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Summary. This web-based supplementary materials contain three sections. Section 1 presents the

technical proofs and discuss the partial verification of Exclusive Restriction assumption; Section 2

presents the discussion on consistency of 2SRI; Section 3 presents the estimating equations for two

conditional independent mediators and for the model with interaction between the treatment and the

mediator; Section 4 presents extended simulation studies.

1. Proofs and extended discussions

1.1. Proof of natural effect ratio

We first establish the results for the natural effect rate ratio. When the mediator is continuous and

M(z∗) = α0+αzz
∗+αxx+αIV xz

∗+αuu+v with v independent of z∗ and x, we have the conditional

expectation of the potential outcome Y (z,M(z∗)),

EY (Y (z,M(z∗)) |x, u)

= exp (β0 + βzz + βm (α0 + αzz
∗ + αxx+ αIV xz

∗ + αuu+ v) + βxx+ βuu) .
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By integrating with respect to v, we have

EM(z∗)|x,uEY (Y (z,M(z∗)) |x, u) = exp (logE(exp(v)))

× exp (β0 + βmα0 + βzz + βmαzz
∗ + βmαIV xz

∗ + (βx + βmαx)x+ (βu + βmαu)u) .
(1)

The natural direct effect rate ratio can be expressed as

E
(
Y
(
z,M z∗) |x, u)

E (Y (z∗,M z∗) |x, u)
= exp (βz(z − z∗)) , (2)

and the natural indirect effect rate ratio is

E (Y (z,M z) |x, u)
E (Y (z,M z∗) |x, u)

= exp (βmαz (z − z∗) + βmαIV x(z − z∗)) . (3)

In the following, we derive the natural direct ratio for binary mediator.

E
(
Y
(
z,Mz∗) |x, u)

E (Y (z∗,Mz∗) |x, u)

=
P (M(z∗) = 1|x, u)E (y (z,M(z∗) = 1) |x, u) + P (M(z∗) = 0|x, u)E (y (z,M(z∗) = 0) |x, u)
P (M(z∗) = 1|x, u)E (y (z∗,M(z∗) = 1) |x, u) + P (M(z∗) = 0|x, u)E (y (z∗,M(z∗) = 0) |x, u)

=
exp (βzz) (P (M(z∗) = 1|x, u) exp(βm) + P (M(z∗) = 0|x, u)) exp (β0 + βxx+ βuu)

exp (βzz∗) (P (M(z∗) = 1|x, u) exp(βm) + P (M(z∗) = 0|x, u)) exp (β0 + βxx+ βuu)

= exp (βz(z − z∗)) .

(4)

The proof of the natural indirect ratio for binary mediator is as follows.

E (Y (z,Mz) |x, u)
E (Y (z,Mz∗) |x, u)

=
P (M(z) = 1|x, u)E (y (z∗,M(z) = 1) |x, u) + P (M(z) = 0|x, u)E (y (z∗,M(z) = 0) |x, u)

P (M(z∗) = 1|x, u)E (y (z∗,M(z∗) = 1) |x, u) + P (M(z∗) = 0|x, u)E (y (z∗,M(z∗) = 0) |x, u)

=
(P (M(z) = 1|x, u) exp(βm) + P (M(z) = 0|x, u)) exp (β0 + βzz

∗ + βxx+ βuu)

(P (M(z∗) = 1|x, u) exp(βm) + P (M(z∗) = 0|x, u)) exp (β0 + βzz∗ + βxx+ βuu)

=
P (M(z) = 1|x, u) exp(βm) + P (M(z) = 0|x, u)
P (M(z∗) = 1|x, u) exp(βm) + P (M(z∗) = 0|x, u)

.

(5)

1.2. Proof of the estimating equations

In the following, we derive the estimation equations that we propose in the main paper,

E
(

y

exp(β0 + βzz + βmm+ βxx)
− 1

)
=E

(
E
(

y

exp(β0 + βzz + βmm+ βxx)
− 1|z,x,m, u

))
=E

(
E (y|z,x,m, u)

exp(β0 + βzz + βmm+ βxx)
− 1

)
=E (exp(βuu)− 1) = 0.

(6)
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and

E
((

y

exp(β0 + βzz + βmm+ βxx)
− 1

)
× xz

)
=E

(
E
(

y

exp(β0 + βzz + βmm+ βxx)
− 1|z,x,m, u

)
xz

)
=E

((
E (y|z,x,m, u)

exp(β0 + βzz + βmm+ βxx)
− 1

)
xz

)
=E ((exp(βuu)− 1)xz) = 0,

(7)

where the last equation follows from the randomness of treatment and the assumption that P (u|x)

has the same distribution across different x. We also have the following estimating equations,

E
(

y

exp(βmm)
− exp(β0 + βzz + βxx)

)
=E

(
E
(

y

exp(βmm)
− exp(β0 + βzz + βxx)|z,x,m, u

))
=E

(
E (y|z,x,m, u)

exp(βmm)
− exp(β0 + βzz + βxx)

)
=E ((exp(βuu)− 1) exp(β0 + βzz + βxx)) = 0,

(8)

where the last equation follows from the randomness of treatment and the assumption that P (u|x)

has the same distribution across different x. The proofs of other estimating equations are similar.

