

FIG E1. High doses of NAD⁺ do not promote naive CD4⁺ T-cell differentiation *in vitro*, and NAD⁺ regulates CD11b⁺CD11c⁺ DC cytokine production *in vitro* in a dose-dependent manner. **A**, Sorted naive CD4⁺CD44⁻CD62L⁺ T cells were isolated from spleens of C57BL/6 mice and cultured in complete media with increasing concentrations of NAD⁺ (500 µmol/L and 1 mmol/L) or PBS. After 96 hours, frequencies of CD4⁺IFN-γ⁺, CD4⁺IL-4⁺, and CD4⁺IL-17A⁺ cells were assessed by using flow cytometry (n = 10). Data were derived from 3 independent experiments. **B**, Sorted CD11b⁺CD11c⁺ DCs were isolated from spleens of C57BL/6 mice and cultured (1 × 10⁶ cells/well) in complete media and in the presence of increasing concentrations of NAD⁺ (100 µmol/L) and 500 µmol/L). As a positive control, CD11b⁺CD11c⁺ DCs were cultured in the presence of LPS (1 µg/mL). After 16 hours of culture, cells were collected, and mRNA expression levels of IL-1α, IL-1β, IL-6, IL-10, IL-12, IL-23, TGF-β, TNF-α, TLR2, and TLR4 were determined by using real-time PCR. Values are expressed as fold expression relative to the housekeeping gene glyceraldehye-3-phosphate dehydrogenase (*GAPDH*; n = 5). Data were derived from 2 different experiments. *ns*, Not significant. **P*<.05, ***P*<.01, and ****P*<.001, as determined by means of ANOVA, comparing the indicated groups. Data represent means ± SDs. *APC*, Allophycocyanin; *PE*, phycoerythrin.

FIG E2. *In vivo* depletion of DCs by means of liposomal clodronate administration does not alter NAD⁺-mediated CD4⁺ T-cell differentiation. **A**, C57BL/6 WT, MC^{-/-}, and Rag2^{-/-} γ c^{-/-} mice were treated intravenously with liposomal clodronate at -8 days, -5 days, and -1 day before NAD⁺ treatment. Data derived from 2 independent experiments (n = 5 per group). **B**, C57BL/6 WT mice were treated intravenously with liposomal clodronate at -8 days, -5 days, and -1 day before NAD⁺ treatment. Data derived from 2 independent experiments (n = 5 per group). **B**, C57BL/6 WT mice were treated intravenously with liposomal clodronate at -8 days, -5 days, and -1 day before NAD⁺ treatment. Mice were then treated with daily intraperitoneal injections of 40 mg of NAD⁺ or a placebo solution (PBS). After 7 days, mice were killed, and frequencies of CD4⁺IFN- γ^+ , CD4⁺IL-4⁺, and CD4⁺IL-17A⁺ cells were analyzed by using flow cytometry. Data were derived from 2 independent experiments (n = 10). Data represent means ± SDs. *ns*, Not significant. The Student *t* test and ANOVA were used to compare between groups: ***P* < .01 and ****P* < .001. *APC*, Allophycocyanin; *PE*, phycoerythrin; *SSC*, side scatter.

FIG E3. NAD⁺ promotes T-cell differentiation in Rag2^{-/-} $\gamma c^{-/-}$ mice and flow cytometry of *in vitro* differentiation of BMMCs. A, Rag2^{-/-} $\gamma c^{-/-}$ mice were treated intravenously with liposomal clodronate at -8 days, -5 days, and -1 day before NAD+ treatment. After depletion, sorted naive CD4⁺CD44⁻CD62L⁺ T cells from C57BL/6 WT mice sorted by means of fluorescence-activated cell sorting were adoptively transferred $(3 imes 10^6$ cells per adoptive transfer). Animals were then treated with daily intraperitoneal injections of 40 mg of NAD⁺ or a placebo solution (PBS). After 7 days, mice were killed, spleens were collected, and freguencies of CD4⁺IFN- γ^+ , CD4⁺IL-4⁺, and CD4⁺IL-17A⁺ cells were assessed by using flow cytometry. Data were derived from 2 independent experiments (n = 10). **B**, CD11b-DTR transgenic mice weighing 25 to 30 g were injected with diphtheria toxin (DT; 25 ng/g body weight) 24 hours before and 72 hours after beginning NAD⁺ or PBS administration for depletion of CD11b⁺ cells. After 7 days of treatment with PBS or NAD⁺, frequencies of CD4⁺IFN-γ⁺, CD4⁺IL-4⁺, and CD4⁺IL-17A⁺ cells were assessed by using flow cytometry. Data were derived from 2 independent experiments (n = 10). C, BMMCs were obtained from femurs and tibias of 6- to 8-week-old C57BL/6 WT mice. BMMCs were cultured in WEHI-3-conditioned medium over 90 days. Purities of c-Kit⁺FceRI⁺ MCs were then assessed by using flow cytometry. Data represent means ± SDs. The Student t test was used to compare between groups: *P < .05 and **P < .01. APC, Allophycocyanin; PE, phycoerythrin; SSC, side scatter.

