Cell Reports, Volume 27

Supplemental Information

A Ubiquitous Platform

for Bacterial Nanotube Biogenesis

Saurabh Bhattacharya, Amit K. Baidya, Ritesh Ranjan Pal, Gideon Mamou, Yair E. Gatt, Hanah Margalit, Ilan Rosenshine, and Sigal Ben-Yehuda

Supplemental information

Supplementary Figures

Figure S1: *Bs CORE* mutants are impaired in nanotube formation. Related to Figures 1 and 2 (A) PY79 (wild type), SH9 ($\triangle CORE$) and SH33 ($\triangle CORE$, *sacA::CORE*) strains were visualized by XHR-SEM to monitor the formation of extending nanotubes at low cell density. Strains were grown to mid logarithmic

phase, spotted onto EM grids at low cell density (x0.1 dilution), incubated on LB agar plates for 2 hrs at 37°C, and visualized by XHR-SEM. Arrows indicate extending nanotubes. Scale bar represents 500 nm.

(**B**) The indicated *Bs* mutant strains were visualized by XHR-SEM to monitor the formation of intercellular nanotubes. Strains were grown to mid logarithmic phase, spotted onto EM grids, incubated on LB agar plates for 4 hrs at 37°C, and visualized by XHR-SEM. PY79 (wild type) and SH9 ($\triangle CORE$) are larger fields of the images displayed in Figure 1C. Scale bar represents 500 nm.

(C) *Bs CORE* mutants were complemented with the corresponding *CORE* genes, as indicated, and were visualized by XHR-SEM to monitor the formation of intercellular nanotubes. Cells were processed for XHR-SEM as in (B). Shown are representative examples of the indicated complemented strains. Scale bar represents 500 nm.

(**D**) Quantification of the average number of nanotubes displayed per 50 cells by the indicated strains following XHR-SEM analysis described in (C). Shown are average values and SD of at least 3 independent experiments ($n\geq 200$ for each strain).

(E-F) Growth kinetics of *Bs CORE* mutants. The indicated mutant strains were incubated in LB medium at 37° C and cell growth was followed by measuring OD₆₀₀ at the indicated time points.

(G) Expression of *CORE* genes in *Bs* non-*CORE* flagellar basal body mutants. RNA was isolated from *Bs* wild type (PY79), $\Delta flgB$ -fliF (SH8) and $\Delta fliI$ (SH177) cells grown to the mid logarithmic phase and the expression of *fliP and flhA* was determined by qRT-PCR. Transcript levels are relative to wild type (PY79). Each bar represents an average value and SD of three independent experiments.

(A) Assessing molecular exchange in *Bs CORE* complemented strains. For protein exchange assay, pairs of a donor (SB463: *amyE*::P_{hyper-spank}-cat-spec) (Cm^R, Spec^R) and a recipient (SB513: *amyE*::P_{hyper-spank}-gfp-kan) (Kan^R) parental strains (wild type) were used. The investigated complemented strains harbor the corresponding genotypes of both donor and recipient strains. Donor and recipient strains were mixed in 1:1 ratio (at two concentrations x1, x0.1) and incubated in LB supplemented with 1 mM IPTG for 4 hrs at 37°C with gentle

shaking. Equal numbers of cells were then spotted onto LB agar (Control) and LB agar containing chloramphenicol (Cm) and kanamycin (Kan) (Protein exchange), and photographed after 18 hrs. For plasmid exchange assay, pairs of a donor (GD110: *amyE::Phyper-spank-cat-spec*, pHB201/*cat*, *erm*) (Cm^R, Spec^R, MIs^R) and a recipient (SB513: *amyE::Phyper-spank-gfp-kan*) (Kan^R) parental strains (wild type) were used. The investigated complemented strains harbor the corresponding genotypes of both donor and recipient strains. Cells were mixed in 1:1 ratio (concentration x1), processed as described for protein exchange, and spotted onto LB agar containing Cm, Kan and lincomycin (Lin) (Plasmid exchange). Cells were incubated at 37°C and colonies were photographed after 36 hrs of incubation. For motility assay, wild type (PY79) and the indicated strains were grown to the mid logarithmic phase and spotted onto LB plates containing 0.3% agar and photographed after 7 hrs of incubation at 37°C (Motility).