1.3. Testing the Exclusion Restriction assumption in the real data analysis

The Exclusion Restriction assumption states that the interaction Z ×XIV affects the outcome only

through its effect on the mediator M , conditional on X and Z. The Exclusion Restriction assumption

cannot be formally tested. In the following, we will provide a partial test for this assumption. The

direct effect of the treatment Z on the outcome Y can be actually through the pathway of some other

intermediate variable, M̄ . Such pathway can be visualized as

Z → M̄ → Y (9)

For example, in the dental data, Z is the motivational interviewing and M̄ can be the kid’s dental

visit and diet behavior other than the mediator of interest; in the flood data, Z is the flood and M̄

can be the mother’s health other than the mediator of interest. If the instrument Z × XIV affects

M̄ , conditioning on Z,X, then the instrument Z ×XIV can affect Y through the mediator M̄ , which

violates the Exclusion Restriction assumption. Therefore, conditioning on Z and X, we can assess if

Z ×XIV predicts M̄ to evaluate if the Exclusion Restriction assumption of the instrument Z ×XIV

is potentially violated. Even if Z ×XIV does not significantly affect M̄ , we could not conclude that

the Exclusion Restriction assumption is verified. However, we are more confident in the plausibility

of the Exclusion Restriction assumption for that it is not violated through the intermediate variable
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Fig. 1: Causal pathway of testing the Exclusion Restriction assumption

M̄ . As illustrated in Figure 1, we test whether the dotted arrow exists.

Let h denote the link function for E
(
M̄ z∗ | X = x

)
and define

γ = h
(
E
(
M̄ z∗ | X = x

))
− h

(
E
(
M̄ z | X = x

))
. (10)

Formally, we test the following null hypothesis

H0 : γ is a function which does not depend on z × xIV. (11)

When M̄ is continuous and the link function h is identity function with

E
(
M̄ z∗ | X = x

)
= ν0 + νzz

∗ + νxx+ νIV z × xIV

and hence

E
(
M̄ z∗ − M̄ z | X = x

)
= νIV (z∗ − z)xIV.

In this case, we are testing

H0 : νIV = 0. (12)

When M̄ is binary and the link function h is logit function with

logit
(
E
(
M̄ z∗ | X = x

))
= ν0 + νzz

∗ + νxx+ νIV z × xIV

and hence

logit
(
E
(
M̄ z∗ | X = x

))
− logit

(
E
(
M̄ z∗ | X = x

))
= νIV (z∗ − z)xIV.

In this case, we also test

H0 : νIV = 0. (13)

1.4. Proof of Proposition 2

It suffices to verify the following regularity conditions and then an application of Theorem 1 in Qin

and Lawless(1994) leads to Proposition 2. E (g (w, θ0) g
ᵀ (w, θ0)) is positive definite and the rank of
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E
(
∂g(w,θ)

∂θ

)
is the same as the dimension of θ and

∥∥∥∂2g(w,θ)
∂θ∂θᵀ

∥∥∥ can be bounded by some integrable

function G (w) in the neighborhood ∥θ − θ0∥2 ≤ 1 of the true value θ0.

By the expression of g(w, θ), g (w, θ) and ∂g(w,θ)
∂θ are continuous in a compact neighborhood

∥θ − θ0∥2 ≤ 1 of the true value θ0. Hence ∥g (w, θ) ∥3 and ∥∂g(w,θ)
∂θ ∥2 are bounded in this com-

pact neighborhood ∥θ − θ0∥2 ≤ 1. ∂2g(w,θ)
∂θ∂θτ is continuous in θ in a neighborhood ∥θ − θ0∥2 ≤ 1 of the

true value θ0.

2. Consistency of 2SRI estimator

To see how 2SRI works, we can decompose U into two parts U = τR + δ, where R denotes the

population residual from the first stage, δ is the population residual and E (δ|R) = 0. Then for

continuous and count outcomes, we respectively have:

E(Y (Z,M)|X, R) =

∫
β0 + βzZ + βmM + βxX+ βuτR+ βuδdP (δ|Z,M,X, R) (14)

= β0 + βzZ + βmM + βxX+ βuτR+

∫
βuδdP (δ|Z,M,X, R) .

E (Y (Z,M)|X, R) =

∫
exp (β0 + βzZ + βmM + βxX+ βuτR+ βuδ) dP (δ|Z,M,X, R) (15)

= exp (β0 + βzZ + βmM + βxX+ βuτR)

∫
exp (βuδ) dP (δ|Z,M,X, R) .

Continuous mediators For a continuous mediator, we consider a linear model:

M = α0 + αzZ + αxX+ αIV Z ×XIV + αuU + V, (16)

where V is random error and U is the unmeasured confounder with (V,U) following bivariate normal

distribution and is independent of (X, Z, Z×XIV ). 2SRI fits a linear model for M on Z,X, Z×XIV ,

and the probability limit α∗
j of first stage estimator is equal to the underlying truth, that is, α∗

j = αj ,

where j = 0, z,x, IV . Then the residual is

R = M −
(
α0 + αzZ + αxX+ αIV Z ×XIV

)
= αuU + V.

