Biologically Inspired Total Synthesis of Ulbactin F, an Iron-Binding Natural Product

Justin A. Shapiro^{1‡}, Kelly R. Morrison^{1‡}, Shreya S. Chodisetty¹, Djamaladdin G. Musaev², William M. Wuest^{1,3}* ¹Department of Chemistry, Emory University, Atlanta, GA 30322, United States.

² Cherry L. Emerson Centre for Scientific Computation, Emory University, Atlanta, GA 30322, United States.

³ Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, United States.

Supporting Information

Table of Contents

1.	Supple	ementary Figures	S2
2.	Genera	al Methods	S7
3.	Biolog	cical Assays	S8
4.	Metal	Chelation Assays	S9
5.	5. Crystal Structure Analysis		
6.	Comp	utational Analysis	S18
7.	Synthe	esis	S25
	a.	Procedures	S25
	b.	Spectra	S31

1. Supplementary Figures:

Supplementary Figure 1: Energy minimizations of proposed macrocycles leading to various epimers of Ulbactins with relevant atom-to-atom distance highlighted. Structures and calculations are generated in Chem3D. Dashed atom-to-atom distances are reported in Ångströms.

Supplementary Figure 2: (Left) Methanol containing 100 μ M iron (III) acetylacetonate. (Middle) Methanol containing 100 μ M *epi*-ulbactin F and 100 μ M iron (III) acetylacetonate. (Right) Methanol containing 100 μ M ulbactin F and 100 μ M iron (III) acetylacetonate.

Supplementary Figure 3: From left to right: CAS media, CAS media containing 5 μ M EDTA, CAS media containing 50 μ M EDTA, CAS media containing 200 μ M ulbactin F, and CAS media containing 200 μ M *epi*-ulbactin F.

Supplementary Figure 4: (Left) Methanol containing 100 μ M ulbactin F and 100 μ M iron (III) chloride. (Middle) Methanol containing 100 μ M *epi*-ulbactin F and 100 μ M iron (III) chloride. (Right) Methanol containing 100 μ M iron (III) chloride.

Supplementary Figure 5: Mass Chromatograms of ulbactin F samples. (A) Background chromatogram (B) Ulbactin F before treatment with iron (III) chloride (C) Ulbactin F after treatment with iron (III) chloride and subsequent extraction between ethyl acetate and 5% aqueous sodium citrate. All samples dissolved in methanol.

Supplementary Figure 6: Fluorescence titrations of ulbactin F with (Top left) Nickel (II) chloride, (Top right) Aluminum (III) chloride, and (Bottom left) Zinc (II) chloride. Ratio of fluorescence of 400 μ M ligand over fluorescence of 400 μ M ligand + 400 μ M metal (Bottom right). Measurements taken in methanol.

Supplementary Figure 7: UV-Vis spectra of 400 μ M Fe³⁺-ulbactin F complex (Red), 400 μ M Fe³⁺-ulbactin F complex + 500 μ M catechol (Green), 400 μ M ulbactin F (black), and 100 μ M catechol₃-Fe³⁺ complex. All spectra taken in methanol.

Supplementary Figure 8: Growth of *Pseudomonas aeruginosa* PAO1 cultures grown in M9 minimal media containing 300 μ M 2,2'-dipyridyl and supplemented with Fe³⁺-ulbactin F complex (black bars) or FeCl₃ (grey bars).

2. Methods

General: NMR spectra were recorded using the following spectrometers: Varian INOVA500, Varian INOVA400, VNMR400, and Bruker Ascend 600. All NMR spectra were recorded under ambient temperature. Chemical shifts are quoted in ppm relative to solvents used (¹H: δ = 7.26 and ¹³C: δ = 77.16 for residual CHCl₃, ¹H: δ = 3.49, 1.09 and ¹³C: δ = 50.41 for residual CH₃OH, ¹H: δ = 1.56 for residual H₂O. The abbreviations used to describe splitting are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets), etc.

Accurate mass spectra were recorded on a Thermo LTQ-FTMS using either APCI or ESI techniques.

Infrared spectra were obtained using a Thermoscientific Nicolet with an attenuated total reflectance (ATR) with a Germanium crystal. Samples were tested neat or in chloroform. Peaks are reported in cm⁻¹ and described as either weak (w), strong (s), or broad (b).

Specific rotations were obtained with 1 dm path length using a Perkin Elmer Model 341 Polarimeter with a Na/Hal lamp set to 598 nm. Samples were dissolved in either chloroform or water depending on the solubility restrictions of some compounds. In all cases, the polarimeter was zeroed to the solvent first. Measurements were taken over several minutes and then adjusted based on concentration.

Non-aqueous reactions were performed under an atmosphere of argon in flame-dried glassware with HPLC-grade solvents dried by passage through alumnina. Amine bases were freshly distilled over CaH₂ prior to use. Brine refers to a saturated aqueous solution of sodium chloride. Purification via flash chromatography refers to usage of Biotage Isolera One Automated column. Reactions monitored via thin-layer chromatography (TLC) using EMD Millipore[®] TLC silica gel glass plates with various stains specified in each procedure. Reactions monitored by LCMS were injected into an Agilent Technologies 1220 Infinity HPLC Liquid Chromatograph connected to an Advion Expression Compact Mass Spectrometer. Solvents used were HPLC grade water and acetonitrile each spiked with 0.1% formic acid.

Fluorescence measurements were recorded on a FluoroMax spectrophotometer (Horiba Scientific, Edison, New Jersey) in a quartz fluorescence cuvette with a 1 cm pathlength, an integration range of 285-550 nm and an excitation and emission slit width of 2 nm.

3. Biological Assays

Growth studies were conducted using *Pseudomonas aeruginosa* PAO1. A test-tube culture of liquid LB media was inoculated with PAO1 and grown overnight at 37° C, 200 RPM. Overnight culture was diluted 1:100 in fresh media and grown at 37° C, 200 RPM. OD_{600} was monitored until exponential growth, approximately 0.2, was reached. Regrown culture was then diluted into M9 minimal media containing 600 μ M 2,2'-dipyridyl to achieve a 0.5 McFarland standard inoculum. Stock solutions of either 10 mM Fe³⁺-ulbactin F complex or 10 mM FeCl₃ in methanol were diluted into M9 minimal media to a concentration of 512 μ M and added to separate wells of the first column of a sterile 96-well microtiter plate (200 μ L per well). All other wells were filled with 100 μ L of M9 minimal media and the first column was serially diluted across the plate. Inoculum was added (100 μ L per well) to achieve a final volume of 200 μ L per well, 300 μ M 2,2'-dipyridyl and 256->1 μ M iron (III) source. The plate was then grown at 37° C for 24 hours and OD₆₀₀ was monitored by plate reader.

4. Metal Chelation Assays

All fluorescence titrations were performed in methanol. Briefly, a 350 μ L stock solution of 400 μ M ulbactin F was prepared and an emission spectrum was recorded ($\lambda_{excitation}$ = 316 nm, integration time = 1 second, accumulations = 10). Metal chloride stock solution (10 mM) was added in 1.4 μ L portions, the solution was gently mixed, and an emission spectrum was recorded after each addition.

Isolation of Fe³⁺-ulbactin F complex was conducted by treating ulbactin F in methanol with excess iron (III) chloride. Once addition of iron resulted in no further color change, the solution was concentrated by rotary evaporation and excess iron (III) chloride was removed by triteration with diethyl ether. The complex was then dissolved in methanol.

HRMS analysis of ulbactin F samples treated with iron and citrate was conducted by ionizing samples through Atmospheric-Pressure Chemical Ionization (APCI) using Atmospheric Solids Analysis Probe (ASAP) to load each sample. Ulbactin F (1 mg) was dissolved in minimal methanol and an aliquot was taken (**Supplementary Figure 5b**). Sample was then treated with excess iron (III) chloride methanol solution. The sample was concentrated and triturated with ether to remove excess iron. Sample was redissolved in methanol and an aliquot was taken (**Supplementary Figure 5c**). Sample was concentrated, redissolved in ethyl acetate and washed with 5% aqueous sodium citrate. Ethyl acetate was partitioned and concentrated. Sample was redissolved in methanol and an aliquot was taken (**Supplementary Figure 5d**).

CAS liquid media was prepared as described previously [1].