(**B**) *Bm* inhibition by *Bs* is CORE dependent. Representative time lapse microscopy images displaying mixtures of *Bs* (AR16: *amyE*::P_{*rrnE*}-*gfp*) and *Bm* (OS2) (upper panels), *Bs* (SH30: $\triangle CORE$, *amyE*::P_{*rrnE*}-*gfp*) and *Bm* (OS2) (middle panels), and *Bs* (SH41: $\triangle CORE$, *sacA*::*CORE*, *amyE*::P_{*hyper-spank*}-*gfp*) and *Bm* (OS2) (lower panels). Shown are overlay of fluorescence from GFP (green) and phase contrast (red) images, captured at the indicated time points. *Bs* cells are shown in green while *Bm* cells are shown in black. Scale bar represents 5 µm.

Figure S3: FlhA localizes to the base of nanotubes. Related to Figure 3

(A) WT (PY79) and SH47 (*flhA-gfp*) strains were visualized by XHR-SEM to monitor the formation of intercellular nanotubes. Strains were grown to mid logarithmic phase, spotted onto EM grids, incubated on LB agar plates for 4 hrs at 37°C, and visualized by XHR-SEM. Scale bar represents 0.5 μm.

(B) Quantification of the average number of nanotubes displayed per 50 cells by the indicated strains following XHR-SEM analysis described in (A). Shown are average values and SD of at least 3 independent experiments ($n\geq70$ for each strain).

(C) Motility assay for PY79 (wild type) and SH47 (*flhA-gfp*) strains. Cells were grown to mid logarithmic phase, spotted onto LB plates containing 0.3% agar, and photographed after 7 hrs of incubation at 37°C. (**D-E**) SH55 (*flhA-gfp*, *amyE*::P_{hyper-spank}-ymdB, Δ ymdB, Δ hag) cells were grown in liquid LB to mid logarithmic phase, stained with a membrane dye (FM 4-64) and visualized by fluorescence microscopy. Shown are overlays of signals from FlhA-GFP (green) and FM 4-64 (red). Arrows denote nanotubes, and asterisks highlight FlhA foci at sites proximal to nanotube emanation. Schematics depict cells and nanotubes layouts (red), as well as FlhA-GFP signal (green) at sites of nanotube origin. Scale bars represent 0.5 µm.

Figure S4: FliP localizes to sites of nanotube emanation. Related to Figure 3

(A) Cells expressing HA tagged FliP (SH110: $amyE::P_{hyper-spank}$ -fliP_{2xHA}, $sacA::P_{hyper-spank}$ -ymdB, Δmbl) were spotted onto EM grids and subjected to immuno-gold XHR-SEM using primary antibodies against HA and secondary gold-conjugated antibodies. Samples were not coated before observation. Shown are overlays of XHR-SEM images that were acquired using TLD-SE (Through lens detector- secondary electron) for nanotube visualization and vCD (low-kV high-contrast detector) for gold particle detection. An example of FliP_{2xHA}

localization (white dot), at the site of emergence of an extending nanotube is displayed. Right panel is a magnification of the red inset in the left panel. Scale bar represents 250 nm.

(**B**) An example of FliP_{2xHA-LOOP} localization (white dots), at the sites of nanotube emergence. SH161 (*amyE*::P_{hyper-spank}-fliP_{2xHA-LOOP}-spec, sacA::P_{hyper-spank}-ymdB-kan, Δmbl ::erm) cells were processed for immuno XHR-SEM as in (A). Shown is an overlay image of TLD-SE and vCD modes. Scale bar represents 250 nm. (**C**) An example of localization of FliP_{2xHA} (white dot) expressed as a sole copy, at the site of nanotube emergence. SH247 ($\Delta fliP$::tet, P_{fla/che}-fliQ-cheD, sacA::P_{fla/che}-fliO-fliP_{2xHA}-spec, Δmbl ::erm) cells were processed for immuno XHR-SEM as in (A). Shown is an overlay image of TLD-SE and vCD modes. Scale bar represents 250 nm.

Schematics in (A-C) depict the interpretive cell layout and highlights the nanotube region with gold signal (black dashed box) captured by XHR-SEM. Arrows indicate gold signal from HA-tagged FliP.