Since (αuU + V,U) is independent of (X, Z, Z ×XIV ), then δ, as the population level residual of

regressing U on R = αuU + V , is independent of (X, Z, Z ×XIV ). Since δ is independent of R and

M is linear combination of (X, Z, Z ×XIV ) and R, then δ is independent of R and M , and it is easy

to see that the 2SRI estimator is consistent for continuous outcomes with a continuous mediator. For

count outcomes, because δ is independent of other variables,
∫
exp (βuδ) dP (δ|Z,M,X, R) in (15) is

a constant. Therefore, the 2SRI estimator is also consistent for count outcomes when the mediator

is continuous.
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Binary mediators For a binary mediator, we consider a logit model:

M |X, Z, U ∼ Ber

(
exp(α0 + αzZ + αxX+ αIV Z ×XIV + αuU)

1 + exp(α0 + αzZ + αxX+ αIV Z ×XIV + αuU)

)
, (17)

2SRI fits a logit model for M on Z,X, Z × XIV , and the probability limit α∗
j of the first stage

estimators is not equal to the underlying truth αj , for j = 0, z,x, IV . Then the population residual

is

R = M −
exp

(
α∗
0 + α∗

1Z + α∗
2X+ α∗

3Z ×XIV
)

1 + exp (α∗
0 + α∗

1Z + α∗
2X+ α∗

3Z ×XIV )
.

Now
∫
exp (βuδ) dP (δ|Z,M,X, R) is generally not a constant but a function depending on Z,M,X, R,

so the 2SRI estimate will typically be biased when both the mediator and outcome models are nonliear.

2.1. The consistency of the 2SRI estimator when the first stage is linear

Consider the following outcome model

E (Y (Z,M)|X,U) = exp (β0 + βzZ + βmM + βxX+ βuU) , (18)

and the mediator model,

M = α0 + αzZ + αxX+ αIV Z ×X+ (αuU + V ) , (19)

where αuU+V is the error and U is the unmeasured confounder with (αuU+V,U) following bivariate

normal distribution and is independent of (X, Z, Z ×X). Let α∗ denote the probability limit of the

logistic regression estimator m ∼ z + x+ z × x and α∗
j = αj for j = 0, z, x, IV . In the first stage, the

population residual R is defined as

R = M − (α0 + αzZ + αxX+ αIV Z ×X) = αuU + V,

and decompose U into two parts

U = τR+ δ,

where δ is the population residual of the OLS U ∼ R and δ is independent of R. Since

E (Y (Z,M)|X, R, δ) = exp (β0 + βzZ + βmM + βxX+ βuτR+ βuδ) ,

we have

E (Y (Z,M)|X, R)

=

∫
exp (β0 + βzZ + βmM + βxX+ βuτR+ βuδ) dP (δ|Z,M,X, R) ,

=exp (β0 + βzZ + βmM + βxX+ βuτR)

∫
exp (βuδ) dP (δ|Z,M,X, R) .

(20)
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Since (αuU + V,U) is independent of (X, Z, Z × X), δ is independent of (X, Z, Z × X). Since δ is

independent of R and M is linear combination of (X, Z, Z ×X) and R, δ is independent of R and M

and hence
∫
exp (βuδ) dP (δ|Z,M,X, R) is a constant and the 2SRI estimator is consistent. We just

show that if we know the error R. Since R is unknown, we need to estimate R by R̂ which is the

residual of the first stage regression m ∼ z + x+ z × x. Under the identification assumption and the

regularity conditions, the 2SRI estimator is consistent even when R is replaced by R̂ in the second

stage. More detailed and rigorous discussion is referred to section 12.4.1 in Wooldridge(2010).

2.2. The consistency of the 2SRI estimator when the second stage is linear

Consider the first stage model

M |X, Z, U ∼ Ber

(
exp(α0 + αzZ + αxX+ αIV Z ×X+ αuU)

1 + exp(α0 + αzZ + αxX+ αIV Z ×X+ αuU)

)
, (21)

and the following second stage model

Y (Z,M) = β0 + βzZ + βmM + βxX+ (αuU + V ) , (22)

where αuU+V is the error and U is the unmeasured confounder with (αuU+V,U) following bivariate

normal distribution and is independent of (X, Z, Z×X). When the second stage model is linear, then

the 2SPS and 2SRI estimators are same. The validity of the instrumental variables will guarantee

that the 2SPS and 2SRI estimators are consistent. However, to contrast the argument with the case

where the second stage model is Poisson, Negative Binomial and Neyman Type A distribution, we

show in the following that the 2SRI estimator is consistent if R is known. When we estimate R by

a consistent estimator R̂, the 2SRI estimator is still consistent but the proof is omitted here. Let α∗

denote the probability limit of the logistic regression estimator m ∼ z + x+ z × x. In the first stage,

the residual R is defined as

R = M −
exp (α∗

0 + α∗
zZ + α∗

xX+ α∗
IV Z ×X)

1 + exp
(
α∗
0 + α∗

zZ + α∗
xX+ α∗

IV Z ×X
) ,

and decompose U into two parts

U = τR+ δ

where δ is the population residue of the OLS U ∼ R and E (δ|R) = 0.

Since

E (Y (Z,M)|X, R, δ) = β0 + βzZ + βmM + βxX+ βuτR+ βuδ,
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we have

E (Y (Z,M)|X, R) =

∫
(β0 + βzZ + βmM + βxX+ βuτR+ βuδ) dP (δ|Z,M,X, R) ,

=(β0 + βzZ + βmM + βxX+ βuτR) +

∫
(βuδ) dP (δ|Z,M,X, R) ,

=(β0 + βzZ + βmM + βxX+ βuτR) + βuE (E (δ|R) |Z,M,X, R) ,

=β0 + βzZ + βmM + βxX+ βuτR,

(23)

hence the 2SRI estimator is consistent.

