphos)}₂(B₂H₅)]⁺ fragment (calculated *m/z* 1309.19), showing the correct isotope pattern. There are also minor peaks observed at *m/z* 1321.18 and *m/z* 1335.21, proposed to be due to the formation of the borane-derived fragments $[{Rh(DPEphos)}_{2}(B_3H_6)]^+$ (calculated m/z 1321.21) and $\frac{1}{R}h(DPEphos)_{2}(B_{4}H_{9})$ ⁺ (calculated m/z 1335.25) with the correct isotope patterns, respectively.

Figure S15. In situ ³¹ $P\{^1H\}$ NMR spectrum (THF solvent, 298 K) of the reaction mixture of $[Rh(DPEphos)(\eta^2-H_2B(NMe_3)(CH_2)_2^tBu)][BArF_4]$ (2a) and 1 equiv. H₃B⋅THF in THF solvent, $\overline{\text{forming proposed [Rh_2(DPEphos)_2(B_2H_5)] [BAT^{F_4}].}}$

Figure S16. Full experimental (top) and simulated (bottom) ESI mass spectra of the reaction mixture forming the proposed borane−derived species $[Rh_2(DPEphos)_2(B_2H_5)][BAr^F4]$. Inset: Zoom-in showing the isotope pattern: experimental (top) and simulated (bottom).

Catalytic Dehydropolymerization of H₃B⋅NMeH₂

Dehydropolymerization Under Open Conditions

In a typical experiment (e.g. 0.223 M [H3B∙NMeH2], 0.2 mol% catalyst loading), H₃B·NMeH₂ (50.0 mg, 1110.0 µmol) was suspended in 4.5 mL 1,2–F₂C₆H₄ in a two–neck Schlenk flask. Double the desired amount of the catalyst was weighed into a separate flask and dissolved in 1.0 mL 1,2– $F_2C_6H_4$. The $H_3B\cdot NMeH_2$ –containing flask was connected to an external mineral oil bubbler and the argon flow was controlled to achieve

a rate of bubbling of approximately 2 bubbles s^{-1} . 0.5 mL of the catalyst solution was added to the reaction mixture and the resultant solution was stirred for the desired reaction time at 400 rpm. 0.3 mL of the reaction mixture was removed for analysis by NMR spectroscopy. The remaining reaction mixture was decanted into 40.0 mL of rapidly stirring hexane to give an off–white suspension which was stirred for 5 minutes to allow polymer precipitation, then isolated by filtration. The off–white solid $(H₂BNMeH)_n$ was dried under vacuum overnight. Isolated yields of $(H_2BNMeH)_n$ varied from 30% to 65%.

Dehydropolymerization Under Hydrogen Evolution Measurement Conditions

In a typical experiment (e.g. 0.223 M [H3B∙NMeH2], 0.2 mol% catalyst loading), H₃B·NMeH₂ (50.0 mg, 1110.0 µmol) was suspended in 4.5 mL 1.2–F₂C₆H₄ in a jacketed two–neck Schlenk flask connected to a recirculating cooler and the temperature set at 20°C. Double the desired amount of the catalyst was weighed into a separate flask and dissolved in 1.0 mL 1,2– $F_2C_6H_4$. The $H_3B\cdot NMeH_2$ –containing flask was sealed off from the argon supply and connected to a water–filled 100.0 mL gas burette. 0.5 mL of the catalyst solution was added to the reaction mixture and the resultant solution was stirred at 400 rpm. The time taken per 1.0 mL of gas to evolve was recorded. Upon completion of gas evolution, 0.3 mL of the reaction mixture was removed for analysis by NMR spectroscopy. The remaining reaction mixture was decanted into 40.0 mL of rapidly stirring hexane to give an off–white suspension which was stirred for 5 minutes to allow polymer precipitation, then isolated by filtration. The off–white solid $(H₂BNMeH)_n$ was dried under vacuum overnight. Isolated vields of (H₂BNMeH)_n varied from 30% to 60%.