(D) GB168 ($\Delta ymdB$, Δhag , amyE:: $P_{hyper-spank}-ymdB$) cells, lacking HA tag, were processed for immuno XHR-SEM as in (A). Shown is an example of an overlay of XHR-SEM images that were acquired using TLD-SE and vCD modes. No gold signal was obtained from cell surface and/or nanotubes. Arrows indicate nanotubes. Scale bar represents 500 nm.

(E) SH258 (*amyE*::P_{xylA}-*spoIVFB-gfp-cat, sacA*::P_{hyper-spank}-ymdB-kan, Δmbl::erm) cells, were spotted onto EM grids and subjected to immuno-gold XHR-SEM using primary antibodies against GFP and secondary gold-conjugated antibodies. Samples were not coated before observation. Shown is an example of an overlay of XHR-SEM images that were acquired using TLD-SE and vCD modes. No gold signal was obtained from cell surface and/or nanotubes. Arrows indicate nanotubes. Scale bar represents 500 nm.

(**F**) BDR524 (*amyE*:: P_{xylA} -*spoIVFB-gfp-cat*) cells were grown in liquid LB to mid logarithmic phase and visualized by fluorescence microscopy. Shown are images from phase contrast and GFP fluorescence. SpoIVFB-GFP protein localizes to the cell membrane facing the cytoplasm. Scale bar represents 1 µm.

(G) SH257 (*amyE*::P_{hyper-spank}-yueB-yfp-spec, sacA::P_{hyper-spank}-ymdB-kan, Ambl::erm) cells, were processed for immuno XHR-SEM as in (E). Shown are examples of overlays of XHR-SEM images that were acquired using TLD-SE and vCD. Yellow arrows indicate nanotubes. Red arrows indicate signal from YueB-YFP. Scale bar represents 500 nm.

(**H**) ET13 (*amyE*::P_{hyper-spank}-yueB-yfp-spec) cells were grown in liquid LB to mid logarithmic phase and visualized by fluorescence microscopy. Shown are images from phase contrast and YFP fluorescence. YueB-YFP receptor protein localizes to the cell circumference. Scale bar represents 1 µm.

Heatmap showing the conservation of proteins comprising flagella or injectisome in different bacterial phyla. Each row depicts a single species from the STRING database representative genomes, which is included in the respective phylum listed on the left. Each column represents a single protein (blue: CORE proteins; red: exclusive proteins of the flagella apparatus; green: proteins that are unique to the injectisome apparatus). The proteins used as a reference derived from *Bs* flagella (blue and red proteins), from Enterohemorrhagic *E. coli* injectisome (EscJ,D) and from *C. trachomatis* injectisome (CT664). The sequence similarity scores are based on homology data extracted from the STRING database. Color ranges at the bottom represent the STRING sequence similarity scores. See also Table S2 for detailed analysis.

Table S1: Conservation of CORE proteins in distinct bacterial species. Related to Figure 4 Conservation analysis of CORE proteins in *Bm* (DSM319), *Lm* (10403S) and *Ec* (K12 MG1655) by NCBI Protein BLAST, using the corresponding *Bs* PY79 CORE protein sequences as query.

		Bm	Lm	Ec
FliO	Query Coverage (%)	82	-	10
	Identities (%)	36	-	36
	Positives (%)	62	-	48
	E- value	7e ⁻³²	-	1.2
FliP	Query Coverage (%)	100	95	95
	Identities (%)	79	34	54
	Positives (%)	92	62	72
	E- value	2e ⁻¹³⁰	3e ⁻⁴⁵	2e ⁻⁷⁶
FliQ	Query Coverage (%)	100	50	100
	Identities (%)	72	44	51
	Positives (%)	88	62	69
	E- value	1e ⁻³⁸	5e ⁻⁰⁸	4e ⁻¹⁴
FliR	Query Coverage (%)	99	91	88
	Identities (%)	55	24	28
	Positives (%)	75	49	50
	E- value	5e ⁻⁸⁶	1e ⁻¹⁶	1e ⁻¹⁶
	Query Coverage (%)	99	93	95
FlhB	Identities (%)	59	34	39
	Positives (%)	76	59	62
	E- value	7e ⁻¹⁴⁹	3e ⁻⁶²	3e ⁻⁷³
FlhA	Query Coverage (%)	100	99	97
	Identities (%)	97	36	45
	Positives (%)	86	59	64
	E- value	0	3e ⁻¹²⁸	3e ⁻¹⁷⁵