Reference:

[1] Louden, B. C.; Haarmann, D.; Lynne, A. M. J. Microbiol. Biol. Educ. 2011, 12 (1), 51-53

5. Crystal Analysis

Single crystal of C₁₇H₁₉N₃O₂S₃ Ulbactin diastereomer were recrystallized from pentane and dichloromethane as supplied. A suitable crystal was selected and the crystal was mounted on a loop with paratone oil on a XtaLAB Synergy, Duaflex, HyPix diffractometer. The crystal was kept at 100(2) K during data collection. Using Olex2 [1], the structure was solved with the She1XT [2] structure solution program using Intrinsic Phasing and refined with the She1XL [3] refinement package using Least Squares mimization.

[1] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

[2] Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

[3] Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [Ulbactin_diastereomer]

Crystal Data for $C_{17}H_{19}N_3O_2S_3$ (*M* =393.53 g/mol): monoclinic, space group I2 (no. 5), *a* = 11.9054(5) Å, *b* = 7.9651(3) Å, *c* = 19.2708(9) Å, *b* = 103.596(4)°, *V* = 1776.20(13) Å³, *Z* = 4, *T* = 100(2) K, μ (MoK α) = 0.434 mm⁻¹, *Dcalc* = 1.472 g/cm³, 13787 reflections measured (3.676° ≤ 2 Θ ≤ 58.246°), 4765 unique (*R*_{int} = 0.0478, R_{sigma} = 0.0487) which were used in all calculations. The final *R*₁ was 0.0327 (I > 2 σ (I)) and *wR*₂ was 0.0784 (all data).

Refinement model description

Number of restraints - 1, number of constraints - unknown. Details:

Table 1 Crystal data and structure refinement for Ulbactin_diastereomer.

Identification code	Ulbactin diastereomer
Empirical formula	 C ₁₇ H ₁₉ N ₃ O ₂ S ₃
Formula weight	393.53
Temperature/K	100(2)
Crystal system	monoclinic
Space group	12
a/Å	11.9054(5)
b/Å	7.9651(3)
c/Å	19.2708(9)
α/°	90
β/°	103.596(4)
γ/°	90
Volume/ų	1776.20(13)
Z	4
ρ _{calc} g/cm ³	1.472
µ/mm⁻¹	0.434
F(000)	824.0
Crystal size/mm ³	0.196 × 0.157 × 0.028
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	3.676 to 58.246
Index ranges	$-16 \le h \le 15, -10 \le k \le 10, -26 \le l \le 26$
Reflections collected	13787
Independent reflections	4765 [R _{int} = 0.0478, R _{sigma} = 0.0487]
Data/restraints/parameters	4765/1/228
Goodness-of-fit on F ²	1.006
Final R indexes [I>=2σ (I)]	$R_1 = 0.0327$, $wR_2 = 0.0769$
Final R indexes [all data]	$R_1 = 0.0361$, w $R_2 = 0.0784$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.21
Flack parameter	-0.04(4)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for Ulbactin_diastereomer. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
S16	4757.9(5)	3401.1(7)	5928.5(3)	16.07(13)
S1	10099.5(6)	787.4(8)	7337.9(4)	19.58(15)
S9	8526.9(5)	7141.0(7)	6827.3(4)	22.19(16)
018	8639.4(15)	3153(2)	5319.9(9)	21.4(4)
025	5168.2(16)	9185(2)	5886.8(11)	24.0(4)
N14	5972.3(18)	6143(2)	6218.2(11)	15.2(4)
N4	11128.0(16)	3202(3)	6747.6(11)	17.9(4)
N7	8840.7(17)	4018(3)	6465.8(11)	14.1(4)
C19	3947(2)	6724(3)	5778.8(13)	14.8(5)
C13	6804(2)	4778(3)	6451.2(13)	13.7(5)
C8	7947(2)	5289(3)	6288.4(14)	15.0(5)
C15	4937(2)	5601(3)	5987.1(13)	14.1(4)
C23	1869(2)	7149(4)	5428.5(14)	21.3(5)
C2	10168(2)	511(3)	6412.7(13)	18.0(5)
C11	9211.9(19)	3211(3)	5937.7(13)	15.8(4)
C22	2047(2)	8849(3)	5341.0(15)	22.1(5)
C6	9530(2)	4185(3)	7202.0(13)	16.4(5)
C17	6310.9(19)	3154(3)	6078.4(14)	17.5(5)
C3	10366(2)	2304(3)	6159.4(13)	15.8(5)
C24	2818(2)	6096(3)	5633.8(14)	18.2(5)
C20	4109(2)	8474(3)	5719.8(13)	18.4(5)
C12	12311(2)	2556(3)	6914.3(17)	25.5(6)
C21	3151(2)	9510(3)	5482.3(14)	22.4(5)
C5	10569(2)	3027(3)	7330.2(13)	17.0(5)
C10	9833(2)	6055(3)	7285.7(16)	23.1(6)

Amson	opic displaceme		lent takes the io		11+211Ka D 012	·].
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
S16	14.2(3)	13.2(3)	20.9(3)	-1.6(2)	4.5(2)	-1.4(2)
S1	24.3(3)	20.0(3)	15.8(3)	3.5(2)	7.5(2)	-1.1(2)
S9	19.2(3)	14.5(3)	32.7(4)	-5.6(3)	5.5(3)	-3.0(2)
018	23.8(9)	26.8(10)	13.4(8)	-2.3(8)	3.7(7)	5.2(8)
025	20.3(9)	14.9(8)	34.6(11)	1.1(8)	2.3(8)	-1.2(7)
N14	16.3(9)	15.0(10)	14.5(10)	-1.7(8)	3.9(8)	-0.2(7)
N4	11.5(8)	20.6(10)	21.8(11)	0.2(9)	4.4(8)	-1.8(8)
N7	12.8(9)	16.9(9)	12.6(10)	-1.1(8)	3.0(7)	0.1(7)
C19	16.3(11)	16.4(12)	11.7(11)	-1.5(8)	3.5(9)	0.6(8)
C13	14.8(10)	13.8(10)	12.7(11)	-1.4(9)	3.5(9)	0.1(9)
C8	14.6(10)	15.6(11)	15.3(11)	-2.2(9)	4.7(9)	-1.1(8)
C15	17.2(10)	13.0(10)	13.5(11)	-0.7(9)	6.4(9)	0.7(9)
C23	16.6(11)	24.9(13)	21.1(13)	-2.8(11)	1.8(10)	0.6(10)
C2	23.0(11)	18.5(11)	14.3(12)	1.0(9)	8.3(10)	0.3(10)
C11	16.0(10)	15.6(11)	17.3(11)	0.3(9)	7.0(9)	-2.8(9)
C22	20.6(12)	26.2(13)	18.4(13)	-1.8(10)	2.6(10)	7.1(10)
C6	15.8(11)	19.2(11)	14.1(11)	-4.5(9)	3.3(9)	-1.6(9)
C17	12.4(10)	14.9(11)	25.2(13)	-2.9(10)	4.7(9)	-0.6(9)
C3	17.4(11)	17.7(11)	14.5(11)	0.5(9)	8.0(9)	0.0(9)
C24	18.2(11)	17.0(12)	19.7(13)	-1.2(9)	5.2(10)	-0.3(9)
C20	21.2(11)	17.6(11)	16.5(12)	-1.8(10)	5.0(9)	-2.0(10)
C12	14.2(12)	24.6(14)	38.4(17)	3.7(12)	7.5(11)	1.0(9)
C21	27.4(13)	17.1(12)	21.8(13)	-1.2(10)	3.7(11)	2.9(10)
C5	15.4(11)	19.3(12)	15.3(11)	-1.1(9)	1.5(9)	-1.5(9)
C10	17.9(12)	22.0(13)	27.4(15)	-8.8(11)	1.3(11)	-2.3(10)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for Ulbactin_diastereomer. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S16	C15	1.766(3)	C23	H23	0.9500
S16	C17	1.814(2)	C23	C22	1.387(4)
S1	C2	1.818(3)	C23	C24	1.388(4)
S1	C5	1.871(3)	C2	H2A	0.9900
S9	C8	1.842(2)	C2	H2B	0.9900
S9	C10	1.816(3)	C2	C3	1.545(3)
018	C11	1.226(3)	C11	C3	1.522(3)
025	H25	0.8400	C22	H22	0.9500
O25	C20	1.350(3)	C22	C21	1.382(4)
N14	C13	1.468(3)	C6	H6	1.0000
N14	C15	1.283(3)	C6	C5	1.517(3)
N4	C3	1.461(3)	C6	C10	1.532(4)
N4	C12	1.462(3)	C17	H17A	0.9900
N4	C5	1.440(3)	C17	H17B	0.9900
N7	C8	1.450(3)	C3	H3	1.0000
N7	C11	1.362(3)	C24	H24	0.9500
N7	C6	1.468(3)	C20	C21	1.395(4)
C19	C15	1.459(3)	C12	H12A	0.9800
C19	C24	1.400(3)	C12	H12B	0.9800
C19	C20	1.415(4)	C12	H12C	0.9800
C13	H13	1.0000	C21	H21	0.9500
C13	C8	1.522(3)	C5	H5	1.0000
C13	C17	1.528(3)	C10	H10A	0.9900
C8	H8	1.0000	C10	H10B	0.9900

Table 4 Bond Lengths for Ulbactin_diastereomer.