3. Estimating equations

In this section, we consider two extensions, where the model is involved with two endogenous medi-

ators (m1,m2) and the model is involved with the interaction term between the treatment z and the

mediator m.

3.1. Multiple mediators

We consider the mediators (m1,m2), where m1 and m2 are independent conditioning on z,x, u and

construct the estimating equations in the case of two conditional independent mediators. The outcome

model can be written as

g{E (Y (z,m1,m2)|z,m1,m2,x, u)} = β0 + βzz + βm,1m1 + βm,2m2 + βxx+ βuu. (24)

We assume there exist two valid IVs z × x1 and z × x2. We will focus on the harder case, binary

mediator in this section. With the log link function, the model (24) represents Poisson, Negative

Binomial and Neyman Type A distribution,

Y |x, z,m, u ∼ Poisson (exp (β0 + βzz + βm1
m1 + βm2

m2 + βx1
x1 + βx2

x2 + βuu)) ,

Y |x, z,m, u ∼ NegBin (exp (β0 + βzz + βm1
m1 + βm2

m2 + βx1
x1 + βx2

x2 + βuu)) .

Y =

N∑
k=1

yk;

where

N |x, z,m, u ∼ Poisson (exp (γ0 + γzz + γm1
m1 + γm2

m2 + γx1
x1 + γx2

x2 + γuu)) ;

yk|x, z,m, u ∼ Poisson (exp (λ0 + λzz + λm1
m1 + λm2

m2 + λx1
x1 + λx2

x2 + λuu)) .
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The binary mediators m1 and m2 are independent generated as

m1|x, z, u ∼ Ber

(
exp (α0 + αzz + αx1

x1 + αx2
x2 + αIV1

zx1 + αIV2
zx2 + αuu)

1 + exp (α0 + αzz + αx1
x1 + αx2

x2 + αIV1
zx1 + αIV2

zx2 + αuu)

)
,

m2|x, z, u ∼ Ber

(
exp (τ0 + τzz + τx1

x1 + τx2
x2 + τIV1

zx1 + τIV2
zx2 + τuu)

1 + exp (τ0 + τzz + τx1
x1 + τx2

x2 + τIV1
zx1 + τIV2

zx2 + τuu)

)
.

We can establish the following estimating equations,

h1(w, θ) =

(
y

exp(β0 + βzz + βm1
m1 + βm2

m2 + βx1
x1 + βx2

x2)
− 1

)
;

h2(w, θ) =

(
y

exp(β0 + βzz + βm1
m1 + βm2

m2 + βx1
x1 + βx2

x2)
− 1

)
z;

h3(w, θ) =

(
y

exp(β0 + βzz + βm1
m1 + βm2

m2 + βx1
x1 + βx2

x2)
− 1

)
x1;

h4(w, θ) =

(
y

exp(β0 + βzz + βm1
m1 + βm2

m2 + βx1
x1 + βx2

x2)
− 1

)
x2;

h5(w, θ) =

(
y

exp(β0 + βzz + βm1
m1 + βm2

m2 + βx1
x1 + βx2

x2)
− 1

)
zx1;

h6(w, θ) =

(
y

exp(β0 + βzz + βm1
m1 + βm2

m2 + βx1
x1 + βx2

x2)
− 1

)
zx2;

h7(w, θ) =

(
y

exp(βm1
m1 + βm2

m2)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
;

h8(w, θ) =

(
y

exp(βm1
m1 + βm2

m2)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
z;

h9(w, θ) =

(
y

exp(βm1
m1 + βm2

m2)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
x1;

h10(w, θ) =

(
y

exp(βm1
m1 + βm2

m2)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
x2;

h11(w, θ) =

(
y

exp(βm1
m1 + βm2

m2)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
zx1;

h12(w, θ) =

(
y

exp(βm1
m1 + βm2

m2)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
zx2.

(25)

3.2. Model with interaction between treatment and mediator

We consider the outcome model with the interaction term zm,

g{E (Y (z,m)|z,m,x, u)} = β0 + βzz + βmm+ βzmzm+ βxx+ βuu. (26)

We assume there exist two valid IVs z × x1 and z × x2. We will focus on the harder case, binary

mediator in this section. With the log link function, the model (26) represents Poisson, Negative
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Binomial and Neyman Type A distribution,

Y |x, z,m, u ∼ Poisson (exp (β0 + βzz + βmm+ βzmzm+ βx1
x1 + βx2

x2 + βuu)) ,

Y |x, z,m, u ∼ NegBin (exp (β0 + βzz + βmm+ βzmzm+ βx1
x1 + βx2

x2 + βuu)) .

Y =

N∑
k=1

yk;

where

N |x, z,m, u ∼ Poisson (exp (γ0 + γzz + γmm+ γzmzm+ γx1
x1 + γx2

x2 + γuu)) ;

yk|x, z,m, u ∼ Poisson (exp (λ0 + λzz + λmm+ λzmzm+ λx1
x1 + λx2

x2 + λuu)) .