Dehydropolymerization Under Closed Conditions

In a typical experiment (e.g. 0.223 M [H₃B⋅NMeH₂], 0.2 mol% catalyst loading), H₃B·NMeH₂ (50.0 mg, 1110.0 µmol) was suspended in 4.5 mL 1,2–F₂C₆H₄ in a J. Young flask. Double the desired amount of the catalyst was weighed into a separate flask and dissolved in 1.0 mL 1,2– $F_2C_6H_4$. 0.5 mL of the catalyst solution was added to the reaction mixture and the flask was sealed and stirred for the desired reaction time at 400 rpm. 0.3 mL of the reaction mixture was removed for analysis by NMR spectroscopy. The remaining reaction mixture was decanted into 40.0 mL of rapidly stirring hexane to give an off–white suspension which was stirred for 5 minutes to allow polymer precipitation, then isolated by filtration. The off–white solid $(H₂BNMeH)_n$ was dried under vacuum overnight. Isolated yields of $(H₂BNMeH)_n$ varied from 20% to 45%.

Dehydropolymerization Recharging Experiments

Dehydropolymerization was conducted as per standard gas evolution measurement conditions. After cessation of gas evolution, the reaction mixture was transferred by syringe into a second jacketed, two–neck Schlenk flask connected to a recirculating cooler at 20 $^{\circ}$ C containing H₃B·NMeH₂ (50.0 mg, 1110 µmol). Gas evolution was recorded by gas burette. After cessation of gas evolution, the reaction mixture was transferred by syringe into a third jacketed, two–neck Schlenk flask connected to a recirculating cooler at 20°C containing $H_3B\text{-}N$ MeH₂ (50.0 mg, 1110 µmol). Gas evolution was recorded by gas burette. After cessation of gas evolution, 0.3 mL of the reaction mixture was removed for analysis by NMR spectroscopy. The remaining reaction mixture was decanted into 40.0 mL of rapidly stirring hexane, stirred for 5 minutes to allow polymer precipitation, then isolated by filtration. The off–white solid $(H₂BNMeH)_n$ was dried under vacuum overnight. Isolated yield of $(H₂BNMeH)_n$ 80.0 mg (53%).

Molecular Weight vs Conversion Procedure

For molecular weight vs conversion experiments, the general dehydropolymerization procedure was followed. At various time points, $PPh₃$ (5 equivs. relative to Rh via 0.2 mL 1,2−F₂C₆H₄) was added to stop catalysis. Hexane (30 mL) was added to the reaction flask and the precipitate was isolated by filtration and dried under vacuum for 30 minutes. A sample was dissolved in protio-THF and analyzed by ¹¹B NMR spectroscopy to determine the % conversion calculated by integration of the relevant signals. Polymer samples were dried overnight prior to GPC analysis.

Tests for Catalyst Homogeneity: Mercury Poisoning

Dehydropolymerization was conducted as per standard gas evolution measurement conditions. After a short time, an excess of elemental mercury (ca. 0.05 mL) was added. No inhibition of gas evolution was observed, consistent with homogeneous catalysis.

Tests for Catalyst Homogeneity: PPh³ Fractional Poisoning

Dehydropolymerization was conducted as per standard gas evolution measurement conditions. After a short time, 0.2 equivs. (relative to catalyst) of PPh₃ in 0.2 mL 1,2– $F_2C_6H_4$ was added. A minor decrease in the rate of gas evolution was observed, consistent with homogeneous catalysis.

Dehydropolymerization under THF, BH³ or NMeH2–doped conditions

H₃B·NMeH₂ (50.0 mg, 1110.0 µmol) was suspended in 4.45 mL 1,2–F₂C₆H₄ in a jacketed two–neck Schlenk flask connected to a recirculating cooler and the temperature set at 20°C. Double the desired amount of the catalyst was weighed into a separate flask and dissolved in 1.0 mL 1,2– $F_2C_6H_4$. The H_3B NMeH₂–containing flask was sealed off from the argon supply and connected to a water–filled 100.0 mL gas burette. 0.5 mL of the catalyst solution was added to the reaction mixture and the resultant solution was stirred at 400 rpm. After 5 seconds, the desired number of equivalents (relative to catalyst) of the desired doping agent in 0.05 mL (50 μ L) THF was added. For example, for \sim 1 equiv. BH₃ at 0.4 mol% **2a**, 0.05 mL (50 μL) of a 0.0892 M solution of BH3·THF was added. The time taken per 1.0 mL of gas to evolve was recorded. Upon completion of gas evolution, 0.3 mL of the reaction mixture was removed for analysis by NMR spectroscopy. The remaining reaction mixture was decanted into 40.0 mL of rapidly stirring hexane to give an off–white suspension which was stirred for 5 minutes to allow polymer precipitation, then isolated by filtration. The off–white solid $(H₂BNMeH)_n$ was dried under vacuum overnight. Isolated yields of $(H_2BNMeH)_n$ varied from 25% to 50%.

