Spontaneous current constriction in threshold switching devices

Goodwill et al.

Supplementary Information

Supplementary Figure 1. Schematic of testing set-up and observed $TaO_x I-V$ characteristics. (a) Electrical testing circuit layout for *I-V* characterization and SJEM. Schematic of (b) S-NDR *I-V* and (c) multivalued *I-V*.

Supplementary Figure 2. Schematic of SJEM measurement setup.

Supplementary Figure 3. Simulated characteristics of a $2 \times 2 \mu m$ TaO_x device. Simulated line profiles of (a) expansion (b) current density and (c) temperature for all points of equal power dissipation along the *I-V* shown in Figure 2(b). Source data are provided as a Source Data file.

Supplementary Figure 4. Simulated characteristics of a 200 nm diameter VO₂ device. (a) Simulated *I-V* for VO₂-based device with current source, shown for reference from Figure 5. (b) Temperature and (c) current density line profiles in the device shown for points A-D along the *I-V* curve. Source data are provided as a Source Data file.

Supplementary Figure 5. Device structure and boundary conditions used in simulation. The

dimensions shown for each layer are indicated as width \times height.

	Si	SiO ₂	TiN^1	TaO _x ¹
Density (kg·m ⁻³)	2329	2200	5210	8200
Thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$	130	1.4	5	4
Electrical conductivity $(S \cdot m^{-1})$	N/A	N/A	5×10^{6}	User defined
Heat capacity $(J \cdot kg^{-1} \cdot K^{-1})$	700	730	545	174
Relative permittivity	N/A	N/A	4	22
Thermal expansion coefficient (1/K)	2.6×10 ⁻⁶	0.5×10 ⁻⁶	1.0×10 ^{-5 2}	5.0×10 ^{-6 3}
Young's Modulus (GPa)	170	70	300 ²	179 ³
Poisson's Ratio	0.28	0.17	0.25 ²	0.27 ³

Supplementary Table 1. Material properties used in simulation.

Supplementary References

- Goodwill, J. M., Sharma, A. A., Li, D., Bain, J. A. & Skowronski, M. Electro-Thermal Model of Threshold Switching in TaOx-Based Devices. *ACS Appl. Mater. Interfaces* 9, 11704–11710 (2017).
- Cen, Z. H. *et al.* Temperature effect on titanium nitride nanometer thin film in air. *J. Phys. D. Appl. Phys.* 50, (2017).
- Braginsky, V. B. & Samoilenko, A. A. Measurements of the optical mirror coating properties. *Phys. Lett. A* 315, 175–177 (2003).