AtomAtomAngle/°AtomAtomAtomAngle/°C15S16C1789.67(11)N7C6C5110.6C2S1C591.45(12)N7C6C10104.7C10S9C893.31(11)C5C6H610C20O25H25109.5C5C6C10114.3C15N14C13112.4(2)C10C6H610C3N4C12112.8(2)S16C17H17A114C5N4C3103.98(18)S16C17H17B114C5N4C12113.1(2)C13C17S16104.32(3)C8N7C6122.97(19)H17AC17H17B114C11N7C6123.97(19)H17AC17H17B106C24C19C15120.8(2)N4C3C2108.7C20C19C15120.6(2)N4C3H3106N14C13H13108.8C2C3H3107N14C13C8108.05(19)C11C3H3107
C15 S16 C17 89.67(11) N7 C6 C5 110.6 C2 S1 C5 91.45(12) N7 C6 C10 104.7 C10 S9 C8 93.31(11) C5 C6 H6 10 C20 O25 H25 109.5 C5 C6 C10 114.3 C15 N14 C13 112.4(2) C10 C6 H6 10 C3 N4 C12 112.8(2) S16 C17 H17A 11 C5 N4 C3 103.98(18) S16 C17 H17B 11 C5 N4 C12 113.1(2) C13 C17 H17B 11 C4 N7 C6 112.14(19) C13 C17 H17A 11 C11 N7 C6 123.97(19) H17A C17 H17B 10 C24 C19 C15 120.8(2) N4 C3
C2 S1 C5 91.45(12) N7 C6 C10 104.7 C10 S9 C8 93.31(11) C5 C6 H6 10 C20 O25 H25 109.5 C5 C6 C10 114.3 C15 N14 C13 112.4(2) C10 C6 H6 10 C3 N4 C12 112.8(2) S16 C17 H17A 114 C5 N4 C3 103.98(18) S16 C17 H17B 114 C5 N4 C12 113.1(2) C13 C17 H17B 114 C5 N4 C12 113.1(2) C13 C17 H17A 114 C5 N4 C12 112.14(19) C13 C17 H17A 114 C11 N7 C6 123.97(19) H17A C17 H17B 114 C14 C19 C20 118.6(2) N4 C3
C10S9C893.31(11)C5C6H610C20O25H25109.5C5C6C10114.3C15N14C13112.4(2)C10C6H610C3N4C12112.8(2)S16C17H17A114C5N4C3103.98(18)S16C17H17B114C5N4C12113.1(2)C13C17S16104.32(3)C8N7C6112.14(19)C13C17H17A114C11N7C8120.2(2)C13C17H17B114C11N7C6123.97(19)H17AC17H17B104C24C19C15120.8(2)N4C3C2108.7C24C19C20118.6(2)N4C3H3107N14C13H13108.8C2C3H3107N14C13C17109.05(19)C11C3H3107
C20O25H25109.5C5C6C10114.3C15N14C13112.4(2)C10C6H610C3N4C12112.8(2)S16C17H17A11C5N4C3103.98(18)S16C17H17B11C5N4C12113.1(2)C13C17S16104.32(10)C8N7C6112.14(19)C13C17H17A11C11N7C8120.2(2)C13C17H17B11C11N7C6123.97(19)H17AC17H17B10C24C19C15120.8(2)N4C3C2108.7C20C19C15120.6(2)N4C3H310N14C13H13108.8C2C3H310N14C13C17109.05(19)C11C3H310
C15N14C13112.4(2)C10C6H610C3N4C12112.8(2)S16C17H17A11C5N4C3103.98(18)S16C17H17B11C5N4C12113.1(2)C13C17S16104.32(10)C8N7C6112.14(19)C13C17H17A11C11N7C8120.2(2)C13C17H17B11C11N7C6123.97(19)H17AC17H17B10C24C19C15120.8(2)N4C3C2108.7C24C19C15120.6(2)N4C3C11109.9C20C19C15120.6(2)N4C3H310N14C13H13108.8C2C3H310N14C13C17109.05(19)C11C3H310
C3N4C12112.8(2)S16C17H17A114C5N4C3103.98(18)S16C17H17B114C5N4C12113.1(2)C13C17S16104.32(1000000000000000000000000000000000000
C5N4C3103.98(18)S16C17H17B114C5N4C12113.1(2)C13C17S16104.32(1)C8N7C6112.14(19)C13C17H17A114C11N7C8120.2(2)C13C17H17B114C11N7C6123.97(19)H17AC17H17B104C11N7C6123.97(19)H17AC17H17B104C24C19C15120.8(2)N4C3C2108.7C24C19C20118.6(2)N4C3C11109.9C20C19C15120.6(2)N4C3H3107N14C13K8108.05(19)C11C3C2109.41(1)N14C13C17109.05(19)C11C3H3107
C5N4C12113.1(2)C13C17S16104.32(1)C8N7C6112.14(19)C13C17H17A114C11N7C8120.2(2)C13C17H17B114C11N7C6123.97(19)H17AC17H17B104C24C19C15120.8(2)N4C3C2108.7C24C19C20118.6(2)N4C3C11109.9C20C19C15120.6(2)N4C3H3107N14C13C8108.05(19)C11C3C2109.41(1)N14C13C17109.05(19)C11C3H3107
C8 N7 C6 112.14(19) C13 C17 H17A 114 C11 N7 C8 120.2(2) C13 C17 H17B 114 C11 N7 C6 123.97(19) H17A C17 H17B 114 C11 N7 C6 123.97(19) H17A C17 H17B 107 C24 C19 C15 120.8(2) N4 C3 C2 108.7 C24 C19 C20 118.6(2) N4 C3 C11 109.9 C20 C19 C15 120.6(2) N4 C3 H3 107 N14 C13 H13 108.8 C2 C3 H3 107 N14 C13 C8 108.05(19) C11 C3 C2 109.41(19) N14 C13 C17 109.05(19) C11 C3 H3 107
C11N7C8120.2(2)C13C17H17B114C11N7C6123.97(19)H17AC17H17B104C24C19C15120.8(2)N4C3C2108.7C24C19C20118.6(2)N4C3C11109.9C20C19C15120.6(2)N4C3H3107N14C13H13108.8C2C3H3107N14C13C8108.05(19)C11C3C2109.41(17)N14C13C17109.05(19)C11C3H3107
C11N7C6123.97(19)H17AC17H17B10C24C19C15120.8(2)N4C3C2108.7C24C19C20118.6(2)N4C3C11109.9C20C19C15120.6(2)N4C3H3107N14C13H13108.8C2C3H3109.41(100.100.100.100.100.100.100.100.100.10
C24C19C15120.8(2)N4C3C2108.7C24C19C20118.6(2)N4C3C11109.9C20C19C15120.6(2)N4C3H3107N14C13H13108.8C2C3H3107N14C13C8108.05(19)C11C3C2109.41(3)N14C13C17109.05(19)C11C3H3107
C24C19C20118.6(2)N4C3C11109.9C20C19C15120.6(2)N4C3H3109N14C13H13108.8C2C3H3109N14C13C8108.05(19)C11C3C2109.41(19)N14C13C17109.05(19)C11C3H3109
C20C19C15120.6(2)N4C3H310N14C13H13108.8C2C3H310N14C13C8108.05(19)C11C3C2109.41(3)N14C13C17109.05(19)C11C3H310
N14 C13 H13 108.8 C2 C3 H3 108 N14 C13 C8 108.05(19) C11 C3 C2 109.41(11) N14 C13 C17 109.05(19) C11 C3 H3 109
N14 C13 C8 108.05(19) C11 C3 C2 109.41(1) N14 C13 C17 109.05(19) C11 C3 H3 109.41(1)
N14 C13 C17 109.05(19) C11 C3 H3 10
C8 C13 H13 108.8 C19 C24 H24 11
C8 C13 C17 113.12(19) C23 C24 C19 121.3
C17 C13 H13 108.8 C23 C24 H24 11
S9 C8 H8 109.2 O25 C20 C19 122.1
N7 C8 S9 105.59(16) O25 C20 C21 118.4
N7 C8 C13 114.00(19) C21 C20 C19 119.5
N7 C8 H8 109.2 N4 C12 H12A 10
C13 C8 S9 109.45(16) N4 C12 H12B 10
C13 C8 H8 109.2 N4 C12 H12C 10
N14 C15 S16 116.62(19) H12A C12 H12B 10
N14 C15 C19 122.5(2) H12A C12 H12C 10
C19 C15 S16 120.86(17) H12B C12 H12C 10
C22 C23 H23 120.4 C22 C21 C20 120.4
C22 C23 C24 119.2(2) C22 C21 H21 11
C24 C23 H23 120.4 C20 C21 H21 11
S1 C2 H2A 110.9 S1 C5 H5 11
S1 C2 H2B 110.9 N4 C5 S1 106.98(
H2A C2 H2B 109.0 N4 C5 C6 108.8
C3 C2 S1 104.07(17) N4 C5 H5 11
C3 C2 H2A 110.9 C6 C5 S1 110.30(
C3 C2 H2B 110.9 C6 C5 H5 110
O18 C11 N7 122.6(2) S9 C10 H10A 110
O18 C11 C3 120.9(2) S9 C10 H10B 110
N7 C11 C3 116.4(2) C6 C10 S9 104.96(2)