In Situ Preparation of 3a as a Catalyst for H3B∙NMeH² Dehydropolymerization

 $[Rh(DPEphos)(NBD)][BAr^F₄]$ (1a) (35.0 mg, 21.9 µmol) and H₃B⋅NMeH₂ (2.0 mg, 44.6 umol) were dissolved in 1,2– $F_2C_6H_4$ (2.5 mL) in a J. Young flask. The sample was immediately frozen in liquid N_2 and hydrogenated. On warming to room temperature, the mixture was stirred for 10 minutes, and the light orange solution turned darker in colour. 0.5 mL of this solution was removed for analysis by $31P\{^1H\}$ NMR spectroscopy, which showed that the sole phosphorus–containing species was complex **3a**. A further 0.5 mL of the solution containing 2.2 umol **3a** (4.4 umol relative to Rh_{TOTA}) was removed via syringe and used as a catalyst for H₃B⋅NMeH₂ dehydropolymerization under hydrogen evolution

measurements conditions as per the general procedure (vide supra), at 0.2 mol% catalyst loading of **3a** (0.4 mol% with respect to Rh_{TOTA}).

In Situ Preparation of 5/6 as a Catalyst for H3B∙NMeH² Dehydropolymerization

The desired amount of [Rh(DPEphos)(NBD)][BAr^F ⁴] (**1a**) was dissolved in the desired volume of $1,2-F_2C_6H_4$ solvent in a J. Young flask. ~2 equivs. relative to catalyst of NMeH₂ in THF was added. The objective was to add 0.5 mL of the desired amount of in situ formed $5/6$, of which 0.45 mL was $1,2-F_2C_6H_4$ solvent and 0.05 mL was THF solvent, to allow direct comparison between catalyst loadings. For 0.2 mol% catalyst loading of **5**/**6**, $[Rh(DPEphos)(NBD)][BAr^{F4}]$ (1a) (17.8 mg, 11.1 µmol) was dissolved in 1,2–F₂C₆H₄ (2.25 mL) in a J. Young flask. 0.25 mL of a 0.0892 M solution of NMeH₂ in THF (22.3 µmol) was added, giving a 2.5 mL solution. For 0.4 mol% catalyst loading of **5**/**6**, $[Rh(DPEphos)(NBD)][BAF₄]$ (1a) (35.6 mg, 22.3 µmol) was dissolved in 1,2–F₂C₆H₄ (2.25 mL) in a J. Young flask. 0.25 mL of a 0.1784 M solution of NMeH₂ in THF (44.6 µmol) was added, giving a 2.5 mL solution. For 1.0 mol% catalyst loading of **5**/**6**, $[Rh(DPEphos)(NBD)][BAF₄]$ (1a) (35.6 mg, 22.3 µmol) was dissolved in 1,2–F₂C₆H₄ (0.9 mL) in a J. Young flask. 0.1 mL of a 0.4460 M solution of NMeH₂ in THF (44.6 µmol) was added, giving a 1.0 mL solution. In all cases, the reaction mixtures were immediately frozen in liquid $N₂$ and hydrogenated. On warming to room temperature, the mixtures were shaken, and the light orange solutions turned darker in colour. The reaction mixtures were freeze–pump–thaw degassed three times and backfilled with argon at room temperature. Between 0.3 mL and 0.5 mL of each solution was removed for analysis by ${}^{31}P\{{}^{1}H\}$ NMR spectroscopy, which showed that each mixture contained approximately 50% [Rh(DPEphos)(H)₂(NMeH₂)₂][BAr^F₄] (5) and 50% [Rh(DPEphos)(NMeH₂)₂][BAr^F₄] (6). A further 0.5 mL of each reaction mixture (containing approximately 2.2 μmol, 4.5 μmol and 11.2 μmol for 0.2 mol%, 0.4 mol% and 1.0 mol% **5**/**6** respectively) was removed via syringe and used as catalysts for H₃B⋅NMeH₂ dehydropolymerization under hydrogen evolution measurements conditions as per the general procedure (vide supra).

Figure S17. Representative ${}^{31}P\{{}^{1}H\}$ NMR spectrum of an in situ formed mixture of complexes **5**/**6** used as a catalyst in H3B∙NMeH² dehydropolymerization.