Table S2: Table showing the conservation of proteins comprising different flagella or type III secretion system (T3SS) subunits in different bacterial species. Related to Figure 4

(Provided as a separate Excel file)

Each row represents a single species from the STRING core genomes and each column represents one protein. The protein names are followed by the species of origin (Bacillus: *B. subtilis* proteins; EHEC:

Enterohemorrhagic *E. coli* proteins; Chlamydia: *C. trachomatis* protein). The sequence similarity scores are based on the STRING database homology data. Species lacking any homolog were excluded from the analysis.

Table S3. List of primers used in this study. Related to STAR Methods

Primer name	Primer sequence (5'-3')
P _{floB} 1	GTTGACCAGTGCTCCCTGCAATAAGCTTTATTTCCTGGGTTG
P _{flgB} 2	GCTCAAATCCACTTACCTCCA
flgB-fliF KO P1	CCAGCAAATTGAAAATGATCG
flgB-fliF KO P2	CTGAGCGAGGGAGCAGAACAAATCCACTTACCTCCATTTCA
flgB-fliF KO P3	TGGAGGTAAGTGGATTTGAGCATGGCGAGACGTGATCAAGATA
flgB-fliF KO P4	ATATCATCCCCTCCGCCTCT
CORE KO P1	TGATGATGAAATGCTGGTGAA
CORE KO P2	CTGAGCGAGGGAGCAGAATTTCAACAGTCGTACACCCTTT
CORE KO P3	TGGAGGTAAGTGGATTTGAGCATGAAAATAAAAAAATTTACTGCTGCT
CORE KO P4	CACATTCTGGCCGTTAGTCA
sacA P1	CAGCATTTTCCGCTTTTCTC
sacA P2	AGCCTGCCCTTTCAAATTCT
sacA P3	GTTGACCAGTGCTCCCTGTGTTTTCCCTTCAAGGATCG
sacA P4	TTTTCCAAACATTCCGGTGT
Comp P_{flog} 1	AGAATTTGAAAGGGCAGGCTCAATAAGCTTTATTTCCTGGGTTG
$\frac{1}{Comp} P_{flgB} 2$	CAATAAAATATTGACTCTTTTTCATGCTCAAATCCACTTACCTCCA
$Comp P_{flgB}2a$	GCACAGTAGCATGGTTATTCATGCTCAAATCCACTTACCTCCA
$\frac{1}{Comp} P_{flgB} R$	GCTCAAATCCACTTACCTCCA
Bs CORE comp1	ATGAAAAAGAGTCAATATTTTATTG
Bs CORE comp2	CTGAGCGAGGGAGCAGAATTAAATATCCACCACTCCAATG
$\frac{1}{1} Comp P_{HS} $	AGAATTTGAAAGGGCAGGCTCTCGAGGGTAAATGTGAGCA
Comp P _{HS} 2	CAATAAAATATTGACTCTTTTTCATCATAGTAGTTCACCACCTTTAAGC
vmdB R	CTGAGCGAGGGAGCAGAACTATTCAAAGAACATGTGATCATCG
fliQ KO P1	TGATGATGAAATGCTGGTGAA
flio KO P2	CTGAGCGAGGGAGCAGAATTTCAACAGTCGTACACCCTTT
f_{iO} KO P3	TGGAGGTAAGTGGATTTGAGCATGAATGAGTTTATAAATATTTTCAGTTC
fliO KO P4	AAAAAGCAGGAAATAAGTCAATAA
fliP KO P1	GCAGCATTTATGCGAATGAT
fliP KO P2	CTGAGCGAGGGAGCAGAAGATGACGTGGGCCTTTCTT
fliP KO P3	TGGAGGTAAGTGGATTTGAGCGTGAGTTCAGAATTTGTAATTTCTATGG
fliP KO P4	AAAACATTCCGGACAACGAC
fliO KO P1	AATATTGGCGGCACATCG
fliO KO P2	CTGAGCGAGGGAGCAGAAAACTCACGTTTAGCACCTACCC
fliO KO P3	TGGAGGTAAGTGGATTTGAGCATGAATTCAATTATTGACTTATTTCCTGC
fliO KO P4	TCATTGTGAGCGATTCGGTA
fliR KO P1	AACAAAACCGTTCTGAAGGAAA
fliR KO P2	CTGAGCGAGGGAGCAGAATTCATCTCTACATTACCCTGCAAA
fliR KO P3	TGGAGGTAAGTGGATTTGAGCATGAAGCTTAGAGTTGACCTGCAG
fliR KO P4	GCCTGGTCAATTTCCACTTG
flhB KO P1	CGGGCCATTATTGGCTATT
flhB KO P2	CTGAGCGAGGGAGCAGAACTTCATTAAGAAACACCGACCA
flhB KO P3	TGGAGGTAAGTGGATTTGAGCATGTCAACAAGAGATTTATCCGTT
flhB KO P4	GAACAACACTTTCAGGGCTTTT
flhA KO P1	CCGCCGTTTCTTTACTGGT
flhA KO P2	CTGAGCGAGGGAGCAGAACTCTTGTTGACATGCTGTTTTT
flhA KO P3	TGGAGGTAAGTGGATTTGAGCATGAAAATAAAAAAATTTACTGCTGCT
flhA KO P4	CACATTCTGGCCGTTAGTCA
Ec CORE comp1	ATGAATAACCATGCTACTGTGC
Ec CORE comp?	CTGAGCGAGGGGGGGAGCAGCAGCAGCGGAAAC
fliI KO P1	GAGAGTCATTCGCGATGTTG
fliI KO P2	CTGAGCGAGGGAGCAGAATCAGCTGCACCTGCTTCC
fliI KO P3	TGGAGGTAAGTGGATTTGAGCGTGGCTTATCAATTTAGATTCCAAAAG
fliI KO P4	ATAGGTTGCTGCTTGCTCAG
flhA CT-F-EcoRI	TAGTAGGAATTCCAGTAGTTGATCCTGCATCAGTC
flhA CT-R-XhoI	CTACTACTCGAGAATATCCACCACTCCAATGCTT