FIG E4. Murine MCs promote CD4⁺IFN- γ^+ , CD4⁺IL-4⁺, and CD4⁺IL-17A⁺ T-cell differentiation in the presence of NAD⁺ both with and without cell-cell contact. BMMCs were cocultured with isolated naive CD4⁺CD44⁻CD62L⁺ T cells from C57BL/6 mice (1:100 ratio) either in cell-cell contact or in separate compartments by using a transwell system. Cells were then treated with NAD⁺ (500 µmol/L) or PBS. After 96 hours, frequencies of CD4⁺IFN- γ^+ (**A**), CD4⁺IL-4⁺ (**B**), and CD4⁺IL-17A⁺ (**C**) cells were assessed by using flow cytometry (n = 6). Data were derived from 2 independent experiments. **P* < .05, ***P* < .01, and ****P* < .001, as determined by means of ANOVA, comparing the indicated groups. Data represent means ± SDs. *APC*, Allophycocyanin; *FITC*, fluorescein isothiocyanate; *PE*, phycoerythrin.

FIG E5. MCs do not regulate CD4⁺ T-cell differentiation in the presence of NAD⁺ through CD80. **A**, BMMCs from C57BL/6 mice were cultured in the presence of NAD⁺ (500 μ mol/L) or placebo (PBS). After 24 hours of culture, cells were collected, and mRNA was extracted. mRNA levels of CD86, CD80, TNF- α , IL-4, inducible costimulator ligand (*ICOS-L*), OX40 ligand (*OX40-L*), IL-6, and IL-33 were determined by using real-time PCR. Values are expressed as fold expression relative to the housekeeping gene glyceraldehye-3-phosphate dehydrogenase (*GAPDH*). **B** and **C**, BMMCs were cocultured with isolated naive CD4⁺CD44⁻CD62L⁺ T cells from C57BL/6 mice (1:100 ratio) in cell-cell contact conditions in the presence of α -CD80, NAD⁺ (500 μ mol/L), or placebo (PBS), as indicated. **B-D**, After 96 hours, frequencies of CD4⁺IFN- γ ⁺ (Fig E5, *B*), CD4⁺IL-17A⁺ (Fig E5, *C*), and CD4⁺IL-4⁺ (Fig E5, *D*) cells were assessed by using flow cytometry (n = 6). Data were derived from 2 independent experiments. *ns*, Not significant. **P* < .05, ***P* < .01, and ****P* < .001, as determined by using the Student *t* test and ANOVA, comparing the indicated groups. Data represent means ± SDs. *APC*, Allophycocyanin; *FITC*, fluorescein isothiocyanate; *PE*, phycoerythrin.

FIG E6. Conserved MC-mediated CD4⁺ T-cell differentiation in the human MC line LAD-2 in the presence of NAD⁺. NAD⁺ induces T-cell differentiation in MHC class II^{-/-} and WASP^{-/-} mice. **A**, Human MC line LAD-2 cells were cocultured with isolated human naive CD4⁺ T cells from healthy donors (1:100 ratio) either in cell-cell contact or in separate compartments by using a transwell system. Cells were then treated with NAD⁺ (500 μ mol/L) or PBS. After 96 hours, frequencies of CD4⁺IFN- γ^+ cells were assessed by using flow cytometry (n = 6). Data were derived from 2 independent experiments. **B**, MHC class II^{-/-} (B6.129S-H2^{dIAb1-Ea}) mice were treated daily with intraperitoneal injections of 40 mg of NAD⁺ or a placebo solution (PBS). After 7 days, mice were killed, and splenocytes were harvested. Systemic frequencies of CD4⁺IFN- γ^+ , CD4⁺IL-4⁺, and CD4⁺IL-17A⁺ cells were analyzed by means of flow cytometry. Data were derived from 2 independent experiments (n = 5). **C**, WASP^{-/-} (B6.129S6-Was^{tm1Sbs}/J) mice were treated daily with intraperitoneal injections of 40 mg of NAD⁺ or a splacebo solution (PBS). After 7 days, mice were killed, and splenocytes were analyzed by means of flow cytometry. Data were derived from 2 independent experiments (n = 5). **C**, WASP^{-/-} (B6.129S6-Was^{tm1Sbs}/J) mice were treated daily with intraperitoneal injections of 40 mg of NAD⁺ or a placebo solution (PBS). After 7 days, mice were killed, and frequencies of CD4⁺IFN- γ^+ , CD4⁺IL-4⁺, and CD4⁺IL-17A⁺ cells were assessed by means of flow cytometry. Data were derived from 2 independent experiments (n = 5). *ns*, Not significant. **P* < .05, ***P* < .01, and ****P* < .001, as determined by using the Student *t* test and ANOVA, comparing the indicated groups. Data represent means ± SDs. *APC*, Allophycocyanin; *FITC*, fluorescein isothiocyanate; *PE*, phycoerythrin; *SSC*, side scatter.

FIG E7. NAD⁺ alters systemic frequencies of CD4⁺T-bet⁺IFN- γ^+ cells and CD11c⁺MHC class II⁺ DCs after *L* monocytogenes infection. C57BL/6 mice were treated for 5 days with daily intraperitoneal injections of NAD⁺ (40 mg) or placebo solution (PBS). After 5 days, mice were infected with a nonlethal dose of *L* monocytogenes (1 × 10⁷ colony-forming units) and killed 3 days later. Spleens were collected, and frequencies of CD4⁺T-bet⁺IFN- γ^+ (**A**), CD4⁺IFN- γ^+ (**B**), and CD4⁻IFN- γ^+ (**C**) T cells and CD11b⁺CD11c⁺MHC class II⁺ DCs (**D**) were assessed by using flow cytometry. Data were derived from 2 independent experiments (n = 5). Data represent means ± SDs. *ns*, Not significant. The Student *t* test was used to compare between groups: **P* < .05 and ****P* < .001.