The binary mediators m1 and m2 are independent generated as

m|x, z, u ∼ Ber

(
exp (α0 + αzz + αx1

x1 + αx2
x2 + αIV1

zx1 + αIV2
zx2 + αuu)

1 + exp (α0 + αzz + αx1
x1 + αx2

x2 + αIV1
zx1 + αIV2

zx2 + αuu)

)
,

We can establish the following estimating equations,

h1(w, θ) =

(
y

exp(β0 + βzz + βmm+ βzmzm+ βx1
x1 + βx2

x2)
− 1

)
;

h2(w, θ) =

(
y

exp(β0 + βzz + βmm+ βzmzm+ βx1
x1 + βx2

x2)
− 1

)
z;

h3(w, θ) =

(
y

exp(β0 + βzz + βmm+ βzmzm+ βx1
x1 + βx2

x2)
− 1

)
x1;

h4(w, θ) =

(
y

exp(β0 + βzz + βmm+ βzmzm+ βx1
x1 + βx2

x2)
− 1

)
x2;

h5(w, θ) =

(
y

exp(β0 + βzz + βmm+ βzmzm+ βx1
x1 + βx2

x2)
− 1

)
zx1;

h6(w, θ) =

(
y

exp(β0 + βzz + βmm+ βzmzm+ βx1
x1 + βx2

x2)
− 1

)
zx2;

h7(w, θ) =

(
y

exp(βmm+ βzmzm)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
;

h8(w, θ) =

(
y

exp(βmm+ βzmzm)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
z;

h9(w, θ) =

(
y

exp(βmm+ βzmzm)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
x1;

h10(w, θ) =

(
y

exp(βmm+ βzmzm)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
x2;

h11(w, θ) =

(
y

exp(βmm+ βzmzm)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
zx1;

h12(w, θ) =

(
y

exp(βmm+ βzmzm)
− exp(β0 + βzz + βx1

x1 + βx2
x2)

)
zx2.

(27)
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Direct Indirect
EL 2SRI Reg EL 2SRI Reg

Out n Med. Med. Med. Med. Med. Med.
(MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

Poi 500 0.484 0.478 0.388 0.527 0.592 0.971
(0.169) (0.198) (0.117) (0.868) (0.671) (0.115)

Poi 1000 0.506 0.483 0.385 0.466 0.598 0.965
(0.131) (0.148) (0.079) (0.611) (0.514) (0.078)

Poi 5000 0.506 0.502 0.389 0.494 0.548 0.962
(0.050) (0.064) (0.036) (0.265) (0.253) (0.035)

NB 500 0.497 0.485 0.415 0.525 0.569 0.952
(0.213) (0.187) (0.126) (1.019) (0.685) (0.132)

NB 1000 0.491 0.494 0.413 0.491 0.524 0.951
(0.153) (0.122) (0.081) (0.773) (0.510) (0.089)

NB 5000 0.499 0.493 0.414 0.542 0.541 0.955
(0.064) (0.058) (0.038) (0.309) (0.235) (0.042)

NTA 500 0.526 0.342 0.367 0.285 1.029 1.003
(0.336) (0.813) (0.260) (1.817) (2.262) (0.236)

NTA 1000 0.512 0.337 0.358 0.463 1.112 1.010
(0.280) (0.616) (0.197) (1.451) (1.643) (0.181)

NTA 5000 0.506 0.425 0.368 0.477 0.809 0.995
(0.145) (0.407) (0.092) (0.651) (1.147) (0.091)

Table 1: EL estimate (with Multi-starting values) and 2SRI estimate for the direct effect parame-
ter (βz) and the indirect effect parameter (βm) with two instrumental variables. The median (out
of parenthesis) and the MAD (inside parenthesis) are reported. EL denotes the Empirical Likeli-
hood estimate, 2SRI denotes the 2SRI estimates and Reg denotes the ordinary (Poisson or Negative
Binomial) regression estimate. n stands for sample size; Out stands for the outcome distribution,
Poi stands for Poisson distribution, NB stands for Negative Binomial outcome distribution and NTA
stands for Neyman Type A distribution outcome. The simulation time is 1000 and the true coefficients
are 0.5. The size of negative binomial model is 3.

4. Extended simulation studies

In this section, we discuss the extended simulation results.

4.1. Single Mediator with Two Instrumental Variables

The results are summarized in Table 1.

4.2. More simulation results for Continuous Mediator

The results are summarized in Table 2.

4.3. Simulation results for sensitivity analysis

The results are summarized in Table 3.
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4.4. A larger proportion of zeros for Poisson and Negative Binomial

We simulate the Poisson and Negative Binomial outcome model with a larger proportion of zero.

y|x, z,m, u ∼ Poisson (exp (−0.5 + 0.5z + 0.5m+ 0.5x+ u)) . (28)

y|x, z,m, u ∼ NegBin (exp (−0.5 + 0.5z + 0.5m+ 0.5x+ u)) . (29)

The proportion of zeros for poisson increases from 20% to 50% and for Negative Binomial from 25%

to 55%. The results are summarized in Table 4.

4.5. Robust to the outcome distribution

It is necessary to know the outcome model for 2SRI second stage regression, which is another challenge

for applying 2SRI to real data analysis. In Table 5, we generate the data by Negative Binomial

Outcome model while fitting the second stage with Poisson Outcome. Table 5 shows that the proposed

estimating equation approach consistently estimates the treatment and mediation effects while 2SRI

estimates have a large bias, which illustrates that our method does not rely on the distribution of

outcome model.

4.6. Comparison of Two Estimating Equation Methods

The results are summarized in Table 6.

