Supplementary Information

Primers	Sequence 5'-3'	Restriction Site
For construction of	f arlRS deletion mutant	
arlRS-UF	GG <u>GGTACC</u> AAAAAACAAAAGCAGTAAACCTAAAG	KpnI
arsRS-UR	GACGTCTCAGTCATGACCTCATATTACGACTTTTTC	
	TAA	
arlRS-DF	TTAGAAAAAGTCGTAATATGAGGTCATGACTGAGA	
	CGTC	
arlRS-DR	CG <u>ACGCGT</u> GCATTGTACCGTATGAATCAG	MluI

Supplementary Table 1. Primers used in this study

For construction of asRNA plasmids

asr <i>arlR</i> -F	GA <u>AGATC</u> TTCGTAATATGAGGTGTACAAATG	BgIII
asr <i>arlR</i> -R	AG <u>CGGCCG</u> CCGTCTTGTCCATCATACTC	EagI
asr <i>arlS</i> -F	GA <u>AGATC</u> TCAAAACGTAAATTGCGCAAT	BgIII
asr <i>arlS</i> -R	AG <u>CGGCCG</u> CTTCGTTCTGCATCATCAA	EagI
as <i>spx</i> -F	GA <u>AGATC</u> TCAAATAGGAGAGTGAGATGTATG	BgIII
as <i>spx</i> -R	AG <u>CGGCCG</u> CATCAATTGTTAAATGTTCAGAA	EagI

For construction of GFP reporter plasmids

SA- <i>spx</i> -pro-GFP-F	CTC <u>GCTAGC</u> CACTAGGTTGGATGCCTG	NheI
SA- <i>spx</i> -pro-GFP-R	CTC <u>GGTACC</u> TCATTGCTTAAAATTTAGTTATAGATCA	BamHI
	AG	
SA-mgrA-pro-GFP-F	CAC <u>GCTAGC</u> CGTTAATTATGGATATTCTTATTTTTC	NheI
	ATC	
SA-mgrA-pro-GFP-R	CAC <u>GGTACC</u> CAGACATACTATCCGTTTTTTTCTC	BamHI

For construction of complemented plasmids

SA-arlRSc-R	GTT <u>GGATCC</u> TGACTTTGATTGACGTCTCAGT	BamHI
SA-arlRSc-F	GTT <u>GTCGAC</u> TGTGTGAAATGTTTAAACTACGGT	SalI
SA-spx-RBS-F	CTC <u>GGTACC</u> TAGGAGAGTGAGATGTATGGTAAC	BamHI
SA- <i>spx</i> -RBS-R	CTC <u>GAATTC</u> TTAGTCAACCATACGTTGTGC	EcoRI
SA-trfA-RBS-F	CTC <u>GGTACC</u> TGTAAGGAGTGAGATGATATGAGA	BamHI
SA-trfA-RBS-R	CTC <u>GGTACC</u> ATCGTTATTCAGTTGTCTCTGG	KpnI

For detection of gene expression by qPCR

SA-arlR-qRT-S	TTCTTCAATATCAAACGGCTTA
SA-arlR-qRT-R	GACAACAATCTACACCTAT
SA-mgrA-qRT-S	AACGAATGGAACAAGTAG
SA-mgrA-qRT-R	ACCTAATAAGCGATTAAGTT
SA- <i>spx</i> -qRT-S	GTTGATATTGATTCACTACCA
SA- <i>spx</i> -qRT-R	CGTTGTGCTTCTTGTAAT
SA- <i>trfA</i> -qRT-S	ATCGAGGCCCGTGGATTTAG
SA- <i>trfA</i> -qRT-R	TCGACACCTTTTTCAAAGGCA

For protein expression

REarlR-F	TCG <u>TCTAGA</u> AAAAGTCGTAATATGAGGTGTAC	XbaI
REarlR-R	TCG <u>CTCGAG</u> TCGTATCACATACCCAACGC	XhoI
RarlSHK-f	TCG <u>CCATGG</u> TTGAAGATGCGTCACATGA	NcoI
RarlSHK-r	TCG <u>CTCGAG</u> AAATATGATTTTAAACGTTGTTCCTTT	XhoI
	G	

For nucleotides amplification for EMSA

SA- <i>spx</i> -pro-short-F	TAATTATCATTATAACAGTATTTCTTAAAAATGTAAG
SA- <i>spx</i> -pro-short-R2	CATTAAAATTAAATGAGAAAAACCTA
SA-arl-pro-short-F	GAGTTAATAAATAATTAATGATTGTAGCT
SA-arl-pro-short-R	ACTTTTTCTAATAAGGTAATATATTTTAAATTTTG

Supplementary Table 2.	The MICs (mg/L) of antibiotics for USA300 and its
transposon insertion mut	ants (the broth microdilution method)