Figure S18. Representative ¹¹B NMR spectrum $(1,2-F_2C_6H_4$ solvent, 298 K) of the dehydropolymerization reaction mixture using **2a** under open conditions. 0.2 mol% **2a**, $[2a] = 4.45 \times 10^{-4}$ M, $[H_3B\text{-}NMeH_2] = 0.223$ M, 1,2–F₂C₆H₄ solvent, open conditions. The $\frac{1}{2}$ broad baseline signal observed in the ¹¹B NMR spectrum at δ ~20.0 is due to background from the tube and probe (borosilicate glass).

Figure S19. NMR spectra (protio−THF solvent unless otherwise stated, 298 K) for isolated $(H₂BNMeH)_n$ produced by **2a**. "Soluble" polymer is $(H₂BNMeH)_n$ that is soluble in 1,2– $F_2C_6H_4$, CD_2Cl_2 and THF solvents. "Insoluble" polymer is $(H_2BNMeH)_n$ that is insoluble in 1,2– $F_2C_6H_4$ and CD_2Cl_2 solvents, but is soluble in THF solvent. Direct comparison between "soluble" and "insoluble" polymer by NMR spectroscopy can be carried out in THF solvent, and indicates that "insoluble" polymer may demonstrate greater cross linking/chain branching than "soluble" polymer due to greater intensity peaks at δ ~1.0 in the ¹¹B NMR spectrum and at $\delta \sim 35.7$ in the ¹³C{¹H} NMR spectrum. These may signal tertiary or quaternary main chain centers.³ The broad baseline signals observed in the ¹¹B NMR spectra at δ ~20.0 are due to background from the tube and probe (borosilicate glass). $* =$ entrained H₃B⋅NMeH₂ or polymeryl–BH₃ end group. Note that all reported GPC data are for unseparated "soluble" and "insoluble" polymer mixtures in order to directly compare all samples produced under different conditions – note that THF solvent is used for GPC analysis.

Figure S20.¹¹B NMR spectrum (protio-THF solvent, 298 K) for isolated (H₂BNMeH)_n produced by **2a** under closed conditions. 0.4 mol% **2a**, $[2a] = 8.92 \times 10^{-4}$ M, $[H_3B\cdot NMeH_2]$ $= 0.223$ M, 1,2–F₂C₆H₄ solvent, closed conditions. The broad baseline signal observed in the ¹¹B NMR spectrum at δ ~20.0 is due to background from the tube and probe (borosilicate glass). GPC analysis of $(H_2BNMeH)_n$: $M_n = 5,700$ g/mol, $D = 2.0$.

Figure S21. Stacked ¹¹B NMR spectra (protio−THF solvent, 298 K) of isolated (H2BNMeH)ⁿ samples from the dehydropolymerization of H3B∙NMeH² under molecular

weight vs conversion conditions. 0.2 mol% **2a**, $[2a] = 4.45 \times 10^{-4}$ M, $[H_3B_3NMeH_2] =$ 0.223 M, 1,2– $F_2C_6H_4$ solvent, open conditions, at 99% $H_3B\text{-}NMeH_2$ conversion (top) and 10% H₃B·NMeH₂ conversion (bottom). The broad baseline signals observed at δ ~20.0 are due to background from the tube and probe (borosilicate glass). The signal at δ −18.0 is due to unreacted H3B·NMeH2. The ¹¹B NMR spectra were back−linear corrected and the signals pertaining to H₃B·NMeH₂ (δ -18.0) and (H₂BNMeH)_n (δ -6.0) were integrated with respect to one another to determine the % conversion.

Figure S22. Stacked ${}^{31}P{}_{1}{}^{1}H$ } NMR spectra (1,2– $F_{2}C_{6}H_{4}$ solvent, 298 K) of the reaction of H3B∙NMeH² with 10 mol% **2a** in 1,2–F2C6H⁴ solvent over time. The doublet at δ 28.3 shows the phosphorus environment of **3a**. The multiplets at δ 31.7, δ 28.9, δ 15.7 and δ 12.8 are the phosphorus environments of **4a**.