4.7. Comparison of 2SPS and 2SRI

The results are summarized in Table 7 and Table 8.
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Direct Indirect
EL 2SRI Reg EL 2SRI Reg

Out Str. n Med. Med. Med. Med. Med. Med.
(MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

Poi S 500 0.498 0.519 0.146 0.502 0.478 0.771
(0.151) (0.212) (0.143) (0.136) (0.190) (0.079)

Poi S 1000 0.505 0.515 0.153 0.494 0.492 0.772
(0.107) (0.154) (0.107) (0.093) (0.140) (0.056)

Poi S 5000 0.499 0.507 0.146 0.500 0.497 0.778
(0.047) (0.083) (0.050) (0.043) (0.067) (0.031)

Poi W 500 0.498 0.506 0.235 0.498 0.488 0.803
(0.191) (0.249) (0.131) (0.243) (0.328) (0.064)

Poi W 1000 0.498 0.495 0.230 0.503 0.495 0.803
(0.130) (0.192) (0.093) (0.170) (0.242) (0.051)

Poi W 5000 0.498 0.506 0.232 0.497 0.494 0.800
(0.060) (0.090) (0.044) (0.079) (0.118) (0.027)

NB S 500 0.501 0.504 0.261 0.501 0.499 0.822
(0.168) (0.166) (0.135) (0.151) (0.142) (0.052)

NB S 1000 0.493 0.493 0.249 0.505 0.500 0.820
(0.122) (0.110) (0.094) (0.105) (0.096) (0.039)

NB S 5000 0.500 0.501 0.258 0.502 0.496 0.821
(0.053) (0.053) (0.040) (0.048) (0.044) (0.016)

NB W 500 0.508 0.508 0.285 0.510 0.492 0.863
(0.221) (0.214) (0.131) (0.310) (0.304) (0.060)

NB W 1000 0.491 0.494 0.276 0.514 0.503 0.865
(0.156) (0.145) (0.096) (0.208) (0.195) (0.042)

NB W 5000 0.500 0.499 0.275 0.500 0.495 0.863
(0.067) (0.063) (0.041) (0.093) (0.091) (0.017)

NTA S 500 0.509 0.535 -0.086 0.482 0.481 0.786
(0.464) (0.572) (0.330) (0.421) (0.345) (0.139)

NTA S 1000 0.495 0.550 -0.100 0.510 0.495 0.786
(0.343) (0.514) (0.254) (0.315) (0.311) (0.113)

NTA S 5000 0.489 0.532 -0.124 0.503 0.490 0.785
(0.154) (0.315) (0.172) (0.138) (0.168) (0.069)

NTA W 500 0.521 0.508 0.104 0.473 0.481 0.808
(0.556) (0.707) (0.268) (0.748) (0.690) (0.124)

NTA W 1000 0.493 0.531 0.090 0.511 0.472 0.803
(0.417) (0.544) (0.195) (0.572) (0.513) (0.095)

NTA W 5000 0.517 0.521 0.091 0.484 0.491 0.804
(0.225) (0.341) (0.118) (0.280) (0.313) (0.060)

Table 2: Continuous Mediator: EL estimate (with Multi-starting values),2SRI estimate and Regres-
sion estimate without IV (Reg) for the direct effect parameter (βz) and the indirect effect parameter
(βm) with one instrumental variable.
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Direct Indirect
EL 2SRI Reg EL 2SRI Reg

Out θ n Med. Med. Med. Med. Med. Med.
(MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

Poi η = +0.1 1000 0.507 0.501 0.415 0.495 0.559 0.954
(0.099) (0.119) (0.079) (0.512) (0.494) (0.075)

Poi η = −0.1 1000 0.501 0.496 0.412 0.477 0.566 0.952
( 0.090) (0.105) (0.079) ( 0.510) (0.495) (0.080)

Poi η = +0.5 1000 0.492 0.494 0.419 0.525 0.558 0.950
(0.104) (0.113) (0.081) (0.560) (0.532) (0.081)

Poi η = −0.5 1000 0.498 0.501 0.417 0.512 0.570 0.952
(0.093) (0.112) (0.082) (0.478) (0.485) (0.077)

Poi η = +1.0 1000 0.488 0.495 0.412 0.552 0.564 0.952
( 0.110) (0.108) (0.080) (0.615) (0.480) (0.080)

Poi η = −1.0 1000 0.504 0.492 0.417 0.490 0.560 0.950
(0.092) (0.115) (0.081) (0.524) (0.531) (0.084)

NegB η = +0.1 1000 0.488 0.500 0.446 0.541 0.564 0.949
(0.119) (0.121) (0.091) (0.574) (0.521) (0.096)

NegB η = −0.1 1000 0.492 0.496 0.440 0.494 0.511 0.944
(0.113) (0.114) (0.088) (0.612) (0.535) (0.091)

NegB η = +0.5 1000 0.494 0.500 0.442 0.510 0.504 0.943
(0.117) (0.113) (0.088) (0.609) (0.515) (0.098)

NegB η = −0.5 1000 0.502 0.504 0.449 0.487 0.514 0.939
(0.116) (0.117) (0.085) (0.643) (0.561) (0.096)

NegB η = +1.0 1000 0.488 0.500 0.448 0.562 0.517 0.947
(0.133) (0.120) (0.094) (0.749) (0.558) (0.098)

NegB η = −1.0 1000 0.494 0.501 0.445 0.511 0.528 0.941
(0.116) (0.119) (0.090) (0.643) (0.548) (0.101)

