1	Analysis of the Messenger RNAs in Spores of Bacillus subtilis
2	
3	George Korza ¹ , Emily Camilleri ¹ , Joshua Green ¹ , Janelle Robinson ¹ , Katja Nagler ^{2,3} , Ralf
4	Moeller ⁴ , Melissa J. Caimano ^{1,5} and Peter Setlow ¹ #
5	
6	
7	Supplemental Material

References

9	1. Nagler K, Krawczyk AO, De Jong A, Madela K, Hoffmann T, Laue M, Kuipers OP, Bremer E,
10	Moeller R. 2016. Identification of differently expressed genes during Bacillus subtilis spore
11	outgrowth in high-salinity environments using RNA sequencing. Front Microbiol 7:1564.
12	2. Swarge BN, Roseboom W., Zheng L. Abhyankar WR, Brul S, de Koster CG, de Koning LJ.
13	2018. "One-Pot" sample processing method for proteome-wide analysis of microbial cells and
14	spores. Proteomics Clin Appl 12:e1700169.
15	3. Zheng L. Abhyankar W, Ouwerling N, Dekker HL, van Veen H, Rosenboom W, de Koning, L,
16	Brul S, de Koster CG. 2016. Bacillus subtilis spore inner membrane proteome. J Proteome Res
17	15:585-594.

19	Table S1									
20	Characteristics of RNA-seq data in the current work									
21 22	Sample	,	Total	#	#	# not	% Uniq	ue Avg		
23		Description*	reads	aligned	unique	aligne	ed aligned	l depth		
24	1-1DPL	Plates-1d-dc	14766388	14525805	1447299	94 2933	394 99.64	4 34		
25	2-7DPL	Plates-7d-hp-dc	14752008	14563140	145093	80 2420	528 99.63	3 23		
26	4-7DL	Liquid-7d-hp-dc	12315554	12167080	121291	16 186	6438 99.6	9 19		
27	Setlow_2018_08_27_S1	Plates-7d-hp	14721666	5 11028926	5 102172	88 4504	4378 92.6	64 307		
28	Setlow_2018_08_27_S2	Plates-7d-hp	14055316	5 11363461	106520)56 34	03260 93	.74 1161		
29	Setlow_2018_08_27_S3	Plates-7d-hp	12932458	8 12538604	123936	40 53	8818 98	.84 238		
30	Setlow_2018_10_31_S1	Liquid-7d-lp	17290054	15800103	3 157353	56 15	54698 99	.59 401		
31	Setlow_2018_10_31_S2	Liquid-7d-lp	19099550) 18494815	5 184525	76 64	6974 99	.77 109		
32	Setlow_2018_10_31_S3	Liquid-7d-hp	14277172	2 13927158	3 138912	238 38	35934 99	9.74 96		
33	* Abbreviations used an	e: d, day; dc, che	emically de	coated; hp	, highly _]	purified	l; and lp,	less well		
34	purified, with the regin	nens for spore p	roduction a	and purific	ation de	scribed	in Meth	ods. The		
35	number of days indicates	s how long spores	s were held	at 4°C wh	ile they v	were be	ing purifi	ed.		

38				Table S2*						
39	Most abundant <i>B. subtilis</i> spore mRNAs identified in published work, their σ -factor dependence									
40	and whether encoded proteins have been detected in spores									
41		<u>1</u>		<u>2</u>						
42	Gene	σ^{G}	Gene	σ^{G}	Gene	σ^{G}				
43		dependence?	de	ependence?		dependence?				
44	sspF	yes	yhcQ	yes	yozQ	yes				
45	yfhD	yes	yjzC	yes	ybxF	no				
46	yrzQ	yes	ypzI	yes	ypzE	no				
47	ytzL	yes	rpmA	no	yrrD	yes				
48	ypzG	yes	yhcM	yes	sspH	yes				
49	ykzP	yes	yxeD	yes	mtlF	no				
50	sspE [yes	yuzA	yes	iseA	no				
51	yhcV	yes	yhcN	yes	licH	no				
52	ypzF	yes	ytzK	yes	mtlD	no				
53	sspM	yes	gmuB	no	tatAY	no				
54	ykzE	yes	sspD	yes	ylqC	no				
55	ytzC	yes	gmuA	no	rpsR	no				
56	sspA	yes	ysxB/prp	no	veg	no				
57	yqfX	yes	rpsU	no	rpmH	no				
58	sspB	yes	rplU	no	yfhS	yes				
59	sspK	yes	sboA	no	rpsO	no				
60	sspN	yes	licA	no	gmuC	no				
61	sspJ	yes	sspL	yes	ykzD	yes				