Figure S23. Representative ^{11}B NMR spectrum $(1,2-F_2C_6H_4, 298 K)$ of the dehydropolymerization reaction mixture using **2a** under hydrogen evolution measurement conditions. 0.2 mol% **2a**, $[2a] = 4.45 \times 10^{-4}$ M, $[H_3B\text{-NM}eH_2] = 0.223$ M, 1,2–F₂C₆H₄ solvent, hydrogen evolution measurement conditions. The broad baseline signal observed in the ¹¹B NMR spectrum at δ ~20.0 is due to background from the tube and probe (borosilicate glass).

Figure S24. Induction period prior to the onset on hydrogen evolution vs [**2a**] plot for the dehydropolymerization of H3B∙NMeH² using **2a** (as measured by hydrogen evolution). $[H_3B\cdot NMeH_2] = 0.223 M$, 1,2– $F_2C_6H_4$ solvent, hydrogen evolution measurement conditions.

Figure S25. Temporal data plots for H₂B=NMeH formation (as measured by hydrogen evolution). 0.4 mol% **2a**, $[2a] = 8.92 \times 10^{-4}$ M, $[H_3B \cdot NM eH_2] = 0.223$ M, $[1, 2-F_2C_6H_4]$ solvent, hydrogen evolution measurement conditions. Left: Effect of 0.2 equivs. of $PPh₃$ added at 2,800 s. Right: Effect of 1,500 equivs. of Hg added at 3,600 s.

Figure S26. Temporal data plots for H₂B=NMeH formation (as measured by hydrogen evolution). 0.2 mol% **6**, $[6] = 4.45 \times 10^{-4}$ M, $[H_3B \cdot NM eH_2] = 0.223$ M, 1,2–F₂C₆H₄ solvent, hydrogen evolution measurement conditions. Effect of 1,500 equivs. of Hg added at 2,600 s.

Figure S27. Left: Temporal data plot for H₂B=NMeH formation (as measured by hydrogen evolution). 0.4 mol% **2a**, [**2a**] = 8.92 × 10⁻⁴ M, [H₃B⋅NMeH₂] = 0.223 M, 1,2–F₂C₆H₄ solvent, hydrogen evolution measurement conditions. Right: Rate vs [H₃B⋅NMeH₂] over time. 0.4 mol% **2a**, $[2a] = 8.92 \times 10^{-4}$ M, $[H_3B \cdot NM eH_2] = 0.223$ M, $1.2 - F_2C_6H_4$ solvent, hydrogen evolution measurement conditions. **(a)** Acceleration phase. **(b)** Deceleration phase.

Figure S28. v_{max} (maximum rate) vs [2a] plot for the dehydropolymerization of H₃B⋅NMeH₂ using **2a** (as measured by hydrogen evolution). [H₃B⋅NMeH₂] = 0.223 M, 1,2–F₂C₆H₄ solvent, hydrogen evolution measurement conditions. Inset: v_{max} (maximum rate) vs [2a]^{1/2} plot for the dehydropolymerization of H₃B⋅NMeH₂ using **2a**. [H₃B⋅NMeH₂] = 0.223 M, 1,2– $F_2C_6H_4$ solvent, hydrogen evolution measurement conditions. A line of best fit is shown for a hypothetical half order dependence on [**2a**] between 2.23 × 10−4 M and 8.92 × 10−4 M **2a** $(0.1 \text{ mol\% and } 0.4 \text{ mol\% } 2a)$ (R² = 0.979).

Figure S29. Left: Temporal data plot for H₂B=NMeH formation (as measured by hydrogen evolution). 0.2 mol% in situ formed $3a$ (0.4 mol% with respect to Rh_{TOTAL}), $[\textbf{3a}] = 4.45 \times 10^{-4} \text{ M}$ ([Rh]_{TOTAL} = 8.92 × 10⁻⁴ M), [H₃B⋅NMeH₂] = 0.223 M, 1,2–F₂C₆H₄ solvent, hydrogen evolution measurement conditions. Right: Rate vs [H₃B⋅NMeH₂] over time. 0.2 mol% in situ formed **3a** (0.4 mol% with respect to Rh_{TOTAL}), $[3a] = 4.45 \times 10^{-4}$ M $([Rh]_{TOTAL} = 8.92 \times 10^{-4} M)$, $[H_3B\cdot NMeH_2] = 0.223 M$, 1,2–F₂C₆H₄ solvent, hydrogen evolution measurement conditions.

