Cyclic analogue of tambjamine YP1 alkaloid isolated from marine bacterium *Pseudoalteromonas citrea*

Katherine J. Picott^a Julie A. Deichert^a, Ella M. Dekemp^a, Gabriele Schatte^a, Françoise Sauriol^a, and Avena C. Ross^{*a}

^aDepartment of Chemistry, Queen's University, Kingston, ON, Canada.

*Corresponding author: Avena C. Ross, avena.ross@queensu.ca

Supplementary Information

Table S1. Proteins in the *tam* pathway, their putative functions, and the percent identity between *P. tunicata* and *P. citrea* proteins^{1–4}.

Protein	Putative function	ldentity (%)
TamA	Adenylation and acyl-carrier protein	70
TamB	Peptidyl-carrier protein	69
TamC	Rieske oxygenase	83
TamD	Aminotransferase	78
TamE	L-prolyl-AMP ligase	56
TamF	eta-ketoacyl synthase	49
TamG	L-prolyl-PCP dehydrogenase	74
TamH	Thioester reductase and aminotransferase	71
TamJ	Oxidase/dehydrogenase	53
TamK	Outer membrane lipoprotein sorting protein	74
TamL	Permease	75
TamM	Permease	75
TamN	ATP-transporter, ATP-binding protein	78
TamO	Hypothetical protein	56
TamP	SAM dependent O-methyl transferase	69
TamQ	Condensation enzyme	65
TamR	No assigned function	66
TamS	Phosphopantetheinyl transferase	42
TamT	Dehydrogenase	62

Tambjamine MYP1 structural data

Figure S1. ¹H NMR spectrum of tambjamine MYP1 collected in CDCl₃in a 500 MHz field. Solvents and internal standard trimethylsilane (TMS) are labelled.

Figure S3. ¹H-¹H COSY NMR spectrum of tambjamine MYP1. Collected in CDCl₃in a 500 MHz field.

MHz field.

Figure S5. 1 H- 13 C HSQC NMR spectrum of tambjamine MYP1 with unknown impurity, collected in CDCl₃ in a 500 MHz field.

Table S2 Crystal data and structure refinement for tamb	iamine MYP1 ^{5,6}
Tuble 52. Crystal adda and stracture remining the tamb	junnie win ± .

Crystal Data	
Empirical formula	C ₂₄ H ₃₅ N ₃ O ₅
Formula weight	445.55
Crystal Color, Habit	yellow, plate-like
Crystal dimensions (mm)	$0.186 \times 0.128 \times 0.090$
Crystal system	triclinic
Space group	P1[2]
Unit cell parameters	
a (Å)	9.8155(5)
b (Å)	11.1719(5)
<i>c</i> (Å)	11.1821(5)
lpha (°)	91.5571(16)
β (°)	95.2218(16)
γ (°)	101.2158(17)
V (Å ³)	1196.53(10)
Z ^b	2
F(000)	480
Density (ρ_{calcd})	1.237 Mg/m ³
Absorption coefficient (µ)	0.087 mm ⁻¹

Data Collection and Refinement Conditions

Diffractometer Radiation Temperature	Bruker AXS D8 Venture Duo diffractometer monochromated Mo K _s (λ = 0.71073 Å) -93(2) °C [180(2) K]		
Scan type	φ- and ω-scans (1.5º/frame, 15 s exposure/frame, 9 sets)		
Theta range for data collection	2.533 to 26.396°		
Completeness to theta = 25.242°	99.9%		
Reflections collected	38405		
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -13 \le l \le 13$		
Independent reflections $[F_0^2 \ge -3\sigma(F_0^2)]$	4891 [<i>R</i> _{int} = 0.0736]		
Observed reflections $[F_0^2 > 2O(F_0^2)]$	3437		
Absorption correction method	multi-scan [SADABS]		
Anomalous Dispersion	For all non-hydrogen atoms		
Structure solution method	Direct methods (SHELXT-2014)		
Refinement method	Full-matrix least-squares on <i>F</i> ²		
	(SHELXL-2017/1) ⁱ		
Function Minimized	$\Sigma w(F_0 ^2 - kF_c ^2)^2$ (k: overall scale factor)		
Weighing scheme, w	$w = [\sigma(F_o^2) + (0.0723 P)^2 + 1.2456 P]^{-1}$		
$w = [\sigma(F_o^2) + (a P)^2 + (b P)]^{-1}$			
P-factor	$[Max(F_o^2, 0) + 2 F_c^2]/3$		
Data / restraints / parameters	$4891 \left[F_{o}^{2} \ge -3\sigma(F_{o}^{2})\right] / 5 / 305$		
Reflection (observed)/parameter ratio	11:1		
Reflection (data)/parameter ratio	16:1		
Goodness-of-fit on F $GooF = \{\sum [w(F_2^2 - F_2^2)^2]/(n - n)\}^{1/2}$	1.018		
<i>n</i> : number of reflections, <i>p</i> : number of parameters			
Final R indices			
$R_{1} = [\Sigma F_{o} - F_{c}] / [\Sigma F_{o}] \text{ for } [F_{o}^{2} > 2\sigma(F_{o}^{2})]$	0.0641		
$wR_2 = \{ [\Sigma w (F_o^2 - F_c^2)^2] / [\Sigma w (F_o^2)^2] \}^{1/2} $ [all data]	0.1795		
Max. Shift/Error in Final Cycle	0.000		
Largest difference peak and hole	0.833 and -0.603 $e^{-}/Å^{3}$		
Transmission factor (min)	0.7071 [SADABS]		
I ransmission factor (max)	0.7454 [SADABS]		

Figure S6. Full asymmetric unit of tambjamine MYP1 crystal structure, thermal ellipsoids are drawn to 30% probability.

