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Table S1: Simulation results for a single stage and five treatment options (500 replications,
n = 1000). π is the propensity score model. ϕ(1) and ϕ(2) indicate equal and varying
penalties for misclassification. opt% shows the empirical mean and standard deviation (SD)
of the percentage of subjects correctly classified to their optimal treatments. Ê{Y ∗(ĝopt)}
shows the empirical mean and SD of the expected counterfactual outcome obtained using
the true outcome model and the estimated optimal regime. E{Y ∗(gopt)} = 8.

π Method ϕ(1) ϕ(2)

opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}

Correct
ACWL-C1 94.2 (3.5) 7.69 (0.21) 88.7 (5.5) 7.60 (0.22)
ACWL-C2 90.4 (6.1) 7.38 (0.40) 86.4 (8.4) 7.36 (0.38)

T-RL 95.2 (3.1) 7.74 (0.20) 92.9 (3.7) 7.72 (0.18)

Incorrect
ACWL-C1 92.5 (4.1) 7.60 (0.23) 84.2 (6.7) 7.47 (0.24)
ACWL-C2 90.2 (6.0) 7.37 (0.38) 85.6 (8.2) 7.35 (0.36)

T-RL 95.2 (2.8) 7.74 (0.17) 91.0 (4.3) 7.68 (0.16)

Additional Simulation 1

This simulation follows Scenario 1 in Tao and Wang (2016). Specifically, we have treatment
A from Multinomial(π0/πs, π1/πs, π2/πs, π3/πs, π4/πs), with π0 = 1, π1 = exp(0.5 −
0.5X1), π2 = exp(0.5X1 + 0.2), π3 = exp(0.5X5 + 0.1), π4 = exp(0.5X5 − 0.1), and
πs =

∑4
m=0 πm. We set A to take values in {0, . . . , 4} and generate outcomes as

Y = exp[2.06 + 0.2X3 − |X1 +X2|ϕ{A, gopt(H)}] + ε,

with ϕ{A, gopt(H)} taking the form of ϕ(1) = 3I{A 6= gopt(H)} or ϕ(2) = {A− gopt(H)}2,
gopt(H) = I(X1 > −1){1 + I(X2 > −0.4) + I(X2 > 0.4) + I(X2 > 1)} and ε ∼ N(0, 1).

The results are shown in Table S1.
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Table S2: Additional simulation results based on Scenario 1 with five baseline covariates
and outcome model indicating arbitrary penalties for misclassification (500 replications, n =
500). E{Y ∗(gopt)} = 4.69.

π Method Tree-type

opt% Ê{Y ∗(ĝopt)}

- RG 69.7 (3.3) 3.71 (0.11)

Correct

OWL 63.3 (10.1) 3.54 (0.37)
LZ 95.2 (6.5) 4.54 (0.19)

ACWL-C1 90.6 (4.7) 4.49 (0.12)
ACWL-C2 90.4 (5.3) 4.47 (0.13)

T-RL 96.0 (5.1) 4.58 (0.14)

Incorrect

OWL 48.6 (8.0) 3.05 (0.34)
LZ 84.4 (17.9) 4.24 (0.51)

ACWL-C1 88.2 (4.1) 4.46 (0.12)
ACWL-C2 88.5 (4.9) 4.46 (0.13)

T-RL 96.0 (7.8) 4.58 (0.21)

Additional Simulation 2

This simulation follows Scenario 1 in the main paper with five baseline covariates, the same
treatment model and the same optimal treatment model but different outcome model. The
outcome model indicates arbitrary penalties for misclassification, which is

Y = exp[1.5+0.3X4−|1.5X1− 1|I(A 6= gopt){4I(A = 0)+ I(A = 1)+2I(A = 2)}] + ε,

with ε ∼ N(0, 1).

The results are shown in Table S2.
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Table S3: Additional simulation results based on Scenario 1 with five baseline covariates,
outcome model (b) and non-tree-type optimal treatment regime (500 replications, n = 500).
E{Y ∗(gopt)} = 2.

π Method Non-tree-type

opt% Ê{Y ∗(ĝopt)}

- RG 75.5 (3.5) 1.67 (0.09)

Correct

OWL 46.4 (7.6) 0.98 (0.21)
LZ 78.6 (6.9) 1.72 (0.13)

ACWL-C1 81.5 (4.7) 1.76 (0.11)
ACWL-C2 83.0 (4.8) 1.81 (0.10)

T-RL 82.1 (4.3) 1.79 (0.10)

Incorrect

OWL 35.1 (5.7) 0.71 (0.19)
LZ 75.2 (9.5) 1.67 (0.51)

ACWL-C1 81.4 (4.9) 1.77 (0.11)
ACWL-C2 82.0 (5.1) 1.80 (0.10)

T-RL 81.1 (4.9) 1.78 (0.10)

Additional Simulation 3

This simulation follows Scenario 1 in the main paper with five baseline covariates, the same
treatment model and the same outcome model (b) (i.e., varying penalties for treatment mis-
classification) but different optimal treatment model, which has a non-tree-type

gopt(H) = I(X1 > 0) + I(X1 +X2 > 0).

The results are shown in Table S3.
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Table S4: Additional simulation results comparing DL by Zhang et al. (2015) and T-RL
based on Scenario 1 with five baseline covariates, outcome model (a) and various optimal
treatment regimes (500 replications, n = 500). E{Y ∗(gopt)} = 2.

gopt
DL T-RL

opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}

(a) 92.6 (7.4) 1.85 (0.16) 97.2 (3.3) 1.94 (0.06)
(b) 93.0 (5.1) 1.85 (0.11) 98.8 (1.1) 1.95 (0.05)
(c) 84.6 (5.1) 1.68 (0.11) 89.7 (9.1) 1.77 (0.19)
(d) 83.0 (2.7) 1.64 (0.07) 85.5 (2.9) 1.69 (0.07)
(a) Same as Scenario 1; (b) gopt(H) = I(X1 > 0.5) + 2I(X1 ≤ 0.5 and X2 ≤ −0.3);
(c) gopt(H) = I(X1 > 0 and X2 > −0.5 and X3 > −1) + 2I(X1 ≤ 0 and X4 > −0.5

and X5 > −1); (d) gopt(H) = I(X1 > 0) + I(X1 +X2 > 0).

Additional Simulation 4

This simulation follows Scenario 1 in the main paper with five baseline covariates, the same
treatment model and the same outcome model (a) but different optimal treatment models:

(a) gopt(H) = I(X1 ≤ 0)I(X2 > 0.5) + I(X1 > 0){1 + I(X3 ≤ 0.5)},

(b) gopt(H) = I(X1 > 0.5) + 2I(X1 ≤ 0.5 and X2 ≤ −0.3),

(c) gopt(H) = I(X1 > 0 and X2 > −0.5 and X3 > −1) + 2I(X1 ≤ 0 and X4 >
−0.5 and X5 > −1,

(d) gopt(H) = I(X1 > 0) + I(X1 +X2 > 0).

The results are shown in Table S4.
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