Figure S30. First order k_{obs} vs [4b]^{1/2} plot for the dehydropolymerization of H₃B∙NMeH₂ using 4b (as measured by hydrogen evolution). [H₃B⋅NMeH₂] = 0.223 M, 1,2–F₂C₆H₄ solvent, hydrogen evolution measurement conditions. A line of best fit is shown for the proposed half order dependence on $[4b]$ ($R^2 = 0.989$). Inset: First order k_{obs} vs $[4b]$ plot for the dehydropolymerization of H₃B⋅NMeH₂ using 4b. $[H_3B·NMeH_2] = 0.223 M$, 1,2–F₂C₆H₄ solvent. hydrogen evolution measurement conditions. A line of best fit is shown for a hypothetical first order dependence on $[4b]$ ($R^2 = 0.827$).

Figure S31. Temporal data plots for the equivalents of H_2 formed over 3 successive catalytic runs (as measured by hydrogen evolution). 0.4 mol% **2a**, $[2a] = 8.92 \times 10^{-4}$ M, $[H_3B\cdot NMeH_2] = 0.223 M \times 3$, 1,2–F₂C₆H₄ solvent, hydrogen evolution measurement conditions. GPC analysis of $(H_2BNMeH)_n$ at the end of the 3rd charge: $M_n = 9,500$ g/mol, $D = 1.8$.

Figure S32. Temporal data plot for H₂B=NMeH formation (as measured by hydrogen evolution). 0.4 mol% **2a**, [**2a**] = 8.92 × 10⁻⁴ M, [H₃B⋅NMeH₂] = 0.223 M, 1,2–F₂C₆H₄ solvent, 0.05 mL (50 μL) of a THF solution containing ~2 equivs. NMeH² with respect to **2a** was added into the reaction vessel after 5 seconds, hydrogen evolution measurement conditions.

Figure S33. Temporal data plots for H₂B=NMeH formation (as measured by hydrogen evolution). 0.2 mol% catalyst, [catalyst] = 4.45×10^{-4} M, $[H_3B\cdot NMeH_2] = 0.223$ M, 1,2– $F_2C_6H_4$ solvent, with and without 0.05 mL (50 µL) of a THF solution containing ~2 equivs. N MeH₂ with respect to catalyst added into the reaction vessel after 5 seconds, hydrogen
evolution measurement conditions. (a) Catalyst = IRh(DPEphos)(n²evolution measurement conditions. (a) Catalyst = [Rh(DPEphos)(η²- $\mathsf{H_2B(NMe_3)(CH_2)_2}^t\mathsf{Bu})$][BAr $^{\mathsf{F}}$ $\begin{bmatrix} 4 \end{bmatrix}$ (2a). (b) Catalyst = $[Rh(Xantphos-Ph)(\eta^2 H_2B(NMe_3)(CH_2)_2^tBu)$][BAr^F₄] (A). (c) Catalyst = [Rh(Ph₂P(CH₂)₃PPh₂)(C₆H₅F)][BAr^F₄]. Inset: Expansion of the region between 0 and 200 s, showing the induction period of ca. 100 s prior to the onset of hydrogen evolution without NMeH₂, and lack of induction period with ~2 equivs. NMeH₂ added. \circ = No added NMeH₂; \diamond = doped with ~2 equivs. NMeH₂.

Figure S34. ³¹ $P\{^1H\}$ NMR spectrum (1,2– $F_2C_6H_4$ solvent, 298 K) of the reaction mixture upon completion of productive catalysis using 0.5 mol% $(Rh_2(DPEphos)_2(\sigma,\mu (H_2B)_2NHMe)$ [Al(OC(CF₃)₃)₄] (**4b**).

Figure S35. ³¹ P {¹H} NMR spectrum (1,2– F ₂ C_6H ₄ solvent, 298 K) of the reaction mixture during productive catalysis using 1 mol% [Rh(DPEphos)(NMeH₂)₂][BAr^F₄] (6).

Computational Details

The geometry optimization of 4b was run with Gaussian 03 Revision D.01¹⁷ and performed using the BP86¹⁸⁻¹⁹ functional. Rh and P centres were described with Stuttgart RECPs and associated basis sets,²⁰ with added d–orbital polarization on P ($\zeta = 0.387$)²¹ and 6–31G** basis sets for C, H, O, B and N. $^{22-23}$ Stationary points were fully characterized via analytical frequency calculations as minima with all positive eigenvalues. Atoms in Molecules²⁴ analyses were performed with the AIMALL program²⁵ using the same functional and basis sets described above.