Table 5 Bond Angles for Ulbactin_diastereomer.

C23	C22	H22	119.6	C6	C10	H10A	110.8
C21	C22	C23	120.9(2)	C6	C10	H10B	110.8
C21	C22	H22	119.6	H10A	C10	H10B	108.8
N7	C6	H6	109.0				

Table 6 Torsion Angles for Ulbactin_diastereomer.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
S1	C2	C3	N4	36.8(2)	C11	N7	C6	C5	-12.7(3)
S1	C2	С3	C11	-83.2(2)	C11	N7	C6	C10	110.9(2)
018	C11	C3	N4	150.0(2)	C22	C23	C24	C19	2.3(4)
018	C11	С3	C2	-90.7(3)	C6	N7	C8	S9	30.5(2)
025	C20	C21	C22	-176.6(2)	C6	N7	C8	C13	-89.7(2)
N14	C13	C8	S9	64.4(2)	C6	N7	C11	018	-176.7(2)
N14	C13	C8	N7	-177.62(19)	C6	N7	C11	C3	5.9(3)
N14	C13	C17	S16	-29.3(2)	C17	S16	C15	N14	-11.4(2)
N7	C11	С3	N4	-32.5(3)	C17	S16	C15	C19	168.5(2)
N7	C11	С3	C2	86.8(3)	C17	C13	C8	S9	-174.77(16)
N7	C6	C5	S1	-70.0(2)	C17	C13	C8	N7	-56.8(3)
N7	C6	C5	N4	47.1(3)	C3	N4	C5	S1	44.4(2)
N7	C6	C10	S9	40.3(2)	C3	N4	C5	C6	-74.8(2)
C19	C20	C21	C22	3.4(4)	C24	C19	C15	S16	10.0(3)
C13	N14	C15	S16	-5.1(3)	C24	C19	C15	N14	-170.2(2)
C13	N14	C15	C19	175.0(2)	C24	C19	C20	025	176.5(2)
C8	S9	C10	C6	-21.0(2)	C24	C19	C20	C21	-3.5(4)
C8	N7	C11	018	-20.2(4)	C24	C23	C22	C21	-2.6(4)
C8	N7	C11	C3	162.4(2)	C20	C19	C15	S16	-170.06(19)
C8	N7	C6	C5	-170.8(2)	C20	C19	C15	N14	9.8(4)
C8	N7	C6	C10	-47.3(3)	C20	C19	C24	C23	0.7(4)
C8	C13	C17	S16	-149.56(17)	C12	N4	С3	C2	69.3(3)
C15	S16	C17	C13	22.39(17)	C12	N4	C3	C11	-171.0(2)
C15	N14	C13	C8	146.5(2)	C12	N4	C5	S1	-78.4(2)
C15	N14	C13	C17	23.2(3)	C12	N4	C5	C6	162.4(2)
C15	C19	C24	C23	-179.4(2)	C5	S1	C2	C3	-8.82(17)
C15	C19	C20	025	-3.5(4)	C5	N4	C3	C2	-53.6(2)
C15	C19	C20	C21	176.5(2)	C5	N4	C3	C11	66.1(2)
C23	C22	C21	C20	-0.3(4)	C5	C6	C10	S9	161.48(18)
C2	S1	C5	N4	-20.37(17)	C10	S9	C8	N7	-4.03(19)
C2	S1	C5	C6	97.87(18)	C10	S9	C8	C13	119.08(19)
C11	N7	C8	S9	-128.60(19)	C10	C6	C5	S1	172.20(19)
C11	N7	C8	C13	111.2(2)	C10	C6	C5	N4	-70.7(3)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for Ulbactin_diastereomer.

Atom	x	У	Ζ	U(eq)
H25	5674.02	8429.76	5980.72	36
H13	6921.52	4627.29	6978.63	16
H8	7815.13	5576.86	5770.37	18
H23	1107.3	6711.68	5348.97	26
H2A	10814.8	-240.12	6376.49	22
H2B	9437.62	34.46	6126.02	22
H22	1401.83	9569.13	5181.77	26
H6	9038.72	3881.19	7538.82	20
H17A	6580.52	2167.38	6384.75	21
H17B	6541.92	3016.03	5620.56	21
H3	10734.95	2242.97	5744.26	19
H24	2698.05	4925.11	5676.71	22
H12A	12323.6	1429.97	7120.56	38
H12B	12809.09	3304.32	7257.92	38
H12C	12592.79	2502.33	6476.25	38
H21	3257.94	10676.44	5417.43	27
H5	11120.32	3314.26	7792.1	20
H10A	10483.02	6325.27	7065.51	28
H10B	10049.47	6374.86	7796.32	28

6. Computational

Computational Details. The presented calculations were carried out using the Gaussian 09 suite of programs.[1] Geometry of all reported structures were optimized without symmetry constraint at the B3LYP level of density functional theory (DFT) [2,3] in conjunction with Lanl2dz basis set and corresponding Hay-Wadt effective core potential (ECP) for Fe.[4,5] Standard 6-31G(d,p) basis sets were used for all remaining atoms. The nature of each stationary point was characterized by the presence of zero imaginary frequencies. The relative enthalpies (Δ H) and Gibbs energies (Δ G) are presented as Δ H/ Δ G, and calculated under standard conditions (1 atm and 298.15 K). Cartesian coordinates of all reported structures are given in the Supporting Information.

References:

[1]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;
Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, T.; Nakajima, M.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,
M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin,
R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels,
A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01,
Gaussian, Inc., Wallingford CT, 2013.

[2] Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phy. Rev. B 1988, 37 (2), 785-789.

[3] Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phy. 1993, 98 (7), 5648-5652.

[4] Hay, P. J.; Wadt, W. R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phy. 1985, 82 (1), 270-283.

[5] Hay, P. J.; Wadt, W. R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitale. J. Chem. Phy. 1985, 82 (1), 299-310.