62	ssp0	yes	rpsT	no	ykzV	no
63	tlp	yes	yoyE	yes	yhfH	no
64	yizC	yes	licB	no	yusG	yes
65	coxA	yes	yyzE	no	rbfA	no
66	ymfJ	yes	abrB	no	mleA	no
67	yrzR	yes	yxiE	no	yrhC	no
68	yhdB	yes	rpsP	no	bglA	no
69	sspP	yes	rpsF	no	sspI	yes

*Data are from reference 1 in order of mRNA abundance in columns 1-3; σ^{G} -dependence was determined as described in Methods; note that some σ^{G} -dependent genes are also transcribed under σ^{F} control. mRNAs from genes in bold were detected in the most abundant 78 mRNAs determined in the current work by RNA-seq on RNA from spores prepared on plates and highly purified. The proteins from italicized genes have been identified in *B. subtilis* spores (2,3). Table S3*

Average molecules/spore for different abundance mRNAs in less well purified B. subtilis spores

76

77		А	В	С	D	Е	F	G	Н
78	Avg RPKM/	Genes	Length	RPKM	Reads/	RelmRNAs/	mRNA nt/	mRNA nt/	mRNA/spo ⁶
79 80	Group	#	nt ¹		gene ²	gene ³	spo ⁴	spo (Σ=10 ⁶) ⁵	5
80 81	>1300	37	327	1.2x10 ⁵	3.8x10	⁴ 7170	8.7x10 ⁷	9.9x10 ⁵	86
82	290-1299	14	304	455	138	26	1.1x10 ⁵	1300	0.5
83	29-289	67	652	69	45	8.5	3.7x10 ⁵	4200	0.13
84	3-28	474	880	6	5.3	1	4.2x10 ⁵	4800	0.013
85	Total	= 592							

*RPKM values are from RNA-seq analysis on two RNA preparation isolated from dormant *B*. *subtilis* 168 spores (spo) prepared in liquid and less well purified as described in Methods. Values
in Columns B-E and H are averages for all mRNAs in a group, while values in Columns A, F and
G are totals for all genes or mRNAs in a group.

¹mRNAs lengths were adjusted for the presence of 5'- and 3'-non-coding sequences by adding 50
nt as described in the legend to Table 2.

92 ²Reads/gene are average RPKM values corrected for the average length of mRNAs in this group

93 as (C x B/1000). These values are the relative number of mRNAs for genes in each group.

⁴RelmRNAs/gene are relative levels of individual mRNAs in groups calculated as D/average

95 Reads/gene value for the mRNAs in the lowest abundance group which was set as 1.

 5 Values for mRNA nt/spore were calculated as (E x A x B) for each group.

97 ⁶Calculated as (F x 0.01138) to get a total of 10^6 nt for all 4 groups.

⁷These values were calculated as (G/A x B), and are the average numbers of individual
mRNA/spore in each group.

100 Supplemental Figure Legends.

101 Fig. S1. Graphical representation of mapped read data for all genes. The y-axis indicates RPKM 102 values for individual genes (x-axis). Genes are sorted based on RPKM values in descending order. 103 Graphs in panels A and C are based on the average (avg) RPKM values from at least 2 biologically-104 independent dormant spore preparations, while data for panels B and D-F represent RPKM values 105 with individual spore samples. Abbreviations are: d, day; dc, chemically decoated; hp, highly 106 purified; and lp, less well purified. The regimens for spore production and purification are 107 described in Methods. The number of d indicates how long spores were held at 4°C while they 108 were being purified.

109

Fig. S2. Representative cartoons depicting read coverage from RNA-seq on RNA from sample Setlow_2018_08_27_S1 (Plates-7d-hp), generated using MacVector Assembler software. Green arrows are used to indicate genes of interest and orientation. Genome coordinates are indicated in red. Cumulative mapped read data for a given gene are shaded light blue. The y-axis for each plot indicates the average running read depth. Regions with no mapped reads are shaded pale green.

116

Fig. S3. High Sensitivity RNA ScreenTape analysis of total RNA from mid log phase *B. subtilis*vegetative cells grown in LB medium and dormant spores prepared on plates and highly purified
over 7 d at 4°C. RNA samples were run on an Agilent TapeStation 4200 instrument.

120 Fig. S1.

124 Fig. S2.