Antibiotics	USA300 WT	USA300 <i>-arlS</i>	USA300 <i>-arlR</i>	Quality Control ATCC29213
Oxacillin	64	8	16	0.25
Vancomycin	2	4	2	2
Teicoplanin	1	1	1	1
Linezolid	4	2	2	2
Daptomycin	1	2	1	1
Rifampicin	0.03	0.25	0.06	0.015
Gentamicin	0.5	8	2	1
Minocycline	0.25	2	0.25	0.25

	MRSA Strain 1 234	MRSA Strain 2 15098	MRSA Strain 3 184749
рМХ	128	128	64
pMX-arlR	128	128	64
pMX-arlS	128	128	64
pMX + ATc	64	128	64
pMX-arlR + ATc	32	32	16
pMX-arlS + ATc	32	64	16

Supplementary Table 3. The MICs for Oxacillin in the clinical MRSA strains

Supplementary Figure 1. Effect of arlRS knockout on transcription of spx and

mgrA (promoter-GFP reporter assay)

A~200 bp fragment containing the putative *mgrA* promoter or *spx* promoter region was amplified from the genomic DNA of USA300 TCH1516 strain and inserted into upstream of the GFP gene in pCM29. The resulting plasmids pCM29-*mgrA* and pCM29-*spx* were transformed into USA300 and $\Delta arlRS$ strains by electroporation. The intensity of GFP fluorescence indicating either *spx* or *mgrA* expression was monitored with excitation at 480 nm and emission at 515 nm. The experiment was performed in quadruplicates and was repeated at least once. The representative result at 4 h was shown as mean values \pm standard derivations.

Supplementary Figure 2. Inhibition of ArlS kinase activity by oritavancin

- (a) Detection of ATPase activity of the purified recombinant cytoplasmic domain of ArlS protein (ArlS') using the Kinase-GloTM Luminescent Kinase Assay. Briefly, 1.8 μg and 3.6 μg purified ArlS' was incubated with 4 μM ATP in 50 μl reaction buffer [40 mM Tris (pH 7.5), 20 mM MgCl₂ and 0.1 mg/ml BSA] for 30 min at room temperature. Afterwards, 50 μl Kinase-GloTM Reagent was added, mixed and kept at room temperature for 10 min before the final recording of the luminescence (RLU). The reactions were carried out in solid black, flat-bottomed 96-well plates.
- (b) Measurement of the inhibitory effect of oritavancin on the ArlS' ATPase activity. In brief, 3 μg purified ArlS' protein was pre-incubated with a series of dilutions of oritavancin (0.195, 0.39, 0.78, 1.56, 3.13, 6.25, 12.5, 25 and 50 μM) in reaction buffer at 4°C for 30 min, then 4 μM ATP was added and incubated for 30 min at room temperature. The dose-dependent inhibition of oritavancin on the ArlS' ATPase activity was measured with the Kinase-GloTM Luminescent Kinase Assay, and the IC₅₀ value of oritavancin was calculated with the logistic regression fit using the Origin 7.0 software.

Supplementary Figure 3. Binding of rArlR to the different regions upstream of *spx* gene (EMSA)

(a) The 202 bp DNA fragment (263 bp to 62 bp upstream of the start codon of *spx*) was amplified, labeled with digoxin (DIG) and mixed with 0 and 2 μ g recombinant ArlR respectively (lane 1-2). (b) The 98 bp DNA fragment (329 bp to 232 bp upstream of the start codon of *spx*) was amplified, labeled with digoxin (DIG) and mixed with 0 and 2 μ g recombinant ArlR respectively (lane 1-2). The DIG-labeled DNA fragments were transferred to positively charged nylon membranes and visualized by an enzyme immunoassay using anti-Digoxigenin-AP, Fab-fragments and the chemiluminescent substrate CSPD. Chemiluminescent signals were recorded on X-ray film. (c) The 98 bp DNA fragment (129 bp to 33 bp upstream of the start codon of *spx*) was amplified by PCR. The 20 ng DNA fragment was mixed with 0 and 2 μ g recombinant ArlR respectively (lane 1-2). After electrophoresis in a native PAGE, the gel was stained with GelRed.

Overnight cultures of *S. aureus* strains (USA300 -the USA300 TCH1516 wild type strain; USA300 $\Delta arlRS$ -the *arlRS* knockout mutant; PCN*arlRS* -the *arlRS* complementation strain; PCN -a empty vector complementation strain for control) were diluted with TSB supplemented with 1% glucose at a ratio of 1:200, then inoculated in cell culture dishes with glass bottoms and incubated at 37°C for 24 h. After removal of planktonic cells, the biofilms were washed with PBS, stained with a Live/Dead BacLight Viability Kit, and subsequently analyzed with a Leica TCS SP8 confocal laser scanning microscope. A series of images were acquired at 1 µm intervals in the Z section to measure the biofilm thickness.