Cartesian Coordinates (in Å)

HCI

Н	0.00000000	0.00000000	0.15708900					
Cl	0.00000000	0.00000000	1.44291100					
FeCl ₃ (Sixtet electronic state)								
Fe	-6.58924000	-3.62556400	2.58518100					
Cl	-6.07605900	-2.00331300	1.25209100					
Cl	-5.45715800	-5.46472000	2.52963900					
Cl	-8.22453000	-3.40047200	3.98055600					
Ligand								
С	-3.08776600	-2.76263800	3.09316000					
С	-2.33589500	-0.86748400	4.13466400					
Ν	-1.89955000	-2.18129600	3.65854300					
S	-3.88796600	-1.43045000	1.98999900					
С	-3.04888000	-0.11595000	2.96692800					
Н	-2.32371100	0.40826200	2.33961600					
Н	-3.77319200	0.60854600	3.34420500					
Н	-2.85892900	-3.62516100	2.46425900					
Н	-1.48930800	-0.29086700	4.51308600					
С	-3.28948600	-1.04897100	5.31891800					
0	-3.30420700	-0.25018300	6.24906300					
С	-4.04041200	-3.17817000	4.21916700					
Ν	-4.14220400	-2.12551600	5.24573800					
С	-4.83075000	-2.56718000	6.45179400					
S	-4.49393900	-4.40390100	6.57122700					
С	-3.58917900	-4.44253300	4.97039900					
Н	-2.51094400	-4.42173700	5.14514400					
Н	-3.86342400	-5.35140800	4.42980400					
Н	-5.03556500	-3.34571400	3.80067900					
С	-6.34272000	-2.25698000	6.47801000					
С	-6.60161000	-0.73484200	6.66979200					
Ν	-7.02637400	-2.71641400	5.27963600					
S	-8.11643000	-0.35677900	5.70193100					
Н	-6.77342500	-0.48678200	7.71821500					
С	-7.92030900	-1.90843800	4.82132500					
С	-8.74791100	-2.23895300	3.66415700					
С	-9.69560600	-1.33459000	3.14818400					
С	-8.59550300	-3.50771300	3.03506000					
С	-10.47919000	-1.65783100	2.05099500					
Н	-9.80588200	-0.36196100	3.61909700					
С	-9.39383600	-3.82401200	1.92374300					
0	-7.71282400	-4.42523100	3.46093100					

С	-10.32070000	-2.91097800	1.44108600
Н	-11.20347200	-0.94670300	1.66791700
Н	-9.26014400	-4.79694400	1.46279700
Н	-10.92860400	-3.17376600	0.57975800
Н	-7.27091800	-4.05153200	4.27440700
Н	-5.77067500	-0.13173000	6.30021400
Н	-4.36490000	-2.06381800	7.30112600
Н	-6.76288000	-2.80749200	7.33308100
С	-0.73906500	-2.14620600	2.76775900
Н	0.09778000	-1.67829900	3.29315600
Н	-0.45042900	-3.17094400	2.51821700
Н	-0.92303600	-1.60077800	1.83000900

Complex (Sixtet Electronic State)

С	-1.76507900	-2.57086100	3.62683500
С	-2.61145900	-0.46836500	3.92170100
Ν	-1.50001600	-1.33849200	4.32454600
S	-2.13919000	-2.12544300	1.82889600
С	-2.75223300	-0.47716000	2.36909500
Н	-2.13713400	0.30767900	1.92266900
Н	-3.78885600	-0.34259500	2.05589900
Н	-0.89529500	-3.23168600	3.63171800
Н	-2.45717500	0.54705200	4.29244400
С	-3.85418400	-0.97916900	4.65114400
0	-4.63439800	-0.20787800	5.19826500
С	-2.95122100	-3.29950100	4.28459600
Ν	-4.01279600	-2.34997300	4.73166500
С	-4.79061400	-2.80938000	5.90069800
S	-4.13988900	-4.47986200	6.33717200
С	-2.54634700	-4.09449600	5.52987800
Н	-1.90164800	-3.50503300	6.18859100
Н	-2.05338000	-5.03295800	5.26710200
Н	-3.38813300	-3.98769700	3.55931400
С	-6.35459200	-2.82681200	5.84020300
С	-6.90603400	-1.71775300	6.75413600
Ν	-7.01019300	-2.67985500	4.51994100
S	-8.62061400	-1.45833400	6.18876700
Н	-6.90743500	-2.02332500	7.80163800
С	-8.18303600	-2.09472800	4.59270300
С	-9.17858500	-1.99869500	3.53126100
С	-10.19885800	-1.02436500	3.60643300
С	-9.21396800	-2.94494700	2.45861300
С	-11.22311000	-0.97893900	2.67595700
Н	-10.16139000	-0.28222100	4.39730300
С	-10.28504500	-2.90262100	1.54018200
0	-8.29119700	-3.87965200	2.32377800
С	-11.26688800	-1.93251900	1.64492800

Н	-11.98458500	-0.20937600	2.74409300
Н	-10.29374900	-3.64236000	0.74722400
Н	-12.07289100	-1.90565600	0.91729300
Fe	-6.50446100	-3.49255100	2.69134100
Н	-6.33789600	-0.79606100	6.61837400
Н	-4.54149400	-2.12605700	6.71863100
Н	-6.68750200	-3.80211000	6.22222600
Cl	-5.97470700	-1.82279400	1.31182200
Cl	-5.34141300	-5.37353400	2.57655900
С	-0.17230100	-0.76670300	4.09518500
Н	-0.08595900	0.16610200	4.65890700
Н	0.58449300	-1.46044000	4.47222100
Н	0.03981400	-0.56662000	3.03457100

Fe(acac)₃ (Sixtet electronic state)

0	-6.69847400	-3.57454600	4.55100200
С	-7.77428800	-3.46043000	5.22471900
С	-9.06009100	-3.35637800	4.66859800
0	-8.40289600	-3.44375700	2.38846200
С	-9.30449700	-3.35926600	3.28525200
Н	-9.90549600	-3.27179000	5.33998900
Fe	-6.39861900	-3.61574500	2.55458700
0	-6.23339700	-3.49669600	0.54780400
0	-6.07369800	-1.62423000	2.56547000
С	-6.03590800	-2.48971400	-0.20811900
С	-5.87844200	-0.81274600	1.60221100
С	-5.85512200	-1.17219600	0.24435000
Н	-5.68651500	-0.39492200	-0.49048500
0	-6.56134300	-5.62233100	2.41681500
0	-4.43293600	-3.93211700	2.87051900
С	-5.68027500	-6.53450300	2.54210900
С	-3.77333300	-5.01881400	2.96443100
С	-4.32165000	-6.30325900	2.81480000
Н	-3.66300500	-7.15775100	2.90735000
С	-7.60088200	-3.44344800	6.72802000
Н	-8.54983100	-3.34997600	7.25997600
Н	-7.09808100	-4.36345800	7.04374400
Н	-6.94692200	-2.60975200	7.00402600
С	-10.72426100	-3.25517300	2.77176000
Н	-10.94778200	-4.13236000	2.15575700
Н	-11.45835500	-3.18218800	3.57674400
Н	-10.81013500	-2.37737400	2.12290400
С	-5.66235200	0.63062900	2.00242500
Н	-5.50463100	1.28643100	1.14374400
Н	-6.53003800	0.98118100	2.57086800
Н	-4.79603500	0.69204600	2.66920700
С	-5.99949800	-2.78821700	-1.69123400

H -6.94752800 -3.2490350	00 -1.98741000
Н -5.82670500 -1.8957660	00 -2.29615300
Н -5.21046500 -3.5201900	00 -1.89269500
C -2.29663100 -4.8594190	0 3.25428600
H -1.77586400 -5.8165340	00 3.32449900
Н -1.83737500 -4.2547640	00 2.46533400
Н -2.17295100 -4.3092780	00 4.19282000
C -6.18397700 -7.9518990	0 2.37608800
Н -5.39356000 -8.6959140	00 2.49407900
Н -6.97329900 -8.1427400	00 3.11057200
Н -6.63628500 -8.0576670	00 1.38458600

L-Fe(acac)2 (Sixtet Electonic State)