Figure S7. Unit cell of tambjamine MYP1 X-ray structure. (A) View at origin of unit cell, (B) view on ab face of unit cell. Hydrogen atoms and formic acid molecule omitted for clarity. The edge colours refer to the a (blue), b (green), and c (red) coordinates.

General synthesis information

Commercially available reagents were used throughout without further purification. Reactions were carried out under an argon atmosphere using oven-dried glassware. ¹H NMR spectra were recorded using a Bruker Avance-400 spectrometer operating at 400 MHz. Anhydrous DCE (Sure/Seal[™]) was obtained from Sigma-Aldrich and used as received.

Synthesis of Tambjamine BE-18591·HCl

(Z)-N-((4'-methoxy-1H,5'H-[2,2'-bipyrrol]-5'-ylidene)methyl)dodecan-1-amine hydrochloride

Tambjamine BE-18591 was synthesized by modification of the method of Saggiomo *et al*⁷. To a solution of 4-methoxy-2,2'-bipyrrole-5-carboxaldehyde (10 mg, 0.053 mmol) and dodecylamine (13 mg, 0.068 mmol) in DCE (1 mL) was added 2 drops AcOH (cat.). The reaction mixture was heated at 60 °C for 3 h, then cooled to rt, diluted with CH_2CI_2 (5 mL), and washed with 1 M HCl (3 × 10 mL). The organic fraction was dried over MgSO₄, subjected to filtration, and concentrated *in vacuo* to deliver the title compound as a yellow oil (18 mg, 89%).

¹H NMR (400 MHz; CDCl₃): δ 13.70 (br s, 1H), 10.62 (br s, 1H), 9.52-9.40 (m, 1H), 7.33 (d, *J* = 14.9 Hz, 1H), 7.06 (dd, *J* = 1.4 and 2.7 Hz, 1H), 6.73 (dd, *J* = 1.4 and 3.7 Hz, 1H), 6.28 (2.6 and 3.8 Hz), 5.94 (d, *J* = 2.2 Hz, 1H), 3.92 (s, 3H), 3.51-3.45 (m, 2H), 1.75 (p, *J* = 7.3 Hz, 2H), 1.34-1.25 (m, 18H), 0.87 (t, *J* = 6.7 Hz, 3H). Physical and spectral data were found to be consistent with those reported⁷.

pK_a determination information

Figure S8. Absorbance spectra at varying pH of (A) the linear tambjamine BE-19591 (TB = base form, TBH⁺ = acid form) and (B) the tambjamine MYP1 (cTB = base form, cTBH⁺ = acid form). Spectra taken in 0.1 M NaCl in 1:1 (v/v) MeCN/H₂O, pH adjusted with 0.1-0.01 M HCl.

Table S3. The absorbance maxima of each compound in their basic and acidic forms, and the calculated pK_a .

Compound	Base λ_{\max} (nm)	Acid λ_{\max} (nm)	р <i>К_a</i>
Tambjamine BE-18591	368	400	9.9 ± 0.2
Tambjamine MYP1	385	420	10.4 ± 0.3

The pK_a was calculated using Equation S1 from previous literature⁸, this was done with absorbance measurements at several pH values using both λ_{max} (basic and acidic) for calculations, these were then averaged. In the equation, A refers to the experimental absorbance at a particular wavelength, Ab⁻ is the absorbance of the base form at this wavelength, and AH is the absorbance of the acidic form.

Equation S1
$$pK_a = pH + \log\left(\frac{A-Ab^-}{AH-A}\right)$$

References:

- 1 C. Burke, T. Thomas, S. Egan and S. Kjelleberg, *Environ. Microbiol.*, 2007, 9, 814–818.
- 2 A. M. Cerdeño, M. J. Bibb and G. L. Challis, *Chem. Biol.*, 2001, **8**, 817–829.
- 3 S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, J. Mol. Biol., 1990, 215, 403–410.
- 4 D. M. Withall, S. W. Haynes and G. L. Challis, J. Am. Chem. Soc., 2015, 137, 7889–7897.
- 5 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112–122.
- 6 G. M. Sheldrick, *Acta Crystallogr.*, 2015, **A71**, 3–8.
- 7 V. Saggiomo, S. Otto, I. Marques, V. Felix, T. Torroba and R. Quesada, *Chem. Commun.*, 2012, **48**, 5274–5276.
- 8 G. S. Patterson, J. Chem. Educ., 1999, **76**, 395–398.