NTA η1 = 0.05 1000 0.486 0.415 0.362 0.505 0.843 0.991
η2 = 0.05 (0.234) (0.389) (0.177) (1.313) (1.363) (0.161)

NTA η1 = 0.05 5000 0.503 0.457 0.368 0.497 0.684 0.984
η2 = 0.05 (0.117) (0.249) (0.081) (0.684) (0.746) (0.072)

NTA η1 = 0.10 1000 0.495 0.459 0.370 0.489 0.619 0.983
η2 = 0.10 (0.225) (0.429) (0.183) (1.295) (1.374) (0.165)

NTA η1 = 0.10 5000 0.502 0.468 0.366 0.493 0.665 0.983
η2 = 0.10 ( 0.123) (0.235) (0.091) (0.701) (0.700) (0.073)

NTA η1 = 0.25 1000 0.482 0.422 0.370 0.616 0.832 0.987
η2 = 0.25 (0.270) (0.428) (0.172) (1.450) (1.447) (0.151)

NTA η1 = 0.25 5000 0.491 0.470 0.378 0.571 0.653 0.979
η2 = 0.25 (0.136) (0.236) (0.091) (0.743) (0.791) (0.074)

Table 3: Sensitivity Analysis: EL estimate (with Multi-starting values),2SRI estimate and Regression
estimate without IV (Reg) for the direct effect parameter (βz) and the indirect effect parameter (βm)
with one instrumental variable. Poisson with strong IV and NTA with weak IV.
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Direct Indirect
EL 2SRI EL 2SRI

Out Str. n Med. MAD Med. MAD Med. MAD Med. MAD
Poi S 500 0.489 (0.188) 0.489 (0.185) 0.492 (1.009) 0.566 (0.830)
Poi S 1000 0.494 (0.132) 0.494 (0.126) 0.500 (0.692) 0.540 (0.597)
Poi S 5000 0.501 (0.062) 0.504 (0.062) 0.501 (0.328) 0.537 (0.270)
Poi W 500 0.487 (0.205) 0.485 (0.234) 0.642 (1.397) 0.686 (1.403)
Poi W 1000 0.495 (0.170) 0.488 (0.162) 0.514 (1.145) 0.650 (1.010)
Poi W 5000 0.500 (0.081) 0.497 (0.077) 0.487 (0.553) 0.547 (0.478)
NB S 500 0.497 (0.200) 0.519 (0.187) 0.503 (1.116) 0.521 (0.841)
NB S 1000 0.487 (0.151) 0.493 (0.142) 0.530 (0.780) 0.579 (0.635)
NB S 5000 0.500 (0.066) 0.504 (0.059) 0.495 (0.363) 0.519 (0.277)
NB W 500 0.477 (0.229) 0.480 (0.251) 0.539 (1.579) 0.595 (1.427)
NB W 1000 0.485 (0.165) 0.489 (0.180) 0.470 (1.200) 0.535 (1.054)
NB W 5000 0.491 (0.089) 0.498 (0.081) 0.547 (0.604) 0.538 (0.487)

Table 4: EL estimate (with Multi-starting values) and 2SRI estimate for the direct effect parameter
(βz) and the indirect effect parameter (βm) with one instrumental variable. We report the median
and the MAD of the estimates. The column indexed with EL denotes the corresponding Empirical
Likelihood estimate while the column indexed with 2S denotes the corresponding 2SRI estimates.
The column indexed with n stands for sample size; the column indexed with Dis. represents the
conditional distribution of the outcome, where Poi stands for Poisson distribution, NB stands for
Negative Binomial outcome distribution and NTA stands for Neyman Type A distribution outcome.
The column indexed with Str. represents the strength of instrumental variables, where S stands for
stronger IV (setting 1) while W stands for relatively weaker IV (setting 2). The simulation time is
1000 and the true coefficients are 0.5. The size of negative binomial model is 3.

Direct Indirect
EL 2SRI EL 2SRI

Out Str. n Med. MAD Med. MAD Med. MAD Med. MAD
NB S 500 0.487 (0.163) 0.491 (0.181) 0.539 (0.939) 0.574 (0.940)
NB S 1000 0.493 (0.112) 0.494 (0.127) 0.491 (0.655) 0.532 (0.630)
NB S 5000 0.500 (0.049) 0.498 (0.059) 0.492 (0.257) 0.548 (0.284)
NB W 500 0.481 (0.177) 0.494 (0.225) 0.585 (1.224) 0.545 (1.485)
NB W 1000 0.484 (0.146) 0.487 (0.177) 0.560 (1.003) 0.594 (1.131)
NB W 5000 0.500 (0.064) 0.496 (0.073) 0.490 (0.445) 0.564 (0.476)

Table 5: Fit the second stage with a wrong model. The outcome follows Negative Binomial outcome
while we fit the second stage model with Poisson outcome. We report the median and MAD of the
estimates. The sample size n is 500,1000 or 5000.