С	-3.28480200	0.36201200	3.60717600
С	-2.90064500	0.40154000	5.86654300
Ν	-2.25757100	0.64822000	4.57386800
S	-4.86268300	1.24620400	4.20189600
С	-4.23987800	1.20227200	5.93284300
Н	-4.06962100	2.22004700	6.29244900
Н	-4.96118300	0.71048100	6.58855500
Н	-3.03390700	0.75362700	2.61947700
Н	-2.23675900	0.67901500	6.68787000
С	-3.16357700	-1.09808000	6.01799100
0	-3.07378600	-1.65384700	7.10774800
С	-3.50468700	-1.15377200	3.52635800
Ν	-3.53478800	-1.75464300	4.87070400
С	-3.49043600	-3.20633100	4.84234200
S	-2.45789500	-3.63580500	3.35261200
С	-2.39835400	-1.89795100	2.75673300
Н	-1.41875200	-1.46393600	2.97045400
Н	-2.59713100	-1.88714000	1.68323800
Н	-4.46293600	-1.35304900	3.04023100
С	-4.87470600	-3.91162200	4.88692000
С	-5.46722200	-3.84089800	6.31782000
Ν	-5.85413700	-3.35517400	3.94221100
S	-6.67998400	-2.47461300	6.27931800
Н	-5.98608100	-4.76504400	6.58325700
С	-6.74671800	-2.57941300	4.49088100
С	-7.76012200	-1.80203200	3.79048900
С	-8.62846000	-0.95520800	4.51449700
С	-7.86707400	-1.83138700	2.36317400
С	-9.55422100	-0.14321900	3.88327600
Н	-8.56916900	-0.93743300	5.59828700
С	-8.81069900	-0.97866700	1.73729000
0	-7.12987400	-2.60689800	1.61074600
С	-9.63683500	-0.15604400	2.48036200
Н	-10.20597200	0.49742100	4.46818400

Н	-8.86600500	-1.01371800	0.65428700
Н	-10.35844000	0.48006400	1.97454000
Fe	-6.34372100	-4.30009000	1.96564700
Н	-4.70797900	-3.60998600	7.06652000
Н	-2.94455400	-3.53345400	5.72898900
Н	-4.70313500	-4.95536100	4.61031100
С	-1.63692900	1.96702200	4.44978100
Н	-0.88664000	2.08189600	5.23677500
Н	-1.12607800	2.03129900	3.48489100
Н	-2.35502000	2.79839100	4.51576100
0	-7.02146200	-5.29924500	0.30980300
0	-4.70297400	-3.92096500	0.88084000
С	-6.40405000	-5.61254800	-0.75709000
С	-4.31661000	-4.39518200	-0.23995400
С	-5.08455900	-5.23146500	-1.06216800
Н	-4.65745300	-5.56043100	-2.00132900
0	-8.09692000	-4.95792200	2.82162700
0	-5.53952600	-6.02364000	2.70607400
С	-8.42721400	-6.15366900	3.09593900
С	-6.14727300	-7.11586500	2.98028200
С	-7.53213100	-7.24154300	3.15533500
Н	-7.93025500	-8.21819700	3.40166200
С	-5.25687400	-8.33025500	3.13839500
Н	-4.50393500	-8.13371100	3.90904300
Н	-5.81533700	-9.23073100	3.40213000
Н	-4.71518900	-8.50304500	2.20240200
С	-9.89563200	-6.37753900	3.38872100
Н	-10.48018900	-6.10259300	2.50444300
Н	-10.11916300	-7.41094200	3.66191100
Н	-10.20834300	-5.71140900	4.19918000
С	-7.19212400	-6.44313700	-1.74827000
Н	-6.60603000	-6.71826700	-2.62759000
Н	-7.55299900	-7.35025800	-1.25301600
Н	-8.07449400	-5.87809200	-2.06693200
С	-2.92982600	-3.98121600	-0.68222700
Н	-2.20623900	-4.27521900	0.08483900
Н	-2.64508800	-4.42681900	-1.63743900
Н	-2.88778800	-2.89024200	-0.77244600

H-ACAC, (protonated acac)

0	-0.02909600	0.24719500	0.00038800
С	0.54101800	1.44244600	0.00080400
С	-0.20067600	2.59971600	0.00040000
С	-1.64110800	2.53095000	-0.00050900
0	-2.24578400	1.43381800	-0.00090700
Н	0.29975500	3.56012700	0.00075000
Н	-1.02689500	0.42950400	-0.00024300

-2.43725100	3.81818900	-0.00122300
-2.18993100	4.42179800	0.87928200
-2.19157700	4.41951200	-0.88377500
-3.50390700	3.59072900	-0.00005700
2.03812800	1.40415600	0.00175700
2.39382600	0.85892900	0.88256900
2.39494200	0.85879500	-0.87851900
2.46707400	2.40745800	0.00196500
	-2.43725100 -2.18993100 -2.19157700 -3.50390700 2.03812800 2.39382600 2.39494200 2.46707400	-2.437251003.81818900-2.189931004.42179800-2.191577004.41951200-3.503907003.590729002.038128001.404156002.393826000.858929002.394942000.858795002.467074002.40745800

7. Synthesis

7.1 Experimental Procedures

(*S*)-2-(2-hydroxyphenyl)-4,5-dihydrothiazole-4-carboxylic acid Synthesized as described previously by Mislin⁹. Briefly, commercially available 2-hydroxy-benzonitrile (2.44 g, 20.5 mmol) was dissolved in methanol (15 mL). D-cysteine hydrochloride monohydrate (3.0 g, 17.1 mmol) was added to the solution and stirred to dissolve. Phosphate buffer (0.1 M, pH 6.4, 15 mL) was added and the pH of the reaction mixture was adjusted to 6.4 by addition of solid K₂CO₃ and solid citric acid. The reaction was stirred at 60 °C overnight. The reaction mixture was then concentrated and the crude material was dissolved in 100 mL water. The aqueous solution was brought to pH 2 by addition of solid citric acid. The aqueous solution was extracted with dichloromethane (3 x 100 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated to a yellow solid (3.22 g, 14.54 mmol, 85% yield).

¹**H NMR:** (600 MHz, (CD₃)₂CO) (Rotamers) δ 7.47 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.43 (ddd, *J* = 8.5, 7.3, 1.6 Hz, 1H), 6.98 (dd, *J* = 8.3, 0.8 Hz, 1H), 6.95 (ddd, *J* = 7.8, 7.4, 1.1 Hz, 1H), 5.54 (dd, *J* = 9.4, 7.8 Hz, 1H), 3.77 (qd, *J* = 11.3, 8.6 Hz, 2H).

(*S*)-2-(20hydroxyphenyl)-*N*-methoxy-*N*-methyl-4,5-duhydrothiazole-4-carboxamide (13) Synthesized as described previously by Mislin⁹. To a base-washed, flamed dried reaction flask charged with argon, phenol-thiazoline acid (1.73 g, 7.8 mmol) was added and dissolved in DMF (40 mL). Then, EDC (5.94 g, 31 mmol), HOBt (4.18 g, 31 mmol), N,0-dimethyl hydroxylamine hydrochloride (1.51 g, 15.5 mmol) were added. Dry trimethylamine was added dropwise by syringe until the reaction mixture was basic (pH 9) by pH paper (soak indicator in DMF solution and then spray with water). The reaction mixture was stirred overnight at room temperature. The reaction was then diluted with 5 volumes of water. The aqueous mixture was brought to pH 2 by addition of 1 M HCl and extracted with ethyl acetate (3 x 100 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude material was purified by silica gel chromatography (10% to 100% EtOAc in hexanes) to give a white solid (1.16 g, 4.34 mmol, 56% yield).

¹**H NMR:** (400 MHz, CDCl₃) δ 12.33 (s, 1H), 7.43 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.36 (ddd, *J* = 8.8, 7.4, 1.6 Hz, 1H), 6.98 (dd, 1H), 6.88 (ddd, *J* = 8.4, 7.6, 1.1 Hz, 1H), 5.70 (t, *J* = 9.0 Hz, 1H), 3.83 (s, 3H), 3.78 (dd, *J* = 16.2, 16.0 Hz, 1H), 3.48 (dd, *J* = 10.9, 9.3 Hz, 1H), 3.29 (s, 3H)

(*S*)-2-(2-hydroxyphenyl)-4,5-dihydrothiazole-4-carbaldehyde (14) Synthesized as described previously by Mislin⁹. Briefly, Weinreb amide 13 (172 mg, 0.644 mmol) was added to a flame-dried, base-washed flask under argon and dissolved in dry THF (13 mL). The reaction mixture was brought to -40 °C in a bath of dry ice and acetone. Lithium aluminum hydride (27 mg, 0.71 mmol) was put under argon and suspended in 0.71 mL dry THF (1 M solution). The suspension was cooled in the bath and added dropwise by syringe down the side of the reaction flask into the reaction mixture. The reaction was stirred at between -50 and -30 °C and monitored by TLC. After 2 hours, the reaction was quenched by addition of 8 mL saturated NH₄Cl and 3 mL 10% NaHSO₄ (alternating additions of 1-2 mL each). The reaction was allowed to warm to room temperature while stirring vigorously until two phases formed. The phases were separated, and the aqueous layer was extracted with EtOAc (3 x 25 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude aldehyde was unstable and thus quickly carried on to the synthesis of 1 and 15 without further purification.