Geometry Optimization of 4b

Figure S36. Geometry optimized structure of the cationic portion of **4b**.

Table S1. Comparison of key distances between the experimental (Fig. 2a) and computed (Fig. S18) structures of the cationic portion of **4b**.

Quantum Theory of Atoms in Molecules (QTAIM) Analysis of **4b**

Figure S37. Molecular graph of the cationic portion of **4b** with 2D contour plot of the electron density present with projected stationary points and bond paths. Bond critical points (BCPs) are shown in green and ring critical points in red.

Table S2. Calculated QTAIM parameters (a.u.) for selected BCPs in **4b**. ρ(r) = electron density, $\overline{r}^2 \rho(r)$ = Laplacian of the electron density, ϵ = bond ellipticity, H(r)= total energy density.

Crystallography

Single crystal X–ray diffraction data for **4b** was collected as follows: a typical crystal was mounted on a MiTeGen Micromounts using perfluoropolyether oil and cooled rapidly to 150(1) K in a stream of nitrogen gas using an Oxford Cryosystems Cryostream unit.²⁶ Data were collected with an Agilent SuperNova diffractometer (Cu K_a radiation, λ = 1.54180 Å). Raw frame data were reduced using CrysAlisPro.^{27]} The structures were solved using SHELXT²⁸ and refined using full–matrix least squares refinement on all $F²$ data using the SHELXL²⁹ (version 2014/7) using the interface OLEX2.³⁰ Hydrides were located in the difference map and refined isotropically. All other hydrogen atoms were placed in calculated positions (riding model). All $OClCF_3$ ₃ moieties and the N(H)Me unit exhibited disorder. This was treated by employing a split site model, restraints to bond lengths and displacement ellipsoids were applied. Highly disordered lattice solvent molecules could not be satisfactorily modeled. The solvent masking algorithm in OLEX2 was applied, structure factors for 176 electrons in 740 A^3 per unit cell were introduced. On the basis of the electron count the void is suspected of containing three 1,2–difluorobenzene molecules, however this has not been included in the atom list or molecular formula. Thus all calculated quantities that derive from the molecular formula are known to be incorrect.

References

(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J., Safe and Convenient Procedure for Solvent Purification. *Organometallics* **1996**, *15*, 1518–1520. (2) Buschmann, W. E.; Miller, J. S., Synthesis of $[M^H(NCMe)₆]²⁺ (M = V, Cr, Mn, Fe, Co,$

Ni) Salts of Tetra[3,5–bis(trifluoromethyl)phenyl]borate. *Inorg. Synth.* **2002**, *33*, 83–91.

(3) Adams, G. M.; Colebatch, A. L.; Skornia, J. T.; McKay, A. I.; Johnson, H. C.; Lloyd– Jones, G. C.; Macgregor, S. A.; Beattie, N. A.; Weller, A. S., Dehydropolymerization of H3B·NMeH² To Form Polyaminoboranes Using [Rh(Xantphos–alkyl)] Catalysts. *J. Am. Chem. Soc.* **2018**, *140*, 1481–1495.

(4) Colebatch, A. L.; Hawkey Gilder, B. W.; Whittell, G. R.; Oldroyd, N. L.; Manners, I.; Weller, A. S., A General, Rhodium‐Catalyzed, Synthesis of Deuterated Boranes and *N*‐ Methyl Polyaminoboranes. *Chem. Eur. J.* **2018**, *24*, 5450–5455.

(5) Moxham, G. L.; Randell–Sly, H. E.; Brayshaw, S. K.; Woodward, R. L.; Weller, A. S.; Willis, M. C., A Second–Generation Catalyst for Intermolecular Hydroacylation of Alkenes and Alkynes Using β–S–Substituted Aldehydes: The Role of a Hemilabile P–O–P Ligand. *Angew. Chem. Int. Ed.* **2006**, *45*, 7618–7622.

(6) Hooper, J. F; Chaplin, A. B., González−Rodríguez, C.; Thompson, A. L.; Weller, A. S.; Willis, M. C., Aryl Methyl Sulfides as Substrates for Rhodium–Catalyzed Alkyne Carbothiolation: Arene Functionalization with Activating Group Recycling. *J. Am. Chem. Soc.* **2012**, *134*, 2906–2909.