fliP ORF F (HindIII)	AAACCCAAGCTTAAAGGTGGTGAACTACTATGAATGAGTTTATAAATATTTT CAGTTC
fliP ORF R (2X HA)	CATAGGGATAGCCAGCGTAATCTGGAACATCATATGGGTAAAAGCTCTGAA GCAAAGATTTC
2X HA R (SphI)	ACCTAGGCATGCTTATGCGTAGTCCGGGACGTCATAGGGATAGCCAGCGTA A
2X HA R	CTGAGCGAGGGAGCAGAATTATGCGTAGTCCGGGACGTCATAGGGATAGCC AGCGTAA
<i>fliP</i> ORF F (pDR111)	AATTGTGAGCGGATAACAATTAAGCTTAAAGGTGGTGAACTACTATGAATG AGTTTATAAATATTTTCAGTTC
fliP NT R (GSS/2X HA)	CATAGGGATAGCCAGCGTAATCTGGAACATCATATGGGTAGGAACTACCAT CCATTTTCGCGTAATTCA
fliP CT F (GSS/2X HA)	TTACGCTGGCTATCCCTATGACGTCCCGGACTACGCAGGATCGAGTAAACCT GAATCATTAAAGGATATT
<i>fliP</i> CT R (pDR111)	CCACCGAATTAGCTTGCATGCCTAAAAGCTCTGAAGCAAAGA
Ec fliO-flhA F (pDR111)	AATTGTGAGCGGATAACAATTAAGCTTAAAGGTGGTGAACTACTATGAATA ACCATGCTACTGTGC
<i>Ec fliO-flhA</i> R (pDR111)	CCACCGAATTAGCTTGCATGCCTTGCACCAGCAGCGGAAAC
Lm CORE P1	CCCAAACTCGAGTCAGAGATATCAAGGACTTTC
Lm CORE P2	ATCTTTTCTACTAAATGTTTTCCCATTGCCTTAGTCTCCTCTTTCAAAAG
Lm CORE P3	CTTTTGAAAGAGGAGACTAAGG CAATGGGAAAACATTTAGTAGAAAAGAT
Lm CORE P4	AAACCCGTCGACCCAGAAGAAAATGTAAAGCACGTTA
<i>fliO</i> comp1	TGGAGGTAAGTGGATTTGAGCATGAAAAAGAGTCAATATTTTATTG
fliO comp2	CTGAGCGAGGGAGCAGAATCATTCATGATGACGTGG
<i>fliP</i> comp1	TGGAGGTAAGTGGATTTGAGCATGAATGAGTTTATAAATATTTTCAGTTC
<i>fliP</i> comp2	CTGAGCGAGGGAGCAGAACTAAAAGCTCTGAAGCAAAGATTTC
<i>fliQ</i> comp1	TGGAGGTAAGTGGATTTGAGCATGAGTTCAGAATTTGTAATTTCT
<i>fliQ</i> comp2	CTGAGCGAGGGAGCAGAATTACCCTGCAAAACGATTTA
<i>fliR</i> comp1	TGGAGGTAAGTGGATTTGAGCATGAATTCAATTATTGACTTATTTCC
<i>fliR</i> comp2	CTGAGCGAGGGAGCAGAATTAAGAAACACCGACCAATG