N-(*tert*-butoxycarbonyl)-*S*-w(4-methoxybenzyl)-*N*-methyl-*L*-cysteine Commercially available N-Boc-S-PMB-L-Cysteine (**5**) (5 g, 14.6 mmol) was added to a flame-dried, base-washed flask under argon and dissolved in dry THF (40 mL). Methyl iodide (2.73 mL, 43.8 mmol) was added by syringe and the reaction mixture was brought to 0 °C. Sodium hydride (60% dispersion in oil, 1.76 g, 43.8 mmol) was weighed and transferred to a capped vial. Small portions of sodium hydride were added as solid under argon. Bubbling was given time to subside before next addition. The reaction was allowed to come to room temperature and stirred overnight. Then, the reaction was quenched by dropwise addition of isopropanol (2 mL) and water (2 mL) and then concentrated by rotary evaporation to approximately 1/5 initial volume. The mixture was then diluted with 100 mL water. The aqueous mixture was then acidified to pH 2 by addition of 1 M HCl. The acidic aqueous mixture was extracted with ethyl acetate (3 x 50 mL). Combined organic layers were washed with acidic (pH 2) brine, dried over Na₂SO₄, filtered, and concentrated. The crude material was purified by two rounds of silica gel chromatography (gradient of ethyl acetate in hexanes, 0.5% acetic acid) to give a white solid (3.9 g, 11.1 mmol, 76% yield).

¹**H NMR** (600 MHz, CDCl₃) (Rotamers) δ 7.22 (d, *J* = 7.8 Hz, 2H), 6.83 (d, *J* = 7.9 Hz, 3H), 4.66 (dd, *J* = 10.3, 5.3 Hz, 1H), 4.30 (m, 1H), 3.78 (m, 3H), 3.69 (s, 3H), 2.99 – 2.91 (m, 1H), 2.82 (s, 3H), 2.69 – 2.79 (m, 1H) 1.42 (s, 9H).

¹³**C NMR** (150 MHz, CDCl₃) δ 171.11, 155.20, 144.50, 129.59, 127.93, 126.74, 79.73, 77.24, 77.03, 76.82, 66.69, 61.56, 49.75, 34.14, 32.16, 28.36.

IR (CHCl₃) 832 (w), 1034 (w), 1161 (s), 1248 (s), 1302 (s), 1324 (w), 1368 (w), 1393 (w), 1456 (w), 1481 (w), 1512 (s), 1610 (w), 1685 (s), 1734 (s), 2976 (w), 3474 (b) [α]²⁵_D -459

HRMS: (ES⁺) Found: 356.1527 (+0.31), C₁₇H₂₆NO₅S (M⁺) requires: 356.1526

Methyl-L-cysteine (6) N-Boc-N-methyl-S-PMB-L-cysteine (1.73 g, 4.8 mmol) was dissolved in ice-cold neat TFA (4 mL). To this, mercury acetate (1.71 g, 5.38 mmol) was added as a solid and the mixture was allowed to sit at room temperature under argon for 30 minutes. The reaction was quenched with water (36 mL), followed by addition of dithiothreitol (5 w/v%, 2.00 g). Which resulted in a thick white/gray precipitate. The reaction was stirred for an additional 30 minutes. Then, the mixture was centrifuged (20 minutes, 3900 RPM) and the clarified aqueous mixture was decanted and extracted with chloroform (10 x 20 mL). The aqueous layer was concentrated by rotary evaporation and lyophilization to give a white solid (1.04 g, 4.08 mmol, 85% yield).

¹**H NMR:** (400 MHz, D₂O) δ 4.14 (t, *J* = 4.4 Hz, 1H), 3.21 (dd, *J* = 15.4, 4.2 Hz, 1H), 3.07 (dd, *J* = 15.4, 4.5 Hz, 1H), 2.73 (s, 3H)

¹³C NMR: (100 MHz, D₂O) δ 169.90, 73.46, 69.78, 62.19, 42.30, 31.21, 29.32, 26.89, 26.59, 23.37, 22.43 **IR (neat):** 721 (s), 797 (w), 1048 (w), 1131 (s), 1192 (s), 1422 (w), 1662 (s), 1729 (w), 3034 (b) $[\alpha]^{25}_{D}$ +42 (in water)

HRMS: (ES⁺): Found: 136.0421 (-3.79 ppm), C₄H₁₀NO₂S (M⁺) requires: 136.0426

tert-butyl (*S*)-(1-(methoxy(methyl)amino)-1-oxo-3-(tritylthio)propan-2-yl)carbamate (8) A flame dried flask was charged with argon, to which *N*-(*tert*-butoxycarbonyl)-*S*-trityl-*D*-cysteine (1 g, 2.16 mmol) was added and dissolved in DMF (8.6 mL). *N*,*O*-dimthylhydroxylamine hydrochloride (442 mg, 4.53 mmol) was added to the reaction mixture, followed by the addition of EDCI (1.7 g, 8.63 mmol) and DMAP (1.1 g, 8.63 mmol). The reaction was allowed to stir under argon overnight. Once it was determined complete by TLC, the reaction was condensed. The resulting solid was redissolved in EtOAc (30 mL) and washed with 10% NaHSO₄ (1 x 30 mL), 10% NaHCO₃ (1 x 30 mL), and brine (1 x 30 mL). The organic layer was dried over soldium sulfate, filtered and concentrated. Flash column purification (10% to 70% EtOAc in hexanes) afforded the product as a white solid (946 mg, 86%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.44 – 7.39 (m, 6H), 7.31 – 7.26 (m, 6H), 7.25 – 7.20 (m, 3H), 5.13 (d, *J* = 8.8 Hz, 1H), 4.77 (s, 1H), 3.66 (s, 3H), 3.16 (s, 3H), 2.57 (dd, *J* = 12.2, 4.6 Hz, 1H), 2.40 (dd, *J* = 12.0, 7.9 Hz, 1H), 1.64 (s, 2H), 1.45 (s, 9H)

¹³**C NMR** (150 MHz, CDCl₃) δ 171.11, 155.20, 144.50, 129.59, 127.93, 126.74, 79.73, 77.24, 77.03, 76.82, 66.69, 61.56, 49.75, 34.14, 32.16, 28.36.

IR (neat): 700 (s), 743 (s), 1168 (s), 1250 (w), 1366 (w), 1390 (w), 1444(w), 1490 (s), 1490 (s), 1663 (s), 1714 (s), 2939 (w), 2976 (w), 3063 (w), 3322 (b), 3427 (b)

[α]²⁵_D 112

HRMS (ES⁺): Found: 507.2297 (-2.93 ppm), C₂₉H₃₃O₄N₂S (M⁻) requires: 507.2312

tert-butyl (*S*)-(1-oxo-3-(tritylthio)propan-2-yl)carbamate To a flame dried flask under argon, protected weinreb (8) (451 mg, 0.890 mmol) was added in THF (1.8 mL). The solution was then cooled to -40°C with a few pieces of dry ice in isopropanol. Meanwhile, to a flame dried vial under argon, a suspension of lithium aluminum hydride (40.5 mg, 1.068 mmol) in THF (1 mL) was prepared and also cooled to -40°C. Once a stable temperature was reached, the LAH/THF suspension was added to the reaction flask slowly over several minutes. The reaction was allowed to gradually warm to -20°C and stirred for 2.5 hours. The reaction was warmed to 0°C and quenched with alternating addition of saturated NH₄Cl (11.1 mL) and 10% NaHSO₄ (4.0 mL). This was allowed to stir for 30 minutes. The reaction mixture was then transferred to a separatory funnel and the aqueous layer was extracted. This layer was then washed with EtOAC (3 x 20 mL). The organic layers were combined and washed with brine, dried with Na₂SO₄, filtered and concentrated. The crude oil was then carried through immediately to the next reaction.