(7) Esteruelas, M. A.; Oliván, M.; Vélez A., Xantphos−Type Complexes of Group 9: Rhodium versus Iridium. *Inorg. Chem.* **2013**, *52*, 5339–5349.

(8) Johnson, H. C.; McMullin, C. L.; Pike, S. D.; Macgregor, S. A.; Weller A. S., Dehydrogenative Boron Homocoupling of an Amine–Borane. *Angew. Chem. Int. Ed.* **2013**, *52*, 9776–9780.

(9) Dallanegra, R.; Robertson, A. P. M.; Chaplin, A. B.; Manners, I.; Weller, A. S., Tuning the $[L_2Rh...H_3B\cdot NR_3]^+$ interaction using phosphine bite angle. Demonstration by the catalytic formation of polyaminoboranes. *Chem. Commun.* **2011**, *47*, 3763–3765.

(10) Colebatch, A. L.; McKay, A. I.; Beattie, N. A.; Macgregor, S. A.; Weller, A. S., Fluoroarene Complexes with Small Bite Angle Bisphosphines: Routes to Amine–Borane and Aminoborylene Complexes. *Eur. J. Inorg. Chem.* **2017**, *2017*, 4533–4540.

(11) Dallanegra, R. Cationic Rhodium Complexes with Chelating Phosphine and Phosphine Alkene Ligands. Application in Dehydrogenation and Dehydrocoupling Reactions. University of Oxford, Oxford, 2011.

(12) Kumar, A.; Beattie, N. A.; Pike, S. D.; Macgregor, S. A.; Weller, A. S., The Simplest Amino-Borane H₂B=NH₂ Trapped on a Rhodium Dimer: Pre-Catalysts for Amine–Borane Dehydropolymerization. *Angew. Chem. Int. Ed.* **2016**, *55*, 6651–6656.

(13) Adams, G. M.; Chadwick, F. M.; Pike, S. D.; Weller, A. S., A $CH₂Cl₂$ complex of a [Rh(pincer)]+ cation. *Dalton Trans.* **2015**, *44*, 6340–6342.

(14) Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R., New software for searching the Cambridge Structural Database and visualizing crystal structures. *Acta Cryst.* **2002**, *B58*, 389–397.

(15) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C., The Cambridge Structural Database. *Acta Cryst.* **2016**, *B72*, 171–179.

(16) The CSD searches were conducted using the ConQuest package (August 2018).

(17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,

R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al–Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01, Gaussian, Inc.: Wallingford CT, 2004.

(18) Becke, A. D., Density–functional exchange–energy approximation with correct asymptotic behavior. *Phys. Rev. A* **1988**, *38*, 3098–3100.

(19) Perdew, J. P., Density–functional approximation for the correlation energy of the inhomogeneous electron gas. *Phys. Rev. B* **1986**, *33*, 8822–8824.

(20) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H., Energy–adjusted ab initio pseudopotentials for the second and third row transition elements. *Theor. Chim. Acta* **1990**, *77*, 123–141.

(21) Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G., A set of d–polarization functions for pseudo–potential basis sets of the main group elements Al–Bi and f–type polarization functions for Zn, Cd, Hg. Chem. *Phys. Lett.* **1993**, *208*, 237–240.

(22) Hehre, W. J.; Ditchfield, R.; Pople, J. A., Self–Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian–Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. *J. Chem. Phys.* **1972**, *56*, 2257–2261.

(23) Hariharan, P. C.; Pople, J. A., The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. *Theor. Chim. Acta* **1973**, *28*, 213–222.

(24) Bader, R. F. W., Atoms in Molecules – A Quantum Theory. Oxford University Press: Oxford, 1990.

(25) Keith, T. A. AIMAII (Version 13.02.26, Professional), TK Gristmill Software (aim.tkgristmill.com): Overland Park KS, USA, 2015.

(26) Cosier, J.; Glazer, A. M., A nitrogen–gas–stream cryostat for general X–ray diffraction studies. *J. Appl. Crystallogr.* **1986**, *19*, 105–107.

(27) Oxford Diffraction Ltd.

(28) Sheldrick, G. M., SHELXT – Integrated space–group and crystal–structure determination. *Acta Cryst.* **2015**, *A71*, 3–8.

(29) Sheldrick, G. M., Crystal structure refinement with SHELXL. *Acta Cryst.* **2015**, *C71*, 3–8.

(30) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339–341.