<i>flhB</i> comp1	TGGAGGTAAGTGGATTTGAGCATGAAGCTTAGAGTTGACCT
<i>flhB</i> comp2	CTGAGCGAGGGAGCAGAATCAATATACTTTTTGTTTTGT
<i>flhA</i> comp1	TGGAGGTAAGTGGATTTGAGCATGTCAACAAGAGATTTATCCGTT
_flhA comp2	CTGAGCGAGGGAGCAGAATTAAATATCCACCACTCCAATGC
<i>Lm CORE</i> comp1	TGGAGGTAAGTGGATTTGAGCATGCGTAAAATAGCCTCTAGACGA
<i>Lm CORE</i> comp2	CTGAGCGAGGGAGCAGAATCAAGTTGGTTCAATCAGTGC
Bm CORE comp1	TGGAGGTAAGTGGATTTGAGCATGCTGCGAAAGTTCGTAATTG
Bm CORE comp2	CTGAGCGAGGGAGCAGAATCAGATATCCACCACTCCAACA
<i>Lm flaA</i> int F	TACCGGGCCCCCCCCGAGGTCGACCTTGCAACGTATGCGTCAAT
<i>Lm flaA</i> int R	TATCAAGCTTATCGATACCGCGATGGATTGATTGTTCACG
Bm hag int F (Sall)	AAACCCGTCGACTCAGGTCAGCGCATTAACAA
Bm hag int R (BamHI)	AAACCCGGATCCTAGCGGCATCTGCACTTAAA
311	GGTGGAAACCCAATACGTAATCAACGACTTGCAATATAGGATAACGAATCG TGTAGGCTGGAGCTGCTTC
312	ATCAGGCAATTTGGCGTTGCCGTCAGTCTCAGTTAATCAGGTTACAACGACA TATGAATATCCTCCTTA
3907	ACCGATATCATTACCCCGTCCGAGCGGATGCGCCGCCTGAGCCGTTAGTGTC CTAATTTTTGTTGACACTCTATC
3908	GATATTATTTTTCGGATAATCCTTAGGGTAGCATGATAAACGTTACGGAAAT CAAAGGGAAAACTGTCCATA
3909	GAAAGCGATTAATCCGCTGG
3912	GTCACATTATCCGTCAGTCG
3950	CATGATAAACGTTACGGAACACTAACGGCTCAGGCGGCGCATTCG
3951	CGAATGCGCCGCCTGAGCCGTTAGTGTTCCGTAACGTTTATCATG
3914	TTTGCGCTCTGGCATCATTTACGCTCAATACTCTTTCCAGGATTGGCGACTCC TAATTTTTGTTGACACTCTATC
3915	GCGGCTTGCACCAGCAGCGGAAACAATAATATTGCTAATAAGGCTCTCATAT

3952	GTGGCTATGTGGTGAAGCC
3953	GCTAATAAGGTTCTCATGTCGCCAATCCTGGAAAGAG
3954	CTCTTTCCAGGATTGGCGACATGAGAACCTTATTAGC
3955	CGTGATCAAATCATGCCTGC

All primers were designed during this study, and synthesized by Integrated DNA Technologies (IDT).