Electronic Supplementary Information

Discrimination between two memory channels by molecular alloying in a doubly

bistable spin crossover material

Francisco Javier Valverde-Muñoz, Maksym Seredyuk, Manuel Meneses-Sanchez, M. Carmen Muñoz, Carlos Bartual-Murgui, José A. Real

	100As		71As			100Ni
<i>T</i> (K)	230 K	300 K	230 K	120 K	157 K	110 K
				(quenched)		
Empirical formula	$C_{30}H_{48}As_2F_{12}$	$_{2}$ FeN ₁₀	$C_{30}H_{48}As_{1.42}F$	${}_{12}FeN_{10}P_{0.58}$		$C_{30}H_{48}F_{12}N_{10}NiP_2$
Mr	982.47		956.98			897.43
Crystal system	triclinic		triclinic			triclinic
Space group	<i>P</i> 1		<i>P</i> 1			<i>P</i> 1
a (Å)	9.4189(8)	9.6140(7)	9.411(3)	9.2858(5)	9.588(3)	9.1245 (3)
b (Å)	10.3506(9)	10.2571(6)	10.309(3)	10.4090(6)	10.065(2)	10.5150 (2)
<i>c</i> (Å)	22.444(2)	21.9999(13)	22.379(5)	22.272(2)	21.074(4)	21.6376 (4)
α	91.428(7)	91.522(5)	91.520(11)	83.796(5)	93.89(2)	83.769 (2)
β	100.894(7)	96.193(6)	100.995(12)	78.275(5)	93.68(2)	78.852 (2)
γ	99.001(7)	98.456(6)	98.955(16)	81.416(5)	100.47(2)	81.928 (2)
$V(Å^3)$	2118.8(3)	2131.3(2)	2101.8(11)	2077.5(2)	1989.2(8)	2009.56 (9)
Ζ	2		2			2
<i>F</i> (000)	996	996	976.0	975	975	928
$D_{\rm c}$ (mg cm ⁻³)	1.540	1.531	1.514	1.530	1.598	1.483
μ (Mo-K _a)(mm ⁻¹)	1.993	1.982	1.597	1.597	1.668	
No. of total						
reflections						
$[I \ge 2\sigma(I)]$	5545	3523	10380	4016	2958	6677
$R[I > 2\sigma(I)]$	0.0646	0.0903	0.0563	0.0516	0.1247	0.042
$wR[I > 2\sigma(I)]$	0.1470	0.2341	0.1406	0.0969	0.2859	0.131
S	1.013	0.946	1.050	1.047	1.008	0.72

 Table S1. Crystallographic parameters for 100As, 71As and 100Ni.

	100As		71As		
	230 K (HS ¹)	300 K (HS ²)	120 K (HS¹+LS¹)	157 K (LS ²)	230 K (HS ²)
Fe-N1	2.228(4)	2.219(7)	2.206(5)	1.962(11)	2.222(3)
Fe-N2	2.184(4)	2.185(6)	2.164(4)	1.969(10)	2.181(3)
Fe-N3	2.214(4)	2.212(6)	2.204(4)	1.967(10)	2.215(3)
Fe-N4	2.194(4)	2.173(7)	2.194(5)	1.948(11)	2.196(3)
Fe-N5	2.174(4)	2.165(6)	2.154(3)	1.959(10)	2.173(3)
Fe-N6	2.198(4)	2.169(7)	2.190(4)	1.980(9)	2.192(3)
<fe–n></fe–n>	2.199	2.187	2.185	1.964	2.197
N1-Fe-N2	75.0(2)	74.9(2)	75.4(2)	80.6(4)	74.99(10)
N1-Fe-N3	92.9(2)	91.6(2)	93.8(2)	93.0(4)	92.64(11)
N1-Fe-N4	167.6(2)	166.4(3)	168.9(2)	173.8(4)	167.34(11)
N1-Fe-N5	84.4(2)	85.2(2)	84.5(2)	91.4(4)	84.38(11)
N1-Fe-N6	88.2(2)	88.9(2)	87.8(2)	89.1(4)	88.57(11)
N2-Fe-N3	98.2(2)	97.8(2)	97.60(14)	92.1(4)	98.22(11)
N2-Fe-N4	102.5(2)	103.4(2)	102.4(2)	96.0(4)	102.73(11)
N2-Fe-N5	158.4(2)	159.7(2)	159.0(2)	171.8(4)	158.30(11)
N2-Fe-N6	97.1(2)	99.5(2)	97.19(14)	96.6(4)	96.78(11)
N3-Fe-N4	75.3(2)	75.2(2)	75.6(2)	81.9(4)	75.24(10)
N3-Fe-N5	89.2(2)	86.7(2)	89.49(14)	90.3(4)	89.26(11)
N3-Fe-N6	164.4(2)	162.1(2)	165.05(13)	171.3(4)	164.74(11)
N4-Fe-N5	99.0(2)	97.0(2)	98.4(2)	92.1(4)	98.87(11)
N4-Fe-N6	104.3(2)	104.7(3)	103.3(2)	96.5(4)	104.08(10)
N5-Fe-N6	75.4(2)	75.5(3)	75.85(14)	81.3(4)	75.72(11)
			1		