(4R)-2-((R)-1-((tert-butoxycarbonyl)amino)-2-(tritylthio)ethyl)-3-ehtylthiazolidine-4-carboxylic acid (9) Nmethyl cysteine salt (6) (244 mg, 0.979 mmol) was added to a solution of Boc-Trt-aldehyde (398 mg, 0.890 mmol) in ethanol (30 mL) and water (13 mL). To this reaction sodium acetate (358 mg, 3.649 mmol) was added and allowed to stir under argon for 18 hours. Once the reaction was complete, the solvents were concentrated and the resulting solids were suspended in water (20 mL). Citric acid was added until a pH of 2 was achieved. At this point, EtOAc was added (20 mL) and used to extract (3 x 20 mL). The combined organic layers were washed with brine, dried with Na₂SO₄, filtered and concentrated. The resulting oil was purified by flash chromatography (10% to 70% EtOAc in hexanes) afforded a clear oil (340 mg, 68%) as a mixture of diastereomers.

¹**H NMR** (400 MHz, CD₃OD) δ 7.38 (d, J = 7.4 Hz, 8H), 7.29 (t, J = 7.5 Hz, 8H), 7.21 (t, J = 7.2 Hz, 4H), 3.87 (d, J = 6.3 Hz, 1H), 3.53 (dt, J = 13.7, 7.3 Hz, 3H), 3.03 (dd, J = 11.2, 6.0 Hz, 2H), 2.97 – 2.89 (m, 1H), 2.46 (d, J = 7.2 Hz, 3H), 2.42 (s, 3H), 2.16 (s, 2H), 1.46 (s, 10H)

¹³**C NMR** (100 MHz, CD₃OD) δ 220.90, 188.27, 172.64, 144.09, 129.65, 128.27, 127.18, 99.49, 77.37, 77.16, 76.95, 70.10, 44.14, 34.42, 28.45

IR (neat) 698 (s), 7226 (s), 906 (s), 1159 (w), 1492 (w), 1689 (w), 2980 (w), 3066(w), 3408 (b) **[α]**²⁵_D -693

HRMS (ES⁺): Found: 565.2187 (-0.42 ppm), C₃₁H₃₇N₂O₄S₂ (M⁺) requires: 565.2189

(4*R*)-2-((*R*)-1-ammonio-2-mercaptoethyl)-4-carboxy-3-methylthiazolidin-3-ium (10) A 10 mL solution of 50% trifluoroacetic acid in DCM was made, to which 3% v/v triisopropyl silane was added. The protected thiazolidine (9) (100 mg, 0.177 mmol) was charged to a reaction flask and then dissolved in the freshly made solution (2 mL). This reaction was stirred for 30 minutes at which point only product mass was observed on LCMS. The reaction was condensed. To this water (5 mL) was added to dissolve the product. Insoluble impurities were filtered out and washed with water (5 mL). The resulting water solution was concentrated to about 2 mL, frozen in dry ice and isopropanol bath and lyophilize to a white solid. This was carried through without further purification. ¹H NMR (400 MHz, D₂O) δ 4.32 (d, *J* = 10.1 Hz, 1H), 4.11 (dt, *J* = 14.9, 7.4 Hz, 1H), 3.61 (s, 1H), 3.48 (dd, *J* = 11.8, 7.9 Hz, 1H), 3.33 (dd, *J* = 11.9, 5.3 Hz, 1H), 3.20 (ddd, *J* = 10.8, 7.4, 3.6 Hz, 1H), 3.01 (dd, *J* = 15.2, 3.6 Hz, 1H), 2.72 (dd, *J* = 15.1, 7.4 Hz, 1H), 2.55 (s, 3H)

¹C NMR (100 MHz, D₂O) δ 176.30, 75.97, 72.65, 57.16, 44.50, 33.88, 23.72 **IR (neat)** 1136 (s), 1199 (s), 1668 (s), 2819 (w), 2913 (w), 2958 (w), 3370 (b)

[**α**]²⁵_D -127 (in water)

HRMS (ES⁺): Found: 223.0569 (+0.20 ppm), C₇H₁₅N₂O₂S₂ (M⁺) requires: 223.0569

(3*R*,6*R*,9*R*,9a*R*)-3-((*R*)-2-(2-hydroxyphenyl)-4,5-dihydrothiazol-4-yl-10-methyltetrahydro-1*H*,3*H*,5*H*-6,9-epiminothiazolo[4,3-*c*][1,4]thiazepin-5-one (1)

Deprotected thiazolidine 2 x TFA salt (**10**) (136 mg, 0.302 mmol) was dissolved in 3:1 ethanol:water and added to a flask containing freshly prepared thiazoline aldehyde **14** (38 mg, 0.187 mmol). Sodium acetate trihydrate was added until the reaction measured pH=7 (1.41 g, 10.7 mmol) and the reaction was stirred under argon for 16 hours (overnight). The reaction was concentrated and resuspended in water (50 mL). The reaction was brought to pH=3 with solid citric acid. The acidic aqueous layer was extracted with 3 x 100 mL EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude was then dissolved in EtOAc/Methanol and gently heated (50 °C) while stirring until the reaction was complete by LC-MS. The reaction was concentrated, and the resulting oil was purified by silica gel flash chromatography (100% DCM) to afford a yellow oil (340 mg, 68%) as a mixture of diastereomers (**1** and **15**), which were purified by preparative HPLC (45% to 95% acetonitrile in water, 0.1% formic acid) to afford the product as a white solid (17.6 mg, 24% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.37 – 7.32 (m, 1H), 6.98 (dd, *J* = 8.3, 0.9 Hz, 1H), 6.87 (td, *J* = 7.8, 1.1 Hz, 1H), 5.75 (d, *J* = 6.0 Hz, 1H), 4.86 (ddd, *J* = 8.5, 7.2, 6.0 Hz, 1H), 4.61 (s, 1H), 4.03 (d, *J* = 6.9 Hz, 1H), 3.83 (dd, *J* = 10.9, 5.2 Hz, 1H), 3.45 – 3.39 (m, 2H), 3.32 (d, *J* = 10.7 Hz, 1H), 3.22 (dd, *J* = 10.8, 6.4 Hz, 1H), 2.99 (ddd, *J* = 14.6, 10.2, 7.3 Hz, 2H), 2.28 (s, 3H)

¹³**C NMR** (150 MHz, CDCl₃) δ 173.93, 167.89, 159.35, 133.43, 130.88, 118.99, 117.37, 116.35, 80.79, 77.37, 77.16, 76.95, 73.21, 71.29, 69.53, 60.71, 40.22, 35.16, 34.66, 33.84

IR (CHCl₃) 752 (w), 1029 (s), 1423 (w), 1668 (w), 2851 (w), 2923 (w), 3374 (b) $[\alpha]^{25}{}_{D}$ +131

(3*R*,6*R*,9*R*,9a*R*)-3-((*S*)-2-(2-hydroxyphenyl)-4,5-dihydrothiazol-4-yl)-10-methyltetrahydro-1*H*,2*H*,5*H*-6,9-epiminothiazolo[4,3-*c*][1,4]thiazepin-5-one (15)

See procedure for **1**. The product was isolated as a white solid (11.5 mg, 16% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.38 (ddd, *J* = 8.7, 7.3, 1.6 Hz, 1H), 7.03 (dd, *J* = 8.3, 0.9 Hz, 1H), 6.90 (td, *J* = 7.8, 1.1 Hz, 1H), 5.65 (d, *J* = 7.7 Hz, 1H), 4.92 (dd, *J* = 16.2, 8.2 Hz, 1H), 4.74 (s, 1H), 4.11 (td, *J* = 3.5, 1.4 Hz, 1H), 3.99 (dd, *J* = 11.2, 4.8 Hz, 1H), 3.39 (dd, *J* = 11.2, 8.6 Hz, 1H), 3.34 – 3.30 (m, 3H), 3.06 (dd, *J* = 11.2, 9.6 Hz, 1H), 2.93 (dd, *J* = 9.5, 4.8 Hz, 1H), 2.35 (s, 3H)

¹³**C NMR** (150 MHz, CDCl₃) δ 174.38, 168.31, 159.27, 133.53, 130.88, 119.09, 117.36, 116.31, 81.10, 77.37, 77.16, 76.95, 73.39, 71.43, 69.53, 61.27, 40.13, 35.41, 34.46, 34.18

IR (CHCl₃) 754 (w), 1029 (s), 1466 (w), 1646 (w), 2850 (w), 2944 (w), 3397 (b)

[α]²⁵_D +135

HRMS: (ES⁺): Found: 394.0714 (+0.70 ppm), C₁₇H₂₀O₂N₂S₃ (M⁺) requires: 394.0712

7.2 Experimental Spectra

S33

S35

S37

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

1