EE-EL1 EE-EL2 2SRI Reg EE-EL1 EE-EL2 2SRI Reg
Poisson with Sample size 5000

Median 0.501 0.499 0.499 0.416 0.497 0.508 0.544 0.950
MAD 0.042 0.040 0.047 0.037 0.231 0.213 0.241 0.031

NB with Sample size 5000
Median 0.497 0.496 0.500 0.445 0.498 0.516 0.514 0.942
MAD 0.049 0.046 0.050 0.038 0.274 0.253 0.233 0.041

NTA with Sample size 5000 (1000 simulation)
Median 0.496 0.495 0.462 0.375 0.521 0.545 0.678 0.981
MAD 0.116 0.110 0.245 0.088 0.683 0.510 0.787 0.074

Table 6: Two EL estimators (EE-EL1 and EE-EL2),2SRI estimate and Regression estimate with-
out IV (Reg) for the direct effect parameter (βz) and the indirect effect parameter (βm) with one
instrumental variable.



16 Jing Cheng

Direct Indirect
2SRI 2SPS 2SRI 2SPS

Outcome IV n Med. Med. Med. Med.
(MAD) (MAD) (MAD) (MAD)

Poi S 500 0.487 0.478 0.609 0.463
(0.149) (0.151) (0.660) (0.694)

Poi S 1000 0.492 0.484 0.570 0.458
(0.099) (0.100) (0.500) (0.498)

Poi S 5000 0.500 0.493 0.552 0.431
(0.047) (0.047) (0.229) (0.226)

Poi W 500 0.483 0.490 0.692 0.528
(0.181) (0.181) (1.146) (1.138)

Poi W 1000 0.495 0.501 0.582 0.425
(0.137) (0.141) (0.897) (0.888)

Poi W 5000 0.497 0.509 0.539 0.362
(0.064) (0.066) (0.395) (0.404)

NB S 500 0.500 0.500 0.543 0.460
(0.161) (0.160) (0.735) (0.771)

NB S 1000 0.496 0.489 0.570 0.488
(0.105) (0.109) (0.504) (0.506)

NB S 5000 0.503 0.494 0.499 0.432
(0.051) (0.053) (0.236) (0.239)

NB W 500 0.496 0.513 0.423 0.355
(0.197) (0.211) (1.256) (1.228)

NB W 1000 0.489 0.493 0.591 0.443
(0.130) (0.134) (0.840) (0.849)

NB W 5000 0.492 0.505 0.551 0.438
(0.059) (0.059) (0.378) (0.391)

NTA S 500 0.393 0.394 0.786 0.619
(0.501) (0.497) (1.789) (1.817)

NTA S 1000 0.413 0.404 0.812 0.641
(0.398) (0.413) (1.308) (1.355)

NTA S 5000 0.465 0.455 0.653 0.500
(0.260) (0.261) (0.821) (0.800)

NTA W 500 0.411 0.390 1.028 0.918
(0.599) (0.614) (3.045) (3.314)

NTA W 1000 0.422 0.421 0.899 0.793
(0.495) (0.504) (2.338) (2.377)

NTA W 5000 0.442 0.431 0.834 0.687
(0.292) (0.298) (1.349) (1.371)

Table 7: Count outcome and binary mediator: Comparison of 2SPS estimate and 2SRI estimate
for the direct effect parameter (βz) and the indirect effect parameter (βm) with one instrumental
variable.
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Direct Indirect
2SRI 2SPS 2SRI 2SPS

Outcome IV n Med. Med. Med. Med.
(MAD) (MAD) (MAD) (MAD)

Poi S 500 0.508 0.523 0.496 0.477
(0.207) (0.272) (0.171) (0.243)

Poi S 1000 0.515 0.533 0.497 0.476
(0.157) (0.202) (0.131) (0.168)

Poi S 5000 0.507 0.516 0.498 0.493
(0.086) (0.113) (0.070) (0.095)

Poi W 500 0.511 0.509 0.497 0.469
( 0.249) (0.314) (0.321) (0.377)

Poi W 1000 0.521 0.532 0.484 0.479
(0.185) (0.233) (0.238) (0.300 )

Poi W 5000 0.500 0.500 0.501 0.501
(0.088) (0.118) (0.115) (0.154)

NB S 500 0.505 0.493 0.497 0.498
(0.166) (0.196) (0.143) (0.163)

NB S 1000 0.503 0.496 0.496 0.508
(0.115) (0.132) (0.105) (0.112)

NB S 5000 0.499 0.499 0.498 0.500
(0.056) (0.062) (0.043) (0.052)

NB W 500 0.505 0.515 0.469 0.493
(0.224) (0.262) (0.273) (0.324)

NB W 1000 0.496 0.499 0.508 0.505
(0.146) (0.163) (0.188) (0.235)

NB W 5000 0.499 0.503 0.496 0.504
(0.067) (0.079) (0.090) (0.103)

NTA S 500 0.535 0.654 0.475 0.405
(0.540) (0.771) (0.340) (0.480)

NTA S 1000 0.558 0.640 0.479 0.445
( 0.459) (0.707) (0.284) (0.411)

NTA S 5000 0.546 0.609 0.480 0.453
(0.341) (0.401) (0.175) (0.226)

NTA W 500 0.550 0.584 0.463 0.475
(0.669) (0.881) (0.641) (0.835)

NTA W 1000 0.513 0.599 0.495 0.410
(0.553) (0.800) (0.516) (0.761)

NTA W 5000 0.484 0.547 0.518 0.466
( 0.348) (0.482) (0.308) (0.448)

Table 8: Count outcome and normal mediator: Comparison of 2SPS estimate and 2SRI estimate
for the direct effect parameter (βz) and the indirect effect parameter (βm) with one instrumental
variable.