Table S2. Selected bond lengths (Å) and angles (°) for 100 As at indicated temperatures.

.

	100Ni
Ni-N1	2.100(2)
Ni-N2	2.119(2)
Ni-N3	2.098(2)
Ni-N4	2.131(2)
Ni-N5	2.064(2)
Ni-N6	2.147(2)
<fe–n></fe–n>	2.110
N1-Ni-N2	78.43(6)
N1-Ni-N4	172.44(6)
N1-Ni-N6	88.44(6)
N2-Ni-N4	96.71(6)
N2-Ni-N6	94.45(6)
N3-Ni-N1	95.96(6)
N3-Ni-N2	95.34(6)
N3-Ni-N4	78.62(6)
N3-Ni-N6	169.90(6)
N4-Ni-N6	97.76(6)
N5-Ni-N1	89.36(6)
N5-Ni-N2	166.24(6)
N5-Ni-N3	92.20(7)
N5-Ni-N4	96.06(6)
N5-Ni-N6	78.72(6)

Table S3. Selected bond lengths (Å) and angles (°) for 100Ni at 110 K.

Intermolecular contact	100P (HS ¹ , 150 K)	100As (HS ¹ , 230 K)	100As (HS ² , 300 K)
C…F (%)	0.7	1.4	0.9
F…H (%)	31.9	33.1	34.1
N…H (%)	3.7	3.1	1.7
С…Н (%)	6.4	8.2	3.0
Void space/Å ^{3 a,2}	46.54	43.83	27.10
Unit cell volume/Å ³	2076.46	2118.8	2131.3
% void space ^b	2.24	2.07	1.27

Table S4. Percentage of intermolecular contacts and void space obtained from the Hirshfeld surface¹ for 100P and 100As at 230 K (HS¹) and 100As at 300 K (HS²).

^a Isovalue 0.0003 e AU³; ^b Referred to unit cell volume.

¹M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka and M. A. Spackman, CrystalExplorer17 (2017). University of Western Australia. <u>http://hirshfeldsurface.ne</u>

²M. J. Turner, J. J. McKinnon, D. Jayatilaka, M. A. Spackman, *CrystEngComm*, 2011, 13, 1804-1813.

Figure S1. Dependence of $\chi_{\rm M}T$ vs *T* on the scan rate.

Figure S2. Dependence of $\chi_{\rm M}T$ vs *T* on the scan rate.

Figure S3. Temperature dependence of $\chi_M T$ vs *T* for the molecular alloys **86As**, **63As and 12As** (scan rate 2 K min⁻¹).

Figure S4. Dependence of the hysteretic behavior of the $HS^1 \leftrightarrow HS^2$ structural phase transition on the concentration of three selected samples (100As, 71As and 56As).

Figure S5. Temperature dependence of $\chi_M T$ vs *T* for **17Ni**.

Figure S6. Temperature dependence of $\chi_M T$ vs *T* for **100Ni**.

Figure S7. Comparison of cation $[Fe(nBu-im)_3(tren)]^{2+}$, illustrating larger disorder or butyl groups in LS² and HS² phases in comparison with LS¹ and HS¹, respectively. Brighter color as well as larger size of thermal ellipsoids shown at 50 % probability corresponds to larger disorder.

HS²

HS¹

Figure S8. (a) Projection of the cation and two anions of **100Ni** with atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. (b) Overlay of the unit cells for **100P** in **LS**¹ phase (grey bonds) and **100Ni** (red bonds and atoms), both structures at 110 K.

Unit cell void 100P HS¹ (150 K)

100As HS¹ (230 K)

Unit cell void 100As HS¹ (230 K)

Figure S10. Infra-red spectra of representative $[Fe(nBu-im)_3(tren)](P_{1-y}As_yF_6)_2